
Shader-based Physical Modelling for the Design of
Massive Digital Musical Instruments

Victor Zappi
Department of Advanced

Robotics
Istituto Italiano di Tecnologia

Genoa, Italy
victor.zappi@gmail.com

Andrew Allen
Google, Inc.

Mountain View, CA
bitllama@google.com

Sidney Fels
Department of Electric and

Computer Engineering
University of British Columbia

Vancouver, BC
ssfels@ece.ubc.ca

ABSTRACT
Physical modelling is a sophisticated synthesis technique,
often used in the design of Digital Musical Instruments
(DMIs). Some of the most precise physical simulations
of sound propagation are based on Finite-Difference Time-
Domain (FDTD) methods, which are stable, highly param-
eterizable but characterized by an extremely heavy compu-
tational load. This drawback hinders the spread of FDTD
from the domain of off-line simulations to the one of DMIs.
With this paper, we present a novel approach to real-time
physical modelling synthesis, which implements a 2D FDTD
solver as a shader program running on the GPU directly
within the graphics pipeline. The result is a system capa-
ble of running fully interactive, massively sized simulation
domains, suitable for novel DMI design. With the help of
diagrams and code snippets, we provide the implementa-
tion details of a first interactive application, a drum head
simulator whose source code is available online. Finally, we
evaluate the proposed system, showing how this new ap-
proach can work as a valuable alternative to classic GPGPU
modelling.

Author Keywords
Physical modelling synthesis, GPU, OpenGL, DMI design

ACM Classification
• Computing methodologies∼∼Massively parallel al-
gorithms • Computing methodologies∼∼Real-time
simulation • Applied computing∼∼Sound and music
computing

1. INTRODUCTION
Physical modelling has the potential to synthesize a wide
range of musical sounds to be used in Digital Musical In-
struments (DMIs). The high number of parameters often
involved in physical simulations makes possible to achieve
fine audio control [14] and attracts DMI designers interested
in exploring novel interactive metaphors [11].

The work course of sound propagation in 2D is the Finite-
Discreet Time-Domain (FDTD) method, which can be used
to model different phenomena at the basis of sound and mu-
sic. Examples of FDTD-based physical modelling include

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

the simulation of drums [10], wind instruments [1] as well
as voice [12].

However, physical simulations and FDTD are notorious
for being computationally extremely heavy. To simulate 2D
sound wave propagation using an FDTD scheme on a grid of
only 40x40 points, a system must be capable of running at
least 64000 floating point operations per sample. Running
at audio rate in real-time, this translates in almost 3 Giga
FLOPS, a big challenge for the technology underlying an
average DMI.

The use of Graphics Processing Units (GPUs), as opposed
to Central Processing Units (CPUs), is becoming a com-
mon solution to boost the performances of non-branching,
parallelizable physical modelling synthesis, like the case of
FDTD. General Purpose computing on GPUs (GPGPU)
frameworks facilitate the development of parallel programs
that make use of the GPU’s streaming multiprocessors for
applications that do not target graphics rendering. How-
ever, due to the complexity of the GPU’s architecture and to
the intrinsic challenges of parallel programming paradigms,
it is still not an easy goal to leverage off the full computa-
tional power of a graphics card when using GPGPU.

In this paper, we present the details of a different ap-
proach to GPU physical modelling synthesis, working within
the standard graphics pipeline. Based on a novel OpenGL
implementation, our system combines vertex and fragment
shaders to allow for seamless full usage of the GPU’s stream-
ing multiprocessors and texture memory. The result is an
extremely fast alternative to GPGPU implementations of
massive simulations, that allows for sample-based control
of synthesis parameters and can render a useful real-time
graphical representation of the state of the system.

The contribution of this paper is threefold. First, we show
how FDTD solvers map to the graphics rendering pipeline,
to implement highly optimized real-time physical modelling
synthesis. Second, we include code snippets as well as a link
to the source code of a complete C++ and OpenGL Shading
Language (GLSL) example of a drum head simulator, for
the NIME community to replicate it an extend it. Finally,
we compare our system with two other implementations,
one running on the CPU, the other based on GPGPU [10],
and discuss the advantages of the proposed approach from
the perspective of novel DMI design.

