
SATIE: a live and scalable 3D audio scene rendering
environment for large multi-channel loudspeaker

configurations

Nicolas Bouillot
Society for Arts and

Technology
1201, Boulevard Saint-Laurent

Montréal H2X 2S6, Canada
nbouillot@sat.qc.ca

Zack Settel
Society for Arts and

Technology
1201, Boulevard Saint-Laurent

Montréal H2X 2S6, Canada
zack@sat.qc.ca

Michal Seta
Society for Arts and

Technology
1201, Boulevard Saint-Laurent

Montréal H2X 2S6, Canada
mseta@sat.qc.ca

ABSTRACT
Recent advances in computing offer the possibility to scale
real-time 3D virtual audio scenes to include hundreds of si-
multaneous sound sources, rendered in realtime, for large
numbers of audio outputs. Our Spatial Audio Toolkit for
Immersive Environments (SATIE), allows us to render these
dense audio scenes to large multi-channel (e.g. 32 or more)
loudspeaker systems, in realtime and controlled from exter-
nal software such as 3D scenegraph software. As we describe
here, SATIE is designed for improved scalability: minimum
dependency between nodes in the audio DSP graph for par-
allel audio computation, controlling sound objects by groups
and load balancing computation of geometry that allow to
reduce the number of messages for controlling simultane-
ously a high number of sound sources. The paper presents
SATIE along with example use case scenarios. Our initial
work demonstrates SATIE’s flexibility, and has provided us
with novel sonic sensations such as “audio depth of field”
and real-time sound swarming.

Author Keywords
Audio Spatialization, Scalability, 3D engine, Control Pro-
tocol, SATIE, OSC, Blender, Unity

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing, I.3.8 [Computer Graphics] Applications.

1. TOWARD REAL-TIME HIGH-DENSITY
3D AUDIO SCENES

A growing number of computer music performance venues
are now equipped with large loudspeaker configurations,
and therefore provide new opportunities for artists using
3D audio scene environments for composition and sound
design. Such spaces tend to be wide, offering improved spa-
tial resolution, compared to more traditional venues typ-
ically offering planar audio displays ranging from stereo-
phonic to octophonic. While historical composers such as
Varèse, Xenakis, Stockhausen, and others pioneered spa-
tial composition, composing computer music for “space” re-

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

mains a challenge in terms of the heterogeneity of speaker
configurations. Our recent work in spatial composition uses
a “volumetric” approach [10], where the 3D audio scene is
composed within a 3D scenegraph authoring environment,
such as Unity3D or Blender, simplifying the control of spa-
tialization parameters, thanks to behavioural descriptions
of sound object location, physics in the 3D audio scene,
and other scripting abilities provided by the 3D scenegraph
environment, that are used for calculating the many values
of spatialization parameters.

Wide listening spaces with improved spatial resolution are
able to offer novel sonic sensations when displaying dense
audio scenes containing hundreds of sound objects. To date
however, the rendering of such scenes to high-resolution
spatial audio displays was not possible in realtime–only at-
tainable for applications using pre-rendered, off-line audio.
Existing real-time 3D audio scene rendering systems, such
as COSM [12], BlenderCAVE [9], Spatium [6], Zirkonium
MK2 [11], CLAM [5] and 3Dj [7] do not explicitly mention
audio scene density (number of simultaneous sources), and
are not developed with sound object scalability in mind.

In this paper, we present SATIE and explain how it is
designed to handle dense audio scenes. In its current state,
albeit nascent, SATIE offers artists a new possibility to com-
pose real-time audio/music scenes that can operate on a
”symphonic scale”, consisting of hundreds of simultaneous
sources, and the ability to render these dense scenes to loud-
speaker configurations of 32 channels or more.

