
gibberwocky: New Live-Coding Instruments for Musical
Performance

Charles Roberts
School of Interactive Games and Media

Rochester Institute of Technology
Rochester, USA
cdrigm@rit.edu

Graham Wakefield
School of the Arts, Media, Performance and

Design, York University
Toronto, Canada

grrrwaaa@yorku.ca

ABSTRACT
We describe two new versions of the gibberwocky live-coding
system. One integrates with Max/MSP while the second
targets MIDI output and runs entirely in the browser. We
discuss commonalities and differences between the three
environments, and how they fit into the live-coding land-
scape. We also describe lessons learned while performing
with the original version of gibberwocky, both from our
perspective and the perspective of others. These lessons
informed the addition of animated sparkline visualizations
depicting modulations to performers and audiences in all
three versions.

Author Keywords
Live coding, Max/MSP, MIDI

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, H.5.2 [Information Interfaces and Pre-
sentation] User Interfaces, D.2.6 [Software Engineering] Pro-
gramming Environments.

1. INTRODUCTION
Designing environments for live-coding performance that
target external applications requires balancing meaningful
integration with systems that are often open-ended (such
as Max/MSP or SuperCollider), with idiomatic constraints
that aid performance. We recently introduced a live-coding
environment, gibberwocky.live[6], featuring a high level of
integration with Ableton Live.1 In response to the requests
of users, we have since created two new live-coding environ-
ments, gibberwocky.max and gibberwocky.midi, that provide
similar performance affordances while targeting an alter-
native music programming environment (Max/MSP) and
communication protocol (MIDI). This paper describes these
two new environments and the various design considera-
tions that informed their creation. We also describe ex-
periences performing with gibberwocky.live and how these
performances affected the development of the new systems
presented here. Of particular note is a new visualization
system affording animated sparklines that visually depict
audio modulations over time, described in Section 5.2.

1This version was previously simply named gibberwocky;
we changed the name to differentiate from the two new en-
vironments described in this paper.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

2. BACKGROUND AND MOTIVATION
Designers who create live-coding environments targeting ex-
ternal synthesis applications can focus on language devel-
opment and instrument design instead of low-level DSP al-
gorithms. Many such environments instead place a heavy
emphasis on the creation, playback, and transformation of
musical pattern [3, 2, 4], influenced both by innate affor-
dances of the computer to manipulate sets as well as se-
rialist techniques that evolved over the course of the 20th
century. Our systems adopt a similar approach and feature
a variety of tools for pattern creation and manipulation.

However, since we began our development of gibberwocky
targeting Ableton Live, we also wanted to take advantage of
its specific capabilities. In our analysis, one important com-
ponent of Live is the quality of the instruments it includes,
and their ease-of-use in live performance. Physically ma-
nipulating their interfaces yields interesting changes in the
sonic character of instruments and often becomes an impor-
tant component of performances. Accordingly, we wanted
to ask how we could perform similar musical gestures algo-
rithmically, enabling live coders to focus on the keyboard
interface without having to continuously manipulate the
mouse, trackpad, or other external controller devices.

Our interest in using musical gesture led to an emphasis
on continuous modulation in gibberwocky. Declaring modu-
lation graphs, changing them over time, and creating visual-
izations depicting their state are all heavily prioritized. The
dual-emphasis of pattern manipulation and modulation po-
sitions gibberwocky somewhat uniquely among live-coding
environments.

The primary differences between the various flavors of
gibberwocky are the applications that are controlled, and
the deep level of integration that is achieved with each. We
provide access to a well-defined object model in both gib-
berwocky.max and gibberwocky.live enabling users to begin
controlling most parameters immediately, without setting
up complex OSC and MIDI routing schemas, as described
in the Section 3. We also provide integration with the Gen
framework included in Max/MSP, enabling users to define
modulation graphs in the live-coding editor that are subse-
quently transferred, compiled, and run in Live or Max.