2. RELATED WORK
As the desire for more accurate and expressive sound syn-
thesis grows, so do the computational requirements. To
accelerate computation, many signal processing algorithms
have been adapted to the GPU. Several examples of Fast
Fourier Transform implementations based on GPGPU or
shader languages can be found in the literature [4, 3]; this
led to the development of a standard CUDA library as well

145

as a native OpenGL implementation1. Both a million-voice
real-time additive synthesizer [9] and a multi-object modal
synthesis engine [14] were demonstrated using GPU hard-
ware that is now several years-old.

As already introduced, GPUs are leveraged for their abil-
ity to efficiently execute and synchronize many lightweight
cores for parallelized operation. FDTD solvers, while com-
putationally expensive, often easily parallelize, making GPUs
an obvious choice for processing. Room acoustics simulation
can use FDTD equations, thus, GPUs have been used quite
often in this domain to measure reflections and compute
band-limited room impulse responses [8]. Pre-computed
full-band room impulse responses were later studied [5].
Additionally, many FDTD-based numerical models of vari-
ous wind and percussive musical instruments have been ex-
plored [2], including a GPU-based timpani simulation that
accurately models sound synthesis from the drum mem-
brane [13].

Though the domain of audio-rate FDTD simulation is
largely offline, there are many recent examples demonstrat-
ing real-time performance. Musical instrument simulation is
a natural choice for such applications. Researchers demon-
strated a variety of possibilities including a percussion in-
strument using modal synthesis with multi-touch input [6],
a 2D drum membrane simulation [10], and 2D virtual wind
instrument sandbox simulation [1]. In the area of room
acoustics, real-time 3D band-limited small room simulations
have been studied [7].

3. SYSTEM DESIGN
In this section, we describe the implementation details of
our GPU drum head simulator. This practical example
is used to show how to set up an OpenGL-based physical
modelling audio synthesis application. First, the acoustic
model underlying the simulation is presented; then, the ac-
tual main steps of its GPU implementation are illustrated,
with the support of diagrams and code snippets. The full
and commented source code of the application can be found
at http://toomuchidle.com/opengl-fdtd/.

3.1 Acoustic Model
The behavior of our drum head is modelled according to the
following discretization of the standard 2D acoustic wave
equation:

pn+1 =
2pn + (µ−1)pn−1 + ρ(pL+pR+pU+pD − 4pn)

µ+1
(1)

with:

pL,R,U,D =

{
pnγ if boundary
pnl,r,u,d else (2)

The equations above describe a quite common FDTD
scheme, where p denotes the acoustic pressure value in the
current grid point and the indices n + 1, n and n − 1 re-
fer to the time step, respectively next, current and previ-
ous; pl, pr, pu, pd represent the pressure value sampled on
the four immediate neighbors of the current point, on the
right, on the left, on top and below it respectively. Equa-
tion 2 describes how boundary conditions are enforced using
these neighbor values; the term γ in the boundary case al-
lows to transition between two conditions: fully clamped
edge (γ = 0) and free edge (γ = 1). The properties of
the simulated material are defined by the absorption coef-
ficient µ (0 < µ < 1) and by the term ρ, which is defined

as ρ =
(
c∆t

∆s

)2
; c is the speed of sound in the medium (i.e.,

1GLFFT website: https://github.com/Themaister/GLFFT

the simulated material), ∆t is the inverse of the simula-
tion sample rate (44100 Hz) while ∆s is the size of each
single point on the grid. To assure stability, the Courant-
Friedrichs-Lewy condition must be satisfied (ρ ≤ 0.5).

Our drum head is composed of a grid of points surrounded
by a boundary layer. When excited by an impulse (i.e.,
a virtual strike on the drum head), the pressure values at
each point start to oscillate and can be sampled and treated
as an audio stream. Different sounds can be obtained by
modifying the material’s properties (µ and ρ), and by means
of changing the number of grid points, the shape and the
type of the enclosing boundary layer (from clamped to free).
Furthermore, it is possible to change the bandwidth of the
excitation impulse, to simulate different kinds of strikes,
e.g., sticks, mallets.

3.2 GPU Implementation
The GPU implementation of the solver relies on the us-
age of a texture to store pressure propagation on our sim-
ulated drum head, with one texture fragment representing
a single grid point. The actual pressure calculation algo-
rithm (Equation 1 and Equation 2) is defined in a fragment
shader, that determines the behavior of each grid point and
runs in parallel on the drawn texture fragments. The num-
ber of concurrent threads depends on the specifications of
the used GPU. An OpenGL Frame Buffer Object (FBO) is
employed to make the shader render to the texture instead
of filling the render buffer (and render on screen).