The development of SATIE (with the SuperCollider lan-
guage [3]) was first motivated by the need to render dense
and sonically rich audio scenes for the Satosphere, a large
dome-shaped audiovisual projection space at the Society
for Art and Technology [SAT] in Montreal. Nearly 13 me-
ters high and eighteen meters in diameter, the Satosphere
is equipped with 157 loudspeakers grouped into 31 adjacent
clusters on the dome’s surface, and with 8 video projectors
that likewise distribute the video image across the dome’s
surface. A 3D audio renderer for such a venue must produce
31 channels of spatialized output, consuming significantly
more CPU processing power than systems for venues with
fewer speakers (clusters). In the Satosphere, with its 31 out-
put channels, prior to the development of SATIE, we were
limited to sparse audio scenes of no more than 32 sound
sources using our previous system. From a musical and
qualitative point of view, this limiting factor of polyphony
also limited musical range–much in the same way that you
can’t write a symphony if all you have is a string quartet.
Rendering now with SATIE, our 3D audio scenes can be
10 or more times more dense, thus greatly expanding the
potential musical range.

404



sound object internal pipeline

control
(from SuperCollider and/or OSC)

spatializer
params

sound source
params (opt.)

mapper
params (opt.)

sound source
or effect

mapper

spatializer

multichannel
audio out

audio busses
(optional)

. . .

Figure 1: Sound object internal pipeline. When SATIE is factoring the sound object type, control parameters from the
selected plugins (sound source, spatializer and mapper) are exposed. The audio source’s mono output is made available to
the spatializer, which in turn, sends multichannel audio to the audio output. The source’s mono audio output can also be
sent to one or more busses, providing input to particular effect nodes. Spatializer parameters can optionally be preprocessed
by a mapper that modifies parameter values, before forwarding them to the spatializer.

2. IMPLEMENTATION CONCEPTS IN SATIE
SATIE is a sound server that can be controlled by the OSC
protocol [16] or from a SuperCollider client. During run-
time, the use of SATIE consists of the following basic tasks:

• creating/deleting groups of audio sources, or group of
effects.

• creating/deleting sound objects (audio source or ef-
fect). Each sound object is named and belongs to a
group, as specified when sound object is created

• controlling sound object parameters using key/value
pairs, applied by name to sound objects, individually,
or in groups.

Before (or during) runtime, the user specifies several named
sound object and effects types to be used in a given 3D audio
scene. This specification includes a sound source plugin, one
or more spatialization-type plugin(s), an optional audio bus
for non-spatialized audio source signals, optional spatial-
ization parameter mapper plugin, and optionnal preloaded
audio buffers for audio file sources. The sound object code
(a SynthDef in the SuperCollider language) is assembled
and made available for future instantiation. While we will
describe these plugins in more detail later, note that plugin-
specific parameters are made available as sound object pa-
rameters, and then controllable via OSC messages.

Once sound sources types are defined, they are used dur-
ing runtime for the creation of sound objects1. This con-
figuration pass has the advantage of enabling the reuse of
all plugins in various contexts, without the need of chang-
ing runtime behaviour. For instance, loudspeaker configu-
rations can be interchanged, allowing the same 3D audio

1SupperCollider is very good at dynamically instanciating
DSP nodes without generating glitches or drop outs, prob-
ably thanks to extensive use of memory pool at the server
side. This is well illustrated in SuperCollider documenta-
tion that employ this feature extensively.

scene to be rendered to suit the current rendering environ-
ment, at home in stereo, or elsewhere, using a large speaker
configuration.

2.1 Factoring sound objects from plugins
During initialization, SATIE scans plugin folders, to create
and maintain dictionaries of named plugins. A plugin is
actually a SuperCollider file that defines a named function.
Then, a sound object type is defined by the user, who spec-
ifies a sound source (effect), and a spatializer. From this
description, SATIE factors a monolithic sound object type
with a pre-defined internal pipeline presented in Figure 1.
Then, when requested to create a sound object, SATIE in-
stantiates a node in the DSP graph that computes the sound
and its spatial rendering. Accordingly, there is no de facto
dependency between sound objects in the DSP graph, thus,
effective parallel computation can be carried out using Su-
pernova, SuperCollider’s scalable parallel audio synthesis
server [2].

2.2 Audio source plugins
Audio plugins have parametric control and output a mono
audio signal. Currently, available plugins include physical
modeling for plucked strings, various test generators, live
audio input, and sound file sampling and streaming. Con-
trol parameters are specific to each plugin. In order to cre-
ate a new audio source plugin, the user creates a file, and
adds it to the audio source plugin folder. This plugin file
is written in the SuperCollider language and requires two
definitions: a name and a function. The name allows for se-
lecting the audio source plugin when creating a new sound
object type, as described in Section 2.1. The function’s ar-
guments define the audio source’s control parameters (for
instance frequency, trigger, position in the sound file, etc),
that will be exposed to the user for control.