Besides targeting different applications and the API dif-
ferences this incurs, we deliberately made as many aspects
identical between the various flavors of gibberwocky as pos-
sible, to help ensure easy movement of practices between the
environments. All versions use the same API for sequencing,
harmony, and musical pattern manipulation, much of which
was adopted from the end-user API found in Gibber [8].
All three environments also share specialized sequencer ob-
jects, such as an arpeggiator (Arp), a step-sequencer (Steps)
and a timeline for executing anonymous functions (Score).
And they all employ an annotation system that modifies
source code to reveal system state and the output of gener-

121

ative functions. Although many of these annotations were
first explored in Gibber [7] some are new additions created
specifically for gibberwocky, and we have continued to add
new affordances for feedback as part of the research pre-
sented in this paper (see Section 5.2).

3. GIBBERWOCKY.MAX
The global community of live coders is rapidly growing. The
past five years have seen multiple international conferences
devoted to the practice in addition to almost a hundred
Algorave events [1], and numerous individual performances
that took place in the context of more broadly themed elec-
troacoustic concerts. This rise in popularity lead to a grow-
ing number of environments for live-coding, with four be-
ing introduced at the last International Conference on Live
Coding alone. But despite the plurality of live-coding envi-
ronments, the use of visual programming languages in live-
coding performances remains relatively rare. While there is
certainly more research to be done in this area, for now in-
terfaces focusing on text, featuring typing as the main input
modality, remain the dominant paradigm.

We suggest that some of this is due to the speed and
fluidity of defining sequences and generative patterns us-
ing keyboard interfaces alone. Even without considering
a task-oriented analysis of text-based environments versus
graphical patching environments, a simple application of
Fitt’s law shows that alternating between interface elements
(keyboard vs. mouse/trackpad) occupying different physi-
cal spaces causes a loss of efficiency as a function of dis-
tance, and this does not take into account the potential
cognitive burden of shifting between these different input
modalities. One of the goals of gibberwocky.max is to iso-
late many of the tasks required for live coding in Max/MSP
to a constrained textual interface that does not require live
patching (or significant use of the mouse/trackpad) during
performance. At the same time, Max/MSP has a great
deal to offer the live-coding community, with a rich history
of audiovisual instrument design, experimental objects for
sound synthesis, and an efficient low-level language for dy-
namically creating audio graphs, Gen [11]. We hope that
integrating Max/MSP with a textual live coding interface
will provide a satisfying new way to explore it, and con-
versely believe that live-coders will be attracted to the rich
palette of sounds (and visuals) that Max/MSP provides.

3.1 Installation and Setup
Gibberwocky.max is distributed using Max’s Package for-
mat, making it simple to download and install. Once in-
stalled, any Max patch can be exposed for live coding by
adding a gibberwocky Max object to the patcher. The gib-
berwocky object has a single message outlet as well as a
number of signal outlets determined by the @signals at-
tribute.

Sending a “bang” message to the gibberwocky object will
open up the client Gibberwocky editor in the system’s de-
fault web browser. Alternatively, the editor can be accessed
online, which permits remote collaboration over a local net-
work, by specifying the IP address of a single host machine
running Max/MSP.2 This permits multiple users to coop-
eratively live code Max concurrently, and only requires one
instance of the gibberwocky object instantiated in Max.

3.2 The Scene
2For example: http://gibberwocky.cc/max/?host=
<IPaddress>

Figure 1: The gibberwocky Max object, with its
messaging output routed to a sound-generating sub-
patcher (”bleep”, via ”bell” and ”squelch”) along
with the signal outlets, which are also visualized.
The gibberwocky object also communicates indi-
rectly with user interface objects (”whitequeen”and
”redqueen”) as well as an embedded Max for Live
device (”Analogue Drums”).

Gibberwocky.max permits the user to live code arbitrary se-
quences and assign modulations to parameters of the Max
patcher. This is done through the exposure of four global
objects in the gibberwocky.max client: devices, signals,
params, and namespace. These objects constitute the“scene”,
a representation of the live scriptable components of the
user’s patcher that is derived by analysis of the patcher’s
content.