The FDTD scheme described in Section 3.1 is an explicit
solver, since the next pressure value depends only on the
current and the previous state of the system. In particular,
to compute the next value of a pressure point, the solver
needs to know the current and the previous value of the
same point on the grid, as well as the current values of the
four neighbor points. This scheme must be preserved in the
GPU implementation and in the operations defined in the
fragment shader.

3.2.1 Fragment Read/Write Access
Since version 4, OpenGL supports read/write fragment op-
erations on each fragment of a texture, a feature that can
be appropriated to design a highly optimized parallel solver.
In particular, when the RGBA channels of a fragment are
drawn, OpenGL 4 allows values sampled from other por-
tions of the texture to be used to carry out the calculation
of the newly assigned color (as opposed to using only the
current fragment values). Thanks to this feature, instead
of using separate textures to store pressure values for each
time step, we can employ a single texture divided in por-
tions, using the R channel to save pressure. Since the solver
needs the current and the previous pressure values, the tex-
ture is divided in two parts only, one to store values from
time step n, the other to store values from time step n− 1.
At each simulation cycle, only the fragments of the n − 1
portion are updated (rendered) and filled with the n + 1
values, computed by the fragment shader; then, time step
indices are swapped, i.e., the updated portion changes from
n− 1 to n and, vice versa, portion n becomes n− 1. In this
way we work in a thread-safe context, since we always re-
trieve neighbor pressure values for time step n (pL,R,U,D in
Equation 1) and the current point’s pressure values n and
n − 1 (pn,n−1 in Equation 1) from portions of the texture
that are not being modified by concurrent threads. Even-
tually, to assure thread synchronization, a memory barrier
call is performed at the end of every simulation cycle (see
the code snippet in Section 3.2.4).

This structure makes the system very lightweight. The
single texture is bound only once during the initialization

146

of the simulation, while the indices swapping is handled
by means of alternatively enabling two sets of draw arrays
within an OpenGL Vertex Buffer Object (VBO) (more de-
tails in Section 3.2.3 and Section 3.2.4). In contrast, using
two different textures would require alternate binding, an
operation that would remarkably slow down the whole ren-
dering process.

3.2.2 Full Texture Layout
As described in Section 3.2.1, the used texture is divided
into two portions to accommodate the pressure values from
time steps n and n − 1. These two portions, which from
now on will be referred to as Tex0 and Tex1, are equally
sized (each portion contains as many pixels as the number
of grid points in our simulation domain) and lie side by side
within the full texture. At each simulation cycle, Tex0 and
Tex1 alternatively contain the current pressure values in
the domain and the previous ones.

The full texture layout (Figure 1) also includes a third
and a fourth portion (Tex2 and Tex3), placed on top of
Tex0 and Tex1. Tex2 is much like an audio buffer inside
the texture; it is one pixel high, as wide as Tex0 and Tex1
placed side by side, and it serves to store the pressure val-
ues computed on the grid point we want to sample. At
each simulation cycle, a single pressure sample is lined up
in Tex2, which is then read by the CPU once the buffer is
full, by means of getPixels, a standard OpenGL Pixel Buffer
Object (PBO) operation. The details on how the sampling
happens in the fragment shader are illustrated in Section
3.2.5.

Figure 1: This diagram shows the full texture layout and
its mapping on the vertices.

The fourth and final portion (Tex3) has same size as Tex2
and is placed between it and Tex0/Tex1. This portion acts
as an empty separator between the audio buffer and the ac-
tual simulation domain, so that the fragments placed on the
top edge of Tex0 and Tex1 do not access the audio sam-
ples stored in the buffer when accessing pU . The channels
of this texture portion contain all zeros and they are never
updated throughout the simulation.
Tex3 is the only extra portion needed to prevent the sim-

ulation from being corrupted by “dirty” samples. Whenever
a fragment tries to fetch a sample outside the texture (e.g,
pD from the bottom edge fragments of Tex0 and Tex1), a
black color value is retrieved (i.e., no pressure).