2.3 Spatializer plugins
Spatializer plugin inputs are pre-defined, consisting of a
mono audio signal and an expandable set of low level para-

405



Figure 2: OSC messages control sound object parameters (individually or by group) at different levels. For controlling SATIE,
3D scenegraph can convert geometric events to lower level spatializer parameters. Geometry-related computation can be
added to SATIE though the use of mappers than can provide higher level parameter control, such as for DAW environment.

metric controls, allowing for the option to process geometry
from a higher level, such as an external process, or a map-
per plugin (described below). All spatializer plugins define
the following standard controls: azimuth, elevation, gain,
delay, low pass cutoff frequency, high pass cutoff frequency,
distance and spread.

SATIE comes with set of plugins for standard renderer
output formats, as well as custom formats for the SAT’s
24 and 31-channel dome playback systems. These plugins
use SuperCollider’s VBAP for the panning element, and are
thus, easily modified to render to other loudspeaker config-
urations. Ambisonics and Wave Field Synthesis are also
available in SuperCollider, and can be easily integrated as
SATIE plugins.

2.4 Mapper plugins
Mapper plugins perform control parameter conversion. The
mapper preprocesses input parameters (standard and cus-
tom) which are, in turn, applied to a corresponding spa-
tializer plugin’s input. A mapper plugin does not process
audio. These plugins can be used for provide for non-generic
control and geometric computation of lower-level spatializa-
tion parameters. For instance, the gain of a sound source
may be modified as a function of azimuth, elevation and
distance parameters, in order to obtain a custom radiation
pattern.

2.5 Effect plugins
Effect plugins input consists of a mono audio SuperCollider
bus, and custom control parameters. The plugin outputs
a mono audio signal. Effect plugins thus read raw audio
from other sound objects, process that audio, and generate
an output signal that will be spatialized. Examples include
spatially located echoes or reverberating zones.

Though effect object types are built from the same SATIE
function as source objects, effects objects depend on input
from source objects. For this reason, care must be taken
with the order of signal computation. Thus, effect object
creation must be done in a group whose member objects
are added at the tail of the DSP graph, while source objects
must be added to the head of the DSP graph. To facilitate
this, two options (addToHead and addToTail) are available
when crating a SATIE group, as it is already the case for
SuperCollider groups.

2.6 Self-destructing sound objects
SATIE offers the possibility to create self-destructing sound
objects (kamikaze). The creation of many kamikaze sound

sources avoids the need for the SATIE client to maintain a
state for monitoring these sound objects, and accordingly
reduce the number of messages required for killing sound
objects.

Implementation is based on SuperCollider DetectSilence
done-action that is able to free the enclosing sound object
(a synth in the SuperCollider language) when reaching a
silent state. These kamikaze are particularly effective for
numerous sound objects that are associated with localized
events, such as a particles in a swarm, as opposed to singular
virtual objects.

2.7 Controlling SATIE from OSC
Runtime management of sound objects consists of a very
small set of SATIE operations, i.e. creation/deletion and
setting named parameters. Only the parameters themselves
are specific to a sound object. Accordingly, when a sound
object’s parameters are known, it is straightforward to send
OSC messages that will control them, as we do from our 3D
graphic authoring/rendering engines, such as Blender and
Unity3D [10], for each of which, we have implemented a
particular OSC protocol.

Currently we are creating more generic OSC protocol,
based on the design of SATIE (SATIE/Blender protocol)
and the porting of our previous work with the Soundscape [14]
and SpatOSC [15] projects (SATIE/Unity3D protocol), which
was inspired by the SPATdif [8] project.

In our protocols, 3D objects with sound attributes in
the scenegraph are associated with SATIE’s sound objects.
During runtime, the synchronization of 3D objects in the
scenegraph with their corresponding sound object in SATIE
is accomplished via SATIE-bound OSC messages from the
scenegraph for real-time creation/destruction/control/grouping
of sound sources, and their parameter updates for nodes in
SATIE’s DSP graph, for panners, variable delays, attenua-
tion, filtering, or synthesis parameters.