This scene is derived first when the gibberwocky object
in Max is created, and sent to every client subsequently that
connects to this object. It is then displayed as a treeview,
shown in Figure 2, that enables users to drag any leaf into
code editor in order to insert the absolute path to a given
parameter or instrument. For example, after dragging the
leaf“ad-level”shown in Figure 2 into the editor the following
source code will be inserted:

devices[’analogue_drums ’][’ad_level ’]

Auto-complete can also be used to quickly enter paths to pa-
rameters in the scene. The scene is derived again and broad-
cast to all clients whenever the user’s patcher is saved, in
order to reflect any new additions or changes to the patcher
in the end-user API. Several different methods are used to
identify scriptable components of the patcher as detailed
below.

3.3 Messaging namespace
The namespace is populated with known message routing
names connected to gibberwocky in the patcher. These in-
clude any route, routepass, or select object that is either
directly connected to, or appropriately chained to, the gib-

122

Figure 2: On the right, a treeview displaying the
scene representing the patch shown in Figure 1 in
the gibberwocky.max client. Users can drag and
drop leafs from the tree into the code editor to in-
sert paths for targeting specific devices / parame-
ters, as seen at left.

berwocky object’s leftmost (message) outlet (see Figure 3).
This accounts for the most common basic methods of direct
message routing in Max patching.

Figure 3: An example of routing messages (as op-
posed to signals) from the gibberwocky object for
Max/MSP. When the patcher is saved, all of “stab”,
“bass” , “zap”, “plonk”, “kick”, “hat”, “snare”,
“tom”, “clave”, and “style” will be automatically in-
cluded in the client’s derived namespace.

In the end-user API, namespaces are created with a call
to the namespace function. A single string is passed as the
argument to this namespace. Any arbitrary member of that
namespace can subsequently be sequenced.

ns = namespace(’synth1 ’)

// send synth1 1 every half note:
ns.seq(1, 1/2)

// send ’synth1 foo 0’ every half note:
ns.foo.seq(0, 1/2)

// send list ’synth1 foo bar baz 0’
// every half note:
ns[’foo bar baz’].seq(0, 1/2)

// alternately send ’synth1 foo bar 0 1’
// and ’synth1 foo bar 2 3’:
ns[’foo bar’].seq([[0,1],[2,3]], 1/2)

Although available namespaces are populated in the tree-
view depicting the current scene and are also discoverable
via autocomplete, performers can start any arbitrary se-
quences of messages and subsequently perform the appro-
priate patching in Max. There is no requirement that a
routing must exist in a patch for a particular message be-
fore that message can be sent from the client.

3.4 Parameters
Another common idiom in Max is to expose user interface
(UI) objects to Max’s parameter system (“pattr”), and other
forms of scripting and modulation, by assigning a unique
identifier that is commonly referred to as the “scripting
name”. Conveniently, some UI objects (such as live.slider,
live.dial, etc.) receive scripting names automatically when
created, and retain well-defined parameter types and ranges.
All such named parameters found in the patcher are added
to the scene via the params array, and can also be found
in the drag-and-drop interface of the scene browser of the
gibberwocky.max client.

3.5 Devices
The scene description sent by Max to the gibberwocky clients
also includes an array of named devices, containing every
Max for Live device found. Each device represented in the
array contains information about all the parameters it ex-
poses for control, and these can be easily manipulated using
the gibberwocky.max interface and API.

In addition to enabling control of instrument parameters,
gibberwocky also provides a simple way of sending MIDI
note messages to instruments without requiring any patch-
ing or routing in the Max/MSP patch. An example of the
end-user API for both sending MIDI messages and control
messages to a Max for Live device is given below, and as-
sumes the instantiation of a Max for Live device given the
scripting name “drums” by a user; default unique identifiers
are also provided.