3.2.3 Vertices and Texture Mapping
Once the layout of the full texture has been designed, it is
necessary to define the polygons on whose faces OpenGL
will place the different portions of the texture, to read (tex-
ture mapping) and update (render-to-texture) the pixels. In
this way, invoking a draw call on a specific polygon will re-
sult into the proper read/write update of Tex0, Tex1 (sim-
ulation step) or Tex2 (audio sampling).

We use three different flat rectangular surfaces (Quad0,
Quad1 and Quad2) as polygons, each described by four co-
planar 3D vertices (z = 0). These three Quads cover almost
the whole OpenGL workspace and their proportions are the
same as the ones of the texture portions Tex0, Tex1 and
Tex2: Quad0 and Quad1 are equally sized and placed side
by side, while Quad2 is a single line placed on top of them,
but separated by an empty row. This displacement, com-
bined with the usage of the FBO, determines a physical
overlapping of the polygons with the texture portions (Fig-
ure 1), so that Tex0 and Tex1 are respectively updated
every time Quad0 and Quad1 are drawn, while a draw call
on Quad2 triggers the update of Tex2. There is no Quad
associated with Tex3 (thus the empty line left between the
Quads), since, as mentioned before, this portion is never
updated.

Figure 2: Fragment access pattern. The fragments that
the shader needs to sample to compute the next pressure
value are highlighted in yellow.

The position in the workspace of each vertex is stored into
a VBO, together with a series of attributes. Attributes are
the standard way to perform texture mapping; by means
of coupling each vertex with some texture coordinates, the
shader program can locally access (read) the texture2 when
drawing all the fragments on the polygons’ faces. In our
case, the fragment shader has to access six different tex-
ture coordinates: pn, pn−1 and the four neighbor values
pL,R,U,D. As depicted in Figure 2, to read the value pn

needed to compute pn+1, a fragment has to access the por-
tion of the texture that is on the opposite side of the Quad
where it resides (from time step n − 1 to n). For this rea-
son, each vertex is coupled in the VBO with the texture
coordinates of the respective point in the opposite texture
portion. The same coordinates are then repeated for each
of the four direct neighbors by simply applying a one-pixel
shift in the selected direction. A final set of coordinates
could be added to the VBO to access pn−1 as this value at
this time is stored in the texture portion overlapped with
the Quad that the vertex belongs to. However, to avoid an
extra texture sampling operation (repeated for every frag-
ment in every time step), we can store the previous pressure
value in the G channel of the texture. By doing so, a frag-
ment can retrieve both pn (channel R) and pn−1 (channel
G) with a single color sampling.

Useful additional information about the grid points can
be stored in the other unused channels of the texture, i.e.,
B and A. We use B to distinguish boundary points (B = 0)
from regular drum head points (B = 1), while A is used
to identify excitation points (A = 1). These settings are
passed to the texture during initialization and they can be
modified at run-time adding an extra PBO within the source
code. The possibility to define different subsections within
the domain (also dynamically), each with its own shape and

2Since we are using an FBO, the texture accessed by the
shader is the same that the shader updates. This happens
in a transparent way and does not require specific attribute
setups.

147

excitation points, is particularly handy to turn this appli-
cation into an actual DMI, as discussed in Section 4.2.

3.2.4 Simulation Cycle
The simulation cycle is composed of two main steps: the
advancement of the simulation across the whole grid (sim-
ulation step) and the storage in the buffer of the new audio
sample from a chosen grid point (audio step).

As introduced in the previous sections, in each cycle the
simulation step alternatively updates Tex0 or Tex1. This
generates two different step sub-cases: one where Quad0
is drawn and the other where Quad1 is drawn. This al-
ternation also affects the audio step, since the buffer has
to contain audio samples alternatively picked from one of
the two texture portions. To handle this, four subsequent
states have been defined, two per each step: state0, in which
Quad0 is drawn (simulation step), state1, in which the au-
dio buffer samples Tex1 (audio step), then state2, during
which Quad1 is drawn (simulation step) and finally state3,
when the audio sample is grabbed from Tex0 (audio step).
The order of the four states enforces audio sampling on the
previous pressure values instead of on the most recent ones.
This is to avoid race conditions between simulation and au-
dio step threads, for the n+1 time step update might not be
complete yet when the audio steps are called, as is relevant
especially in large domains.

