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ABSTRACT

This paper presents the results of a study of piano ped-
alling techniques on the sustain pedal using a newly de-
signed measurement system named Piano Pedaller. The
system is comprised of an optical sensor mounted in the
piano pedal bearing block and an embedded platform for
recording audio and sensor data. This enables recording
the pedalling gesture of real players and the piano sound
under normal playing conditions. Using the gesture data
collected from the system, the task of classifying these data
by pedalling technique was undertaken using a Support Vec-
tor Machine (SVM). Results can be visualised in an audio
based score following application to show pedalling together
with the player’s position in the score.

Author Keywords
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1. INTRODUCTION

The role of pedalling in piano performance is regarded as
“the soul of the piano”, according to Russian pianist Anton
Rubinstein. Pianists can add variations to the tones with
the help of three pedals. However, the role of pedalling as
an instrumental gesture to convey different timbral nuances
has not been adequately and quantitatively explored, de-
spite the fact that the acoustic effect of the sustain pedal
on piano sound has been studied [11]. Since the pedalling
parameters are difficult to estimate from the audio signal
[6], reliable recognition of pedalling techniques that com-
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prise when and how to depress or release the pedals would
be helpful for applications in areas of pedagogy, interactive
performance, music information retrieval and so on. There-
fore we present a non-intrusive measurement system that
can capture pianists’ pedalling gesture and piano sound si-
multaneously. The classification results of these movements
and the piano sound can be used in a score following system
for visualisation.

The use of the pedals was not marked in musical scores
before the 1790s [19]. In the beginning, it was considered
gimmicky by serious musicians [9], but soon in the 19th
century composers like Chopin and Liszt took advantage of
the modern technique and employed the usage of the pedals
actively in their works [10]. Debussy and Scriabin rarely no-
tated pedalling, but they and later composers continued to
find new sounds through the assumed use of the pedals [18].
Modern grand pianos have three pedals, which from left to
right are commonly referred to as the una corda pedal, the
sostenuto pedal and the sustain pedal. The sustain pedal
is the most commonly used one. It lifts all dampers and
sets all strings into vibration due to sympathetic resonance
and the energy transmission via the bridge. This allows the
strings to keep vibrating after the key is released.

Pedalling techniques can be varied from timing and depth
of pedal press and release. Especially for the sustain pedal,
there are a variety of ways to apply it, ranging from par-
tial pedal to continuous fluttering pedal. Professional pi-
anists employ different fractions of partial pedal to colour
the resonance subtly. Three or four levels are commonly
defined from the continuous changes of pedal in order to
interpret the pedal usage. Flutter pedalling is similar to
half-damping, which consists of very quick and light move-
ments in order to reduce accumulating sound. However,
no compositional markings exist to indicate the variety of
techniques on the sustain pedal [20]. This requires a visual-
isation system to classify the pedalling techniques first and
then represent them using custom notations. Our study was
implemented on the sustain pedal. Onset and offset time
were detected at first. Four pedalling techniques (quarter,
half, three-quarters and full pedal) were classified using con-
tinuous pedal position changes in one dimension as inputs
to a SVM algorithm. They can be demonstrated with a
music score in our visualisation application.

In this paper, we first discuss related works on gesture
sensing in piano performance (Section 2). Then we present
our system architecture (Section 3) and implementation (Sec-
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tion 4). We finally conclude the paper and how our system
could be applied in the future (Section 5).

2. RELATED WORK

In many studies of musical gestures, systems are developed
to be in place for multi-modal recordings in order to capture
comprehensive parameters, such as timing, dynamics and
motion in musical performance. There has been a significant
number of projects focusing on piano performance.

Most related projects focus on hand and arm gestures.
Hadjakos et al. [7, 8] developed a piano pedagogy appli-
cation that measures the movement of hand and arm and
generates feedback to increase piano students’ awareness of
their movement. McPherson [12] created a portable opti-
cal measurement system for capturing continuous key posi-
tion and providing multicolour LED feedback on any piano.
Apart from the use of specialised sensors, commercial mo-
tion capture systems have been employed to augment piano
performance. Brent [3] developed the Gesturally Extended
Piano, an augmented instrument controller that tracks per-
former movements using infrared motion capture system in
order to control real-time audiovisual processing and syn-
thesis by pre-defined gestures. A similar approach has been
used by Yang et al. [23] where Microsoft Kinect was used
and visual feedback was provided.