// store reference to Max for Live device
drums = devices[’drums’]

// set the kick -sweep parameter to 50
drums[’kick -sweep’](50)

// sequence kick -level parameter (in %)
drums[’kick -level’].seq([10,50,75], 1/4)

// send MIDI note messages using provided
// durations and velocities
drums.duration(125) // ms
drums.velocity.seq([64,127], 1/4)
drums.midinote.seq([36,38], 1/8)

3.6 Audio signals
The scene’s signals is an array of functions, with each func-
tion corresponding to one of the signal outlets of the gib-

berwocky object. When a modulation expression is passed
to one of these functions, a message is sent to the Max ob-
ject that creates an audio function via Gen, which is routed
out of the corresponding signal outlet of the gibberwocky

object as a regular MSP audio signal.
The following line of end-user code generates a gen ex-

pression creating a phasor with its output scaled by .5, and
then sends the expression to gibberwocky.max so that the
resulting output will be mapped to the second outlet of the
gibberwocky object (i.e., the first audio outlet):

signals [0](mul(phasor (2), .5))

In the same manner as gibberwocky.live, any parameter of
a gen expression can be sequenced:

_phasor = phasor(20)
_scale = mul(_phasor , .5)
signals [0](_scale)

// sequence first parameter of phasor ugen
(frequency)

_phasor [0]. seq([20,40,60], 1/2)

123

// sequence second operand of mul ugen
_scale [1]. seq([.5 ,.25 ,.1 ,.05] , 1/16)

Assigned Gen expressions broadcast “snapshots” of their
current values to all connected clients, approximately thirty
times per second, for the purposes of rendering the sparklines
in the client editors. If a signal expression is unassigned,
these snapshots are no longer broadcast and the audio sig-
nal in Max holds the last computed value as a constant.

While gibberwocky.live uses Gen to create modulation
signals for controlling parameters of Ableton Live, in gib-
berwocky.max they can be used both for modulation or
for directly synthesizing arbitrary audio graphs. In short,
these Gen graphs can be used as entire synthesis engines
for instruments in addition to modulation sources, creating
the possibility of hybrid live-coding performances involving
both high-level control of predefined instruments as well as
the low-level creation of DSP algorithms for experimental
sound synthesis.

3.7 Timing
Gibberwocky.max synchronizes communication to the browser
according to Max’s “Transport”, a global timing source ori-
ented to musical meter directly integrated with a wide range
of Max and MSP objects. Gibberwocky shares any changes
to timing state, including beats per minute, time signature,
the current bar and beat index, and the playing status, with
all connected clients.

In a similar fashion to gibberwocky.live this transport in-
formation is used to both request messages from the client
and to drive source code annotations and visualizations in
the client code editor. By default, gibberwocky.max re-
quests messages from the client one beat in advance, pro-
viding a window for messages to be transferred and parsed
on local area networks. On each beat gibberwocky.max
requests new events for the next beat from all connected
clients. When the client receives a request for messages
spanning the next beat, it asynchronously calculates the
corresponding messages and sends them back to Max along
with phase offsets.

For example, after receiving a request for the next beat
(beat number four) a message to schedule a“midinote”event
halfway through the beat, would be sent over WebSockets
using the following ASCII text:

"add 4.5 midinote foo 64 127 2000"

When the gibberwocky object within Max receives this mes-
sage, it stores and schedules the message "midinote foo 64

127 2000", to be sent at the precise time of 4.5 beats, by
means of the seq~ object in Max. (This particular sched-
uled message will send a MIDI NoteOn and NoteOff event
pair spanning a duration of 2000 milliseconds, at pitch 64

and velocity 127, to the parameter or device destination
"foo".)

4. GIBBERWOCKY.MIDI
gibberwocky.midi outputs MIDI NoteOn, NoteOff and Con-
trol Change messages. It syncs to MIDI Clock messages in
order to integrate with digital audio workstations, but can
also use its own internal clock for timing, which is poten-
tially useful for controlling external MIDI hardware.

The setup for gibberwocky.midi is simple. Users enter the
gibberwocky.midi URL3 in any browser that supports the
WebMIDI protocol (at the time of this writing this includes
Google Chrome and Opera); no additional software is re-

3http://gibberwocky.cc/midi

quired. After selecting an output port for MIDI messages
the software is ready for use.