A single shader program implements these four behaviors,
using the current state to switch between them; its content
will be described in the next section. The simulation cycle
resides inside of a loop automatically called by an ALSA
audio callback when a new buffer is required. Its C/C++
implementation is displayed in the following code snippet:

// pass next e x c i t a t i o n value
g lUni form1f (excitation_loc , excitation) ;

// s imu la t i on step (s t a t e0 or s t a t e2)
state = quad ∗2 ;
g lUni form1i (state_loc , state) ;
glDrawArrays (GL_TRIANGLE_STRIP ,

vertices [quad] [0] , vertices [quad] [1]) ;

// audio step (s t a t e1 or s t a t e3)
g lUni form2fv (wrCoord_loc , 1 , wrCoord) ;
g lUni form1i (state_loc , state+1) ;
glDrawArrays (GL_TRIANGLE_STRIP , vertices [2] [0] ,

vertices [2] [1]) ;

// prepare next cy c l e
quad = 1−quad ;
wrCoord [1] = in t (wrCoord [1]+1)%4;
i f (wrCoord [1]==0)

wrCoord [0]+= fragWidth ;

// re−sync a l l p a r a l l e l GPU threads
glMemoryBarrier (GL_TEXTURE_FETCH_BARRIER_BIT) ;

The vertices array contains the indices of the vertices that
belong to each Quad, reflecting their order within the VBO.
These values are passed to the draw call to choose which
Quad to render, according to the current state (both state1
and state3 render Quad2, i.e., the audio Quad).

The additional steps pass the new excitation value (float-
ing point variable excitation) to the shader and update the
state variables for the the next cycles. The array wrCo-
ord serves as a write pointer to access the audio buffer in
the next available location; its first element contains the x
coordinate of the next free fragment in Tex2. Since up to
four samples can be stored in each fragment (in the RGBA
channels), the second element contains the index of the next
available channel. When the audio buffer is full, all its pix-
els (residing in Tex2) are read in one block by the CPU
and the write pointer is reset. This is also an appropriate
place where a second shader program can be called, which

simply renders to an OpenGL window the fragments of the
latest state of the system to provide visual feedback. Doing
so, the visual update is considerably slower than the audio
rate; a more frequent screen render (e.g., 44100 Hz) would
undermine the performance of the system, without adding
any beneficial visual effect.

The excitation value, the write pointer as well as the cur-
rent state are passed to the shader program as OpenGL
uniforms. In a similar fashion, other control parameters
can be sent to control the shader program in real-time.

3.2.5 Shaders
The drum head simulation is based on two shader programs,
one implementing the actual FDTD solver, the other acting
as a screen renderer. Each program is composed of a vertex
and a fragment shader written in GLSL.

In both cases, the vertex shader applies the positions
passed by the draw call to the drawn vertices in the sim-
ulation cycle. It also reads the attributes associated with
these positions and forwards them to the fragment shader
it is combined with. The fragment shader of the screen ren-
der is a simple color-mapper that fills the fragment with a
different color according to its type (channels B and A) and
to the stored pressure (channel R), to visualize the current
state of the system.

The solver fragment shader is composed of three main
sections. The first one is composed of a main if-satement
structure that checks the current state (uniform variable)
and either triggers the FDTD solver (state0 or state2) or the
audio sampling (state1 or state3). The following code snip-
pet shows the GLSL implementation of the FDTD solver:

// p n and p n−1
vec4 frag_c = texture (txture , tex_c) ;
vec4 p = frag_c . rrrr ;
f l o a t p_prev = frag_c . g ;

// ne ighbours (pl n , pr n , pu n , pd n)
vec4 p_neigh ;
vec4 b_neigh ;

// l e f t
vec4 frag_l = texture (txture , tex_l) ;
p_neigh . r = frag_l . r ;
b_neigh . r = frag_l . b ;

// repeat f o r r ight , up and down
// . . .