Recent advances in machine learning bring real time per-
formance, robustness and invariance in modelling data. This
makes machine learning increasingly capable of analysing
live, expressive gestural input [4]. Gillian and Nicolls [5]
created an improvisation system for piano where Kinect
data feeds a machine learning based classification algorithm.
This allows pianist control high level musical switches by
performing pre-defined static postures which are separate
from pianistic gesture vocabulary. Given that, Van Zandt-
Escobar et al. [24] developed PiaF, a prototype that studies
variations in the interpretation of gestures that are inside
the range of the pianists’ practice.

None of these projects considered the inclusion of ped-
alling techniques as part of gesture sensing. Boésendorfer
CEUS piano has the ability to record continuous pedal posi-
tion, which was used by Bernays and Traube [2] as one of the
performance features to investigate timbral nuances. How-
ever, it is rather expensive and unable to be moved easily,
which remains a barrier to wider adaptation. To overcome
this, the PianoBar [1] is a convenient and practical option
for adding MIDI capability to any acoustic piano but its
pedal sensing is discrete that only provides on/off informa-
tion. McPherson and Kim [13] modified the PianoBar in
order to provide a continuous stream of position informa-
tion, but thus far few detailed studies have made use of
the pedal data. These problems have motivated our work
to develop a system that can be portable, self-contained,
low-cost and non-intrusive to measure continuous pedalling
gesture and analyse it using a SVM-based machine learning
method. The system could contribute to various types of
sensing for piano and other keyboard instruments.

3. ARCHITECTURE

Piano Pedaller has been designed in order to be used in
different piano performance scenarios without a complex
setup process. Figure 1 illustrates the schematic overview of
our study which has three main components communicating
with each other:

1. Data Capture: This portion collects the sensor data of
the sustain pedal movement and the audio data while
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Figure 1: Schematic overview.
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playing piano excerpts with pedal effects using Bela®
which is an open-source embedded platform for real-
time, ultra-low-latency audio and sensor processing on
the BeagleBone Black [14].

2. Classification: The pedal sensor data is sent to sig-
nal processing algorithms, which compute the onset
and offset time of each pedalling technique. Features
are extracted from every segment when the pedal is
depressed. Based on these features, classification re-
sults are derived using a SVM algorithm and stored
for visualisation.

3. Visualisation: Classification results of piano pedalling
techniques can be mapped to different pedal nota-
tions. Since these notations are time-aligned with the
recorded audio, they can be presented in a score fol-
lowing system which aligns the audio recording with a
musical score of the same piece. Therefore when and
how the pedal is used can be visualised with which
notes in the score are being played according to the
audio.

4. IMPLEMENTATION

Based on the above architecture, we deployed Piano Ped-
aller on the sustain pedal of a Yamaha baby grand piano. A
pianist was asked to perform ten excerpts of Chopin’s piano
music based on the scores where the sustain pedal should
be pressed to what extent in each music phrase was notated
by the experimenter. The audio and the gesture data were
recorded to files. The gesture data was labeled according to
the notated score in order to provide a basic ground truth
dataset. Here we describe the newly designed measurement
system for data capture, the classification based on the SVM
method, and the visualisation application.

4.1 Data Capture

In the current scenario we focused on tracking the pianist’s
pedalling techniques of the sustain pedal in a non-intrusive
way. For this purpose, near-field optical reflectance sens-
ing was used to measure the position of the pedal. A pair
of Omron EESY1200 sensors, which include an LED and
a phototransistor in a compact package, were mounted in
the pedal bearing block. The output voltage is proportional
to incoming light and roughly follows the inverse square of

'http://bela.io/
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the pedal-sensor distance. A removable white sticker was af-
fixed to the pedal in order to reflect enough light to be mea-
sured reliably. The output voltage was calibrated through
a custom-built Printed Circuit Board (PCB) in order to
improve response speed and ensure stability.