One notable difference between gibberwocky.midi and the
other gibberwocky projects is the lack of Gen integration, as
Max/MSP and the gen~ object are not part of its toolchain.
However, we have partially overcome this limitation by in-
tegrating a JavaScript port of Gen, genish.js, created by
the first author4; this affords authoring modulation graphs
using an (almost) identical syntax. The main difference is
that the graphs are run at control-rate in the browser in-
stead of at audio-rate in the target application. The result-
ing modulations can be assigned to any MIDI CC message
as described in 4.1. A global sampling rate, which defaults
to 60 Hz, controls the rate of modulation output messages
and is freely user-definable.

Because we are using genish.js to send MIDI CC mes-
sages instead of creating audio signals, all graphs created
are wrapped in ugens that transform the resulting signal to
a range of 0–127 by default. As part of the API this scaling
and translation can optionally be disabled; however, users
must then be careful to ensure that their graphs only gener-
ate signals consisting of seven bytes of integer data (values
ranging from 0–127).

4.1 End-User API
Messages in gibberwocky.midi are sent through a global
channels array. Each channel in this array sends messages
to an associated MIDI channel on a MIDI port selected in
the gibberwocky.midi GUI.

// send note messages to channel 1
// using a zero -indexed array
channels [0]. midinote(64)

// use global scale to determine midinote
Scale.root(’c2’)
Scale.mode(’phrygian ’)
channels [0]. note.seq([0,1,2,3], 1/8)

// sequence values to cc7
channels [0]. cc7.seq([32,64,96,127] , 1/2)

// route modulation to cc8
channels [0]. cc8(lfo (.5))

// disable scaling and translation
channels [0]. cc9(

round(phasor (2,0,{min:0, max :64})),
false // do not scale / transform

)

Figure 4: The gibberwocky.midi interface.

5. PERFORMING WITH GIBBERWOCKY
4http://charlie-roberts.com/genish/

124

We have given a half-dozen performances with gibberwocky
to date, in settings ranging from juried conference events to
informal lectures / demonstrations. These experiences di-
rectly impacted the design of all gibberwocky environments,
most notably with the introduction of sparkline visualiza-
tion discussed in Section 5.2. In addition to describing our
personal experiences performing with gibberwocky, this sec-
tion also draws from an interview with Lukas Nowok, who
gave a pair of gibberwocky performances over the last six
months.5

5.1 Differences From Other Environments
One significant difference between the various gibberwocky
environments and some other live-coding systems is that
instruments and effects need to be instantiated before a
performance begins. While it is certainly possible to move
between the live-coding interface and Live to add new in-
struments and effects, in practice keeping track of both
interfaces and bouncing between them is distracting and
time-consuming while performing. In gibberwocky.max it
is especially problematic to patch during a performance, as
changes to the topology of audio graphs in Max/MSP typi-
cally result in a brief audio dropout. Although these prob-
lems directly impact the potential of these environments
for live-coding performance, they do not affect their useful-
ness when using live-coding techniques to compose or ex-
periment. But for performances they do have the effect
of constraining sonic palettes to a pre-defined palette of
sounds. Coming from live-coding environments lacking this
constraint, we found it limiting.

Despite the constraint of having to instantiate instru-
ments and effects ahead of time, the quality of the DSP
algorithms and instruments opens new opportunities for
exploration, which is one of the original motivations for
all gibberwocky environments. Whether or not the qual-
ity and range of sounds available in Live, Max/MSP, and
MIDI-controlled hardware and software outweighs the abil-
ity to easily instantiate new synthesizers and effects during
performance is a question best decided by individual per-
formers.