// p a r a l l e l computation o f pL ,R,U,D (eq . 2)
vec4 pLRUD = p_neigh ∗ beta_neigh +

p∗(1− beta_neigh) ∗ gamma ;

// assemble equat ion 1
f l o a t p_next = 2∗p . r + (mu−1) ∗ p_prev ;
p_next += (pLRUD . r+pLRUD . g+

pLRUD . b+pLRUD . a−4∗p . r) ∗ rho ;
p_next /= mu+1;

// e x c i t a t i o n
i n t is_excitation = in t (frag_c . a) ;
p_next += excitationInput ∗ is_excitation ;

// pack and return
return vec4 (p_next , p . r , frag_c . b , frag_c . a) ;

This code is the most computationally intense part of the
algorithm and is repeated for every fragment (grid point) in
each simulation cycle, which is called 44100 times per sec-
ond. The implementation does not include any conditional
statements (no branching), which would heavily slow down
the computation. The neighbor pressures pL,R,U,D (Equa-
tion 2) are calculated with vector arithmetic, which can run
in parallel on some GPUs. The variables texc and texl are
two of the five texture coordinate attributes passed by the
vertex shader.

148

The audio sampling shader algorithm is displayed in the
following code snippet, again in its GLSL implementation:

// copy prev ious samples with in fragment
vec4 retColor = texture (txture , tex_c) ;

// i s t h i s next a v a i l a b l e fragment ?
f l o a t diffx = tex_c . r−wrCoord [0] ;
i f ((diffx<fragWidth) && (diffx>=0)) {

// sample chosen gr id po int
i n t rdState = 1−(state /2) ;
vec2 audioCoord = listenerFragCoord [rdState] ;
vec4 audioFrag = texture (txture , audioCoord) ;

// s i l e n c e boundar ies
f l o a t audio = audioFrag . r ∗ audioFrag . b ;

// put in the c o r r e c t channel
retColor [i n t (wrAudio [1])] = audio ;

}
re turn retColor ;

This code fills the audio buffer. It is called only on the
fragments belonging to Tex2, a very small texture portion,
making this section not critical. The array listenerFragCo-
ord is the uniform that contains the texture coordinates of
the grid point we want to sample, on both Tex0 and Tex1.
The fragments’ width is fixed throughout the simulation.

4. EVALUATION
We assessed the performances of the presented application
on three different machines. Their specifications are quite
heterogeneous and provide us with a good test case. The
first machine (M1) is a powerful system, with an 8-core
Intel i7-3770K processor (3.5 GHz) and equipped with an
Nvidia GTX Titan X GPU (second last Nvidia GPU gen-
eration at the time of writing). The second machine (M2)
has an extremely powerful CPU, an 8-core Intel i7-4790K (4
Ghz), and mounts a relatively recent Nvidia Quadro K5200
(2014). The last machine (M3) is the least performative
of the three, its CPU is an Intel Core 2 Duo (3 GHz)
and it is equipped with a cheap Nvidia GeGorce GT 640
(2012). All the machines run Ubuntu with a generic ker-
nel and were connected to an M-Audio M-Track Eight, a
semi-professional audio interface suitable for live music per-
formances.

A first metric to evaluate the overall drum head applica-
tion on the three machines consists of estimating the max-
imum number of grid points (i.e., domain size) the solver
can handle in real-time, without producing buffer under-
runs. We selected four relatively small buffer sizes to be
tested (256, 128, 64 and 32 samples), to preserve the re-
sponsiveness of the application. Per each buffer size, we
gradually enlarged the domain, until underruns were de-
tected. Every buffer/domain configuration was tested four
times; during each run, the membrane was repeatedly ex-
cited, to simulate the computational load of typical DMI
interaction. Finally, we repeated the whole protocol this
time using a sequential implementation of the same solver,
written in C++ and completely running on the CPU.

The second evaluation presented in this work specifically
targets the GPU solver and its implementation. Follow-
ing the example of Sosnick and Hsu [10], we measured the
time the solver takes to synthesize 5 seconds of audio, dur-
ing which the membrane is excited five times at regular
intervals. Since the aim was to isolate the performance
of the solver, only the actual GPU computation and the
CPU/GPU data exchange processes were timed. Two buffer
sizes and three domain sizes were chosen for our time test,
to check how the performances scale varying the two pa-
rameters.

4.1 Results
Table 1 reports the biggest domain sizes we managed to sim-
ulate without incurring in underruns on the three machines,
in each configuration. Table entries from architectures (i.e.,
GPUs and CPUs) mounted on the same machine share the
same background color. As expected, the reported values
reflect the specifications of each architecture, with the GPU
implementation always showing better performances. In
particular, the difference between CPU and GPU imple-
mentation on the same machine is always in the range of
two orders of magnitude. It is interesting to note that some
preliminary tests (not included in this work) suggested that
the specifics of the CPU do influence the performances of
the GPU implementation.