Thereafter our data was collected using the Bela plat-
form [14] which provides stereo audio input and output,
plus channels of 16-bit analog-to-digital converter (ADC)
and 16-bit digital-to-analog converter (DAC) for sensors and
actuators. It combines the resources of an embedded Linux
system with the performance and timing guarantees typi-
cally reserved for dedicated digital signal processing (DSP)
chips and microcontrollers. Audio and sensor data can be
sampled and synchronised to the same master clock. Our
sensor data was recorded at 22.05kHz sampling rate using
the analog input of Bela. The piano sound was simultane-
ously recorded at 44.1kHz through a recorder as the audio
input to Bela as well. These two types of signal data were
aligned and stored as CSV files and binary files respectively.

4.2 Classification

For our implementation, we used the sensor data alone to
do the classification. Despite pedal position was measured
in a continuous space, classification of pedalling as discrete
types may benefit applications such as transcription and vi-
sualisation. Four pedalling techniques (quarter, half, three-
quarters and full pedal) were classified using a supervised
learning method. Since the usage of a pedalling technique
almost never remains the same even for the same pianist, a
machine learning method could efficiently learn an optimal
threshold for classification in a data-driven manner.

The classification task operates in three separate phases:
a pre-processing phase, in which the pedalling onset and off-
set are detected and segments are defined; a training phase
that learns a function between input variables and discrete
labels using SVM; and a testing phase that assigns an out-
put label to a new input sample.

4.2.1 Pre-processing

The Savitzky-Golay filter is a particular type of low-pass
filter, well-adapted for data smoothing [17]. It has been
used to smooth time-series data collected from sensors such
as electrocardiogram processing [15]. We applied this filter
to the sensor data in order to avoid spurious detection of
pedalling onset and offset.

Based on the filtered sensor data, pedalling onset and off-
set time were found by comparing with a threshold, below
which is the onset and above is the offset. Instead of manu-
ally setting a threshold, the threshold was decided by choos-
ing the minimum value from a peak detection algorithm. It
was noted that there would be false-positive detection of
pedalling onset and offset because of the effect of fluttering
pedal. Hence we calculated the time interval between each
pedal onset, and then set a timing as the fluttering thresh-
old. If the time interval between two detected onsets is
below the fluttering threshold, the latter onset followed the
former one in such a short time that should be considered
as part of the data within the same pedal usage instead.
We repeated the process to remove false-positive onset and
offset.

In this way, each segment was defined by data between
the onset and offset time. We created the histogram of the
data in each segment. As the shape of histogram largely fit-
ted the normal distribution by visual observation, Gaussian
parameters of every segment were extracted as the features
for further classification. The features were identified by
the following formula, where p is mean of the distribution

and o is standard deviation.

1 2 /5 2
P(z) = 767(.%7;1,) /20
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4.2.2  Training

A large number of classification methods exist in the ma-
chine learning literature. SVM is a supervised learning
method that attempts to find a hyper-plane separating the
different classes of the training instances with the maximum
error margin [21]. In other words, it tries to create a fence
between the two classes, letting as few instances of a class
to be on the wrong side of the fence as possible. There-
fore it can be used to learn the optimised thresholds for
differentiating pedalling techniques from the ground truth
dataset.

A subset of our dataset was used to train the SVM classi-
fier in order to classify the remaining data into quarter, half,
three-quarters and full pedal. The cross-validation method
was obeyed to evaluate the accuracies of our experiment, as
this process was repeated as the training data and the data
to be classified were rotated. Leave-one-group-out cross-
validation was employed because of our small dataset. In
this scheme, samples were grouped in terms of music ex-
cerpts. Each training set was thus constituted by all the
samples except the ones related to a specific group. The
number of pedalling instances in each music excerpt is listed
in Table 1. A mean F-measure score of 0.93 was obtained
from the cross-validation trials. Table 2 shows that SVM
performs the best among common machine learning classi-
fication methods for our case using the scikit-learn library
[16].

Table 1: Number of pedalling instances in the music
excerpts from our dataset.