Nowok notes that the musical output of his performances
with gibberwocky were perhaps not significantly different
than what he would have created using Ableton Live alone.
He added:

But the process of getting to that outcome is
more natural and expressive than linear repre-
sentations like the pianoroll, the arrangement
view or the clip view. That might depend largely
of my personal idea of music though, as I express
structure and form through continuous and flow-
ing sound and more in terms of contour than in
terms of beats and bars. That means I don’t
use the pitch and rhythm sequencing of gibber-
wocky (a lot). gibberwocky speaks to my idea
of music more than any other environment, in
that it suggests continuous, flowing and precise
control of sound parameters and complex layer-
ing of these modulations (again, that is probably
very individual and only true for my approach).

5.2 Sparkline Visualizations
One strategy we found for performing with gibberwocky.live
is to spend time at the beginning of the performance se-
quencing musical material, and then subsequently tweak
synthesis and effect parameters via modulations created us-
ing gen~ graphs. As previously mentioned, gibberwocky.live

5https://www.youtube.com/watch?v=gl4JLCkbrfU

contains a variety of dynamic annotations that visually dis-
play the progression of musical sequences and the results
of various algorithmic process. In our opinion this trans-
forms source code documents into both a valuable source of
feedback for the performer and a source of information and
spectacle for the audience [5]. However, when our perfor-
mances shifted to signal processing and modulation instead
of musical sequencing this feedback was lost; the resulting
code seemed dull and lifeless in comparison to the animated
and evolving character of earlier sections.

To improve this we implemented animated sparkline vi-
sualizations [10] adding feedback for both performers and
audience members; these sparklines are now present in all
three gibberwocky environments. The sparklines appear
alongside the code fragments responsible for creating their
corresponding modulation graph; in this fashion they are
similar to research conducted in the Impromptu and Ex-
tempore live-coding environments by Swift et al. [9]

Figure 5: Three sparklines depicting modulations
assigned to various MIDI CC messages in gibber-
wocky.midi.

Although informal feedback about the sparklines has been
positive, there is work to be done concerning both the timescale
and the range of values that sparklines in the gibberwocky
environments display. For example, in gibberwocky.live the
Max for Live API requires that all signals assigned to pa-
rameters be in the range of 0–1. This makes it much easier
to implement effective sparklines as we always know the
maximum range of values possible. However, even when fo-
cusing on this limited range smaller micro-modulations of-
ten become imperceptible in the sparklines, despite possibly
having a large impact on the final rendered audio. There
are also problems at larger temporal scales. One of the
most common uses for modulations is simple fades of audio
parameters; however, these fades often take place over long
periods of time, while the sparklines in gibberwocky, as cur-
rently implemented, only display the one second of sampled
output at any moment.

Figure 6: A partial screenshot from a perfor-
mance by Lukas Nowok. Note the slow fades,
lasting dozens of measures, and the resulting flat
sparklines.

The result during long fades is a horizontally flat line that
gradually rises or falls, which is ineffective in revealing the
overall musical gesture of the modulation, as shown in Fig 6.
Resolving these issues on both the horizontal and vertical
axes by dynamically changing scale in response to the dis-
played signal is an interesting subject for future research.
Nevertheless, even as currently implemented they do still

125

provide an indication of activity in these situations, as Nowok
notes:

...in my performances it usually takes some time
for the sound to react to changes/executions in
the code (fades over many minutes, oscillators
with a frequency of under 0.01Hz etc.). Maybe it
is just the immediate reaction of the visual repre-
sentation in the gibberwocky editor that makes
it more understandable?

Remarking further on the importance of the annotations
and sparklines in Gibberwocky, Nowok states:

The beautiful thing about gibberwocky is that
the code with the visualizations is a close repre-
sentation of a musical situation at every moment
— the distance between the notation and the
outcome is small which isn’t the case for other
notations like SuperCollider for example. And
this makes it much easier for an audience to
understand the relation between notation and
music and in turn the role of the performer.
That was very apparent to me when I played a
live coding performance with SuperCollider last
week in Tallinn. The musical aesthetic and over-
all ‘feel’ was very similar to the performance in
Helsinki that I did with gibberwocky but the
feedback I got was drastically different in that
people in Tallinn couldn’t follow the unfolding of
the musical structure and connect it with what
I was writing. I got many questions asking if I
was playing back prerecorded material.