Some table entries are missing for M3, since underruns
were consistently detected on both the GPU and CPU im-
plementation when the buffer was set to 32 samples, re-
gardless of the domain size. In the case of the GPU im-
plementation, the same happened also with a buffer of 64
samples.

Table 1: Maximum Domain Sizes.

Architecture

Buffer size
(samples)

256 128 64 32

GTX Titan X 420x420 416x416 402x402 150x150

Intel i7-3770K 48x48 48x48 48x48 46x46

Quadro K5200 282x282 274x274 260x260 194x194

Intel i7-4790K 76x76 74x74 74x74 58x58

GeForce GT640 118x118 114x114 - -

Intel Core 2 Duo 18x18 18x18 18x18 -

Table 2 contains the results of the time tests, averaged
over ten runs, and shows how the efficiency of the solver gets
higher by incrementing the domain size. The background
color of the entries is used to highlight different buffer size
configurations on the same GPU.

On all the three machines, increasing the buffer consid-
erably sped up the computation; in particular, the boosts
reported for M1 and M2 are almost identical, across all the
domain sizes. In line with the results showed in Table 1,
only M1 managed to simulate in real-time (<5000 ms) the
domain composed of 320x320 points (fourth column).

Table 2: Execution Times.

GPU - Buffer size

Domain size
(points)

20x20 80x80 320x320

GTX Titan X - 128 samples 1054 ms 1239 ms 2896 ms

GTX Titan X - 512 samples 843 ms 959 ms 1574 ms

Quadro K5200 - 128 samples 1295 ms 1615 ms 6186 ms

Quadro K5200 - 512 samples 1003 ms 1318 ms 5818 ms

GeForce GT640 - 128 samples 2257 ms 2991 ms 38699 ms

GeForce GT640 - 512 samples 1126 ms 2666 ms 31605 ms

4.2 Discussion
Extremely big domains can be simulated in real-time using
the proposed approach, especially when running on mod-
ern GPUs. While previous work in literature showed how a
small domain (e.g., 21x21 points) is enough to synthesize a
wide range of percussive sounds [10], the possibility to inter-
act with a much higher number of grid points allows for the
design of more sophisticated instruments. For example, the

149

domain can be split in sub-sections, each characterized by
different shapes and material parameters, that can also be
manipulated in real-time. Furthermore, the direct visual-
ization of the propagating waves through these big domains
provides a better understanding of the underlying physical
phenomena at different scales, and fosters their creative ex-
ploration. The result is a Hyper Drumhead, an instrument
that can extend physical simulation beyond the boundaries
of real physics.

It is somewhat not surprising that modern hardware is ca-
pable of massively sized simulations, even when using small
buffer sizes. In contrast, the performances achieved by M3
are quite remarkable. Thanks to the proposed approach, it
is possible to turn an old machine, with a very slow proces-
sor and a cheap GPU, into a responsive instrument running
heavy-duty physical modelling synthesis, on domains span-
ning across more than ten thousand grid points.

The results of the time tests can be used to compare our
shader-based approach with the FDTD solver presented by
Sosnick and Hsu in [10]. In their work, the authors describe
a GPGPU implementation of a drum head algorithm that is
analogous to the one underlying our application. Further-
more, the specifications of our GeForce GT640 (mounted
on M3) fall in between the ones of two of the three GPUs
tested in [10]: the GTX285 (GT1) and the 8800 GT (GT2).
This provides us with a starting frame of reference, even if
GT1 and GT2 are coupled with more powerful CPUs.

When running with a 512 sample buffer and on a domain
of 20x20 on M3, our shader-based system reported execu-
tion times that are only slightly higher than the ones of the
corresponding GPGPU configuration running on GT1, but
quite lower when compared to results from GT2. This is
a good result, especially considering the difference between
the compared architectures. Since efficiency exponentially
grows by enlarging the domain, the comparison should con-
tinue using a higher number of grid points. However, the
reference GPGPU approach allows domains as big as 21x21
points, since the implementation can only use a limited por-
tion of the texture memory.