3. LOAD BALANCING PHYSICAL COM-
PUTATION

Today, 3D audio scene composition is broad and includes:
A) music whose electronic source sounds are distributed
among loudspeakers which are strategically localized in a
given space (Edgard Varèse, Stockhausen and Xenakis), and
B) music whose electronic sounds are rendered as sources in
a virtual 3D audio scene, using physics simulators to localize
each source from a unique perspective. To avoid confusion,
we will refer to the former as ”parametric”, and the latter

406



number of simultaneous live sound objects
sound object types 8 ch. ring our 31 ch. dome
physical model (plucked string) 337 288
sine wave 4288 1984
sound file 2964 1520

Table 1: Performance achieved with our machine (15.6GB RAM and 8x3.6GHz Intel Xeon CPU), creating and then controlling
simultaneously a large number of same type sound objects.

as ”volumetric” [10].
Traditional composition techniques for spatial sound are

really related to the parametric approaches: creating tra-
jectories of sound objects in three dimensional space [1],
allowing reproduction of choreography of sounds among ar-
bitrary speaker systems, thanks to reproduction technology
that is computing the complex mapping between speaker
placement in the space and virtual trajectories.

In the last ten years, the availability of 3D graphical
has permitted the automated, or semi-automated control
of trajectory, simulating spatial motion behaviour possibly
affected by physical simulation of gravity, collision [13, 12,
4]. Additionally, the use of 3D engine facilitates audiovi-
sual choreography, including distances related sonic rela-
tions among sound objects, such as Doppler shift and room
acoustics. Today, 3D engines are able to scale to many
3D virtual objects, coming with authoring tools that allows
for specifying trajectory motion, or high level motion spec-
ifications based on parameters such as initial speed, other
object to follow, etc. This is offering a very powerful way of
automating the control of spatialization parameters, defin-
ing higher level of choreography between sound objects. It
is also offering the possibility to experiment interactions
among a high number of sound objects and possibly with
live performer interaction with the 3D environment that will
be not achievable drawing trajectories in an editor.

In order to provide for both“parametric”and“volumetric”
approaches, SATIE’s spatializer plugins handle only low-
level DSP parameters (see Section 2.3), delegating the com-
putation of physical state to external software, and/or to
mapper plugins.

However, there are cases when computation of geometric
scene-graph state within SATIE is preferable, if not essen-
tial. One such case is when we wish to generate a large
group of localized sound nodes, who’s positions must be cal-
culated relative to a particular location in the scene-graph,
at the framerate. The reception of DSP parameter updates
for each sound node, via OSC could create significant bot-
tleneck. To avoid this situation, SATIE offers the possibility
to load balance the geometry computation using a mapper
plugin, which can, for example, calculate it’s source node’s
position in the scenegraph, based on one or several of the
node’s group attributes, and in turn, generate the DSP pa-
rameters for the spatializer it is coupled to. In the following
section, we will demonstrate how a swarm of sound objects
can be managed, using a minimum of SATIE-bound scene-
graph OSC update messages.

4. USE CASE: A PARTICLE SWARM
Musicians and sound artists have only recently started using
3D scenes for the computation of audio and music. This ap-
proach has largely been limited to sonic interaction between
singular sound source objects and listeners. Using SATIE
to render audio scenes can extend sonic interaction to in-
clude 3D audiovisual particle systems that are animated by
the physics engine, containing hundred of particles that can
sonically interact with scene geometry (i.e. flow, collision,

bouncing etc.). This possibility opens up the door to the use
of swarming and other such algorithms as a way to organize
sonic material for creating music or sound design.

3D scenegraph environments such as Unity3D, provide ac-
cess to individual particles, and thus allow for spatialization
and event triggering of each particle. The environment can
operate on potentially dense scale–a scale that can quickly
exhaust the computing resources of a given audio renderer,
particularly if it is running as a separate process and spa-
tializing to 32+ loudspeakers.