6. CONCLUSIONS
We presented two new live-coding environments, gibber-
wocky.max and gibberwocky.midi. gibberwocky.max pro-
vides deep integration with Max/MSP, including dynami-
cally creating Gen graphs, snooping patcher objects in or-
der to determine valid messaging targets, and the ability
to access many targets with no visual patching required.
gibberwocky.midi attempts to provide a similar experience
to gibberwocky.max and its predecessor, gibberwocky.live,
but solely outputting MIDI messages and with no reliance
on Max/MSP. By using a new software library, genish.js,
that emulates the Gen library, the entire environment runs
in the browser with no additional software required. All
three environments feature a new visualization system that
depicts the output of modulation algorithms with time-
varying sparklines, inline with the code that creates the
algorithms in the browser-based editor; this feature was in-
formed by our experiences performing with the gibberwocky
system.

Opportunities remain for improved integration with Max/
MSP. For example, many instruments contain parameters
designed to be controlled by messages; these parameters do
not enable users to control them with audio signals in the
manner that Max for Live instruments do. We have be-
gun work on a port of Gen to regular Max objects that
can be used to generate message appropriate for controlling
such parameters. Other opportunities include improving
the algorithms used for detecting potential messaging tar-
gets, such as auto-discovering the parameters of VST and
AudioUnit plugins hosted in Max.

The sparkline visualizations used in all gibberwocky en-
vironments are an interesting area for future research. In
addition to resolving issues of scale across both time and

value, many modulations would be better served by visual-
izations that depict progress through an overall gesture as
opposed to a simple history of previous values.

Finally, there is also the potential for integration with
more platforms, such as Pd or Bitwig Studio. As we create
further integrations, a general refactoring will need to be
performed so that all integrations use a single environment
supporting a variety of targets; such an environment could
also provide an exciting opportunity for controlling a range
of software platforms from a single live-coding environment
concurrently, using a API that is unified whenever possible.

7. ACKNOWLEDGMENTS
Supported by the Social Sciences and Humanities Research
Council, and the Canada Research Chairs program, Canada.
Also supported by the Rochester Institute of Technology,
with funding from Sponsored Research Services and the
Golisano College of Computing and Information Sciences.

8. REFERENCES
[1] https://algorave.com, 2013 (accessed January 29th,

2017).

[2] R. Kirkbride. FoxDot: Live Coding with Python and
SuperCollider. In Proceedings of the International
Conference on Live Interfaces, 2016.

[3] T. Magnusson. ixi lang: a SuperCollider parasite for
live coding. In Proceedings of the International
Computer Music Conference. University of
Huddersfield, 2011.

[4] A. McLean and G. Wiggins. Tidal–pattern language
for the live coding of music. In Proceedings of the 7th
sound and music computing conference, 2010.

[5] C. Roberts. Code as information and code as
spectacle. International Journal of Performance Arts
and Digital Media, 12(2):201–206, 2016.

[6] C. Roberts and G. Wakefield. Live Coding the Digital
Audio Workstation. In Proceedings of the 2nd
International Conference on Live Coding, 2016.

[7] C. Roberts, M. Wright, and J. Kuchera-Morin.
Beyond Editing: Extended Interaction with Textual
Code Fragments. In Proceedings of the New Interfaces
for Musical Expression Conference, 2015.

[8] C. Roberts, M. Wright, and J. Kuchera-Morin. Music
Programming in Gibber. In Proceedings of the
International Computer Music Conference, pages
50–57, 2015.

[9] B. Swift, A. Sorensen, H. Gardner, and J. Hosking.
Visual Code Annotations for Cyberphysical
Programming. In 1st International Workshop on Live
Programming (LIVE), pages 27–30. IEEE, 2013.

[10] E. Tufte. Beautiful Evidence. Graphics Press,
Cheshire, CT, 2006.

[11] G. Wakefield. Real-Time Meta-Programming for
Interactive Computational Arts. PhD thesis,
University of California Santa Barbara, 2012.

126