5. CONCLUSIONS
In this work, we presented a novel approach to real-time
physical modelling synthesis, based on the usage of OpenGL
vertex and fragment shaders running on the GPU. We showed
how with this method we can use the graphics pipeline to
conveniently implement fast and scalable parallel physical
models, and in particular the ones based on FDTD solvers.

Since FDTD schemes can be employed to design quite
sophisticated DMIs, we shared the details and the source
code of an example musical application, which simulates the
membrane of a drum head. The performances of the appli-
cation were evaluated on different GPUs and CPUs, both
in terms of spatial and temporal scalability. The proposed
shader-based approach proved ideal for the design of mas-
sively sized, responsive musical instruments, that simulate
wave propagation and can also include a visual representa-
tion of the current state of the system.

Although the implementation of FDTD solvers as shader
programs well matches the structure of GPUs’ multi light-
weight cores, we do not suggest it should replace GPGPU
programming. GPGPU can still be used to heavily paral-
lelize this kind of computation, possibly achieving similar
results. Furthermore, other physical modelling examples
that do not quite fit the limitations imposed by the graphics
pipeline would find a better implementation with GPGPU
architectures, like for example finite element methods.

The main purpose of this paper is to provide NIME and
GPU enthusiasts with a new alternative to choose from

when working in the challenging domain of real-time phys-
ical modelling synthesis.

6. ACKNOWLEDGMENTS
This project is supported by a Marie Curie International
Outgoing Fellowship within the 7th European Community
Framework Programme and by the Natural Sciences and
Engineering Research Council (NSERC) of Canada. We
would like to thank Dr. Nikunj Raghuvanshi and Arvind
Vasudevan for their precious help, and Nvidia Corporation
for donating the graphics card used in this work.

7. REFERENCES
[1] A. Allen and N. Raghuvanshi. Aerophones in flatland:

Interactive wave simulation of wind instruments.
ACM Transactions on Graphics, 34(4):134, 2015.

[2] S. Bilbao and J. Chick. Finite difference time domain
simulation for the brass instrument bore. The Journal
of the Acoustical Society of America,
134(5):3860–3871, 2013.

[3] K. Moreland and E. Angel. The fft on a gpu. In Proc.
of the ACM SIGGRAPH/EUROGRAPHICS conf. on
Graphics hardware, pages 112–119. Eurographics
Association, 2003.

[4] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka.
An efficient, model-based cpu-gpu heterogeneous fft
library. In Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on,
pages 1–10. IEEE, 2008.

[5] N. Raghuvanshi and J. Snyder. Parametric wave field
coding for precomputed sound propagation. ACM
Transactions on Graphics, 33(4):38, 2014.

[6] Z. Ren, R. Mehra, J. Coposky, and M. C. Lin.
Tabletop ensemble: touch-enabled virtual percussion
instruments. In Proc of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games,
pages 7–14. ACM, 2012.

[7] L. Savioja. Real-time 3d finite-difference time-domain
simulation of low-and mid-frequency room acoustics.
In 13th Int. Conf on Digital Audio Effects, volume 1,
page 75, 2010.

[8] L. Savioja, D. Manocha, and M. Lin. Use of gpus in
room acoustic modeling and auralization. In Proc.
Int. Symposium on Room Acoustics, page 3, 2010.

[9] L. Savioja, V. Välimäki, and J. O. Smith III.
Real-time additive synthesis with one million
sinusoids using a gpu. In Audio Engineering Society
Convention 128. Audio Engineering Society, 2010.

[10] M. Sosnick and W. Hsu. Efficient finite
difference-based sound synthesis using gpus. In Proc
of the SMC Conference, pages 42–44, 2010.

[11] M. H. Sosnick and W. T. Hsu. Implementing a finite
difference-based real-time sound synthesizer using
gpus. In NIME, pages 264–267, 2011.

[12] M. Speed, D. T. Murphy, and D. M. Howard.
Characteristics of two-dimensional finite difference
techniques for vocal tract analysis and voice synthesis.
In INTERSPEECH, pages 768–771, 2009.

[13] C. J. Webb. Parallel computation techniques for
virtual acoustics and physical modelling synthesis.
PhD thesis, The University of Edinburgh, Old
College, South Bridge, Edinburgh, 2014.

[14] Q. Zhang, L. Ye, and Z. Pan. Physically-based sound
synthesis on gpus. In International Conference on
Entertainment Computing, pages 328–333. Springer,
2005.

150