Music Excerpts | 1/4 | 1/2 | 3/4 | full pedal
Op.10 No.3 14 13 7 5
Op.23 No.1 7 17 8 29
Op.28 No.4 17 24 5 24
Op.28 No.6 9 27 5 17
Op.28 No.7 2 10 3 1
Op.28 No.15 7 34 4 22
Op.28 No.20 9 12 11 17

Op.66 6 21 10 11
Op.69 No.2 2 15 10 24
B.49 3 51 8 17
Sums 76 | 224 | T1 167

4.2.3 Testing

During the testing phase, the learned SVM classifier takes a
new input sample that has not been seen before and assigns
it an output label. Figure 2 illustrates the process of the
testing phase in an intuitive way. The sensor data repre-
senting the pianist’s pedalling movement were processed as
discussed in Section 4.2.1 in order to be segmented accord-
ing to the detected pedalling onset and offset time. For each
segment, the classifier received the Gaussian parameters (u
and o) as features and outputted the label of the recog-
nised pedalling technique. Label number 1 to 4 are referred
to as the quarter, half, three-quarters and full pedal. We
saved the pedal onset and offset time and the correspond-
ing pedalling label to a file, which maintained synchronised
time with the audio file and were used as the inputs of our
visualisation application.

4.3 Visualisation
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Table 2: Performance evaluation of different classification methods.
Methods Micro F1 | Macro F1 | Precision | Recall
Decision Trees 0.91 0.81 0.84 0.83
Ada Boost 0.84 0.64 0.64 0.70
Random Forest 0.91 0.77 0.79 0.80
k-Nearest Neighbours 0.92 0.81 0.82 0.83
Gaussian Naive Bayes 0.91 0.78 0.85 0.80
Support Vector Machines 0.93 0.82 0.86 0.84
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Figure 2: Results from the testing phase.

A score following Matlab implementation was employed as
part of our visualisation application. This score following
implementation can align a given musical score with an au-
dio recording of a performance of the same piece. Asyn-
chronies between the piano melody and the accompaniment
were handled by a multi-dimensional variant of dynamic
time warping (DTW) algorithm [22] in order to obtain bet-
ter alignments.

In our case, the pedalling classification results were aligned
with the audio recording. Hence they can also be presented
synchronously in the score using the customised notations.
Figure 3 displays the screen shot of our visualisation appli-
cation. This graphical user interface (GUI) requires user to
select a music score first. After importing the audio record-
ing and the corresponding pedalling results of the same
piece, they can be displayed by clicking the Play/Pause but-
ton. In the GUI, blue circles imply what notes in the score
are being played according to the audio. Star means pedal
onset while green square means offset. The more dark red
and lower a star is, the deeper the sustain pedal was pressed.

S. CONCLUSIONS AND FUTURE WORKS

This paper presented Piano Pedaller, a new measurement
system for classification and visualisation of piano pedalling
techniques. It can be installed on any piano pedal which al-
lows pedalling gesture and piano sound to be recorded in
a non-intrusive environment. A SVM algorithm was em-
ployed as the classifier. Then the classification was done by
firstly detecting the onset and offset time of pedalling and
then labelling the gesture into quarter, half, three-quarters
or full pedalling technique. The visualisation was achieved
using a score following system. This aligns the musical score
to both the classification results of pedalling techniques and

the audio recording of the same piece.

It has shown that the measurement system enables the
piano pedalling gesture to be tracked accurately enough for
SVM-based classification. Since different pianists have var-
ious understandings of partial pedal which could also be
changed with the performance venue, the pianist needs to
train the system beforehand in a concrete concert-like situ-
ation. How to develop a generalised software incorporating
the training phase in order to classify the pedalling tech-
niques in different contexts remains as a limitation in this
study. In our future works, Piano Pedaller could be applied
to the following scenarios:

e Pedalling detection from the audio domain: Automatic
acquisition from audio recordings is necessary in spe-
cial environments where installing sensors on instru-
ment is not possible. Our measurement system can
be used to capture the ground truth dataset for the
study of pedalling techniques detection from the au-
dio alone. The classification could contribute to this
dataset by providing onset and offset time plus the
category of a pedalling technique.

Real-time application: The analysis is made offline
so that our visualisation application allows player to
review the pedalling techniques used in a recording.
This could serve as a pedagogy application. If we con-
sider how a technique is executed during the perfor-
mance, a real-time application is needed. This could
also be used to trigger other visual effects in the per-
formance as pedalling itself is related to music phrases.
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