Rather than limit the number of particles to render indi-
vidually, we render small groups of particles, and thereby in-
crease our particle density by an order of magnitude. Thus,
in the scenegraph, we define particle systems of few par-
ticles. Each particle belongs to a corresponding group in
SATIE, containing 10 or 20 surrounding clones, each clone
statistically deviating from the group’s “master” particle.
This deviation is applied to spatialization and temporal
event scattering, and can be dynamically controlled as a
function of the particle’s context in the 3D scene, such as
its distance from the listener, normal of impact, or collision
with another body in the 3D scene. In this manner, we
can render audiovisual clouds of hundreds of particles that
still can be controlled with a high degree of granularity, and
remain spatially coherent from a listening perspective.

Particle collisions with resonant bodies is of particular in-
terest, as it allows us to musically explore the particle/collision
dynamics of things like rain falling on a tin roof, or mara-
cas. For the implementation of particle clone groups, it is
necessary to extend the SATIE spatializer to provide for
dynamically controlled random deviation. The mapper is
loudspeaker configuration agnostic, and allows for paramet-
ric control of the deviation that is generated and applied to
the spatializer’s DSP parameters for incidence, gain, delay
and filtering; for example, the mapper can use the distance
of the group’s “master” particle to the “listener” when cal-
culating these parameters. When that parameter is quite
large, the amount of random spatial deviation can be rel-
atively small, and vice versa. Inside the mapper, we can
calculate the amount of deviation for azimuth, by using the
distance projected on the horizontal plane. Thus, the map-
per can provide a solution for cases for spatialization that
uses arbitrary scenegraph geometry.

Using the SuperCollider interpreter, and its object ori-
ented programming environment, classes for sound node
control processing can be defined and deployed. Incoming
node messages are received, action is taken, and associated
nodes in SATIE’s core are updated. For example, the man-
agement of the particle node clone groups, described above,
is handled by processes that act on messages to a given
group’s “master” particle, and subsequently update clones
of that group accordingly.

5. PERFORMANCE
Mainly thanks to supernova, the scalable parallel audio syn-
thesis server for SuperCollider [2], running on a standard
multi-core computer, SATIE’s audio scene can scale to in-

407



(a) Initial scene with ambient sounds and
ringing buoys.

(b) Fish-eye view of the Aqua Khoria stage. The top of the picture shows the
projection of the water top when viewed from underwater. The white object
floating on the water is one of the buoys seen in Figure 3a. The circular pond can
be seen on the ground. Photography by Sébastien Roy.

Figure 3: Visuals from the Aqua Khoria piece. Figure 3a is a rendered view of the beginning scene and Figure 3b shows a
photography of the stage taken latter in the piece, when audience dive into the see.

clude several hundred simultaneous and independent sound
sources (physically modeled, synthesized, sound file and live
inputs), of which, more than three hundred may be inde-
pendently controlled externally at an update rate of 10Hz.
(these limits are based on our observations in practice). To
date we have tested SATIE on Linux and OSX platforms,
with similar performance.

SATIE benefits from the many optimization included in
the SuperCollider language and runtime such as the internal
use of memory pool, parallel processing with the supernova
server. SATIE has been developed trying to follow to Super-
Collider philosophy, encouraging buffer and bus allocations
at initialization. It also encourages audio linking among au-
dio processing units (unit generators) only at sound object
creation, allowing optimization by the server.

Table 1 presents measurements when trying to increase
the number of sources instantiated without starting to en-
counter issues like dropping audio buffers or reaching the
maximum CPU usage. The measurements have been made
on a Linux computer with 15.6GB RAM and an 8x3.6GHz
Intel Xeon CPU. Each value in the table is obtained creat-
ing multiple sound objects of the same type. For instance,
we were able to render 288 independent sound objects (each
running a physical model for a plucked string) spatialized
for a 31 channel dome. The results below shows an impor-
tant improvement over similar measurements we have done
in [10]. The differences are due to improved performance
of supernova in SuperCollider version 3.7 (versus 3.6.6 used
in our previous tests) and removal of JITlib from SATIE’s
architecture. However, we were unable to perform the test
with 128 speakers using the current version of SuperCol-
lider.

6. AQUA KHORIA
Aqua Khoria 2 is a spatial audiovisual immersive/interactive
dance piece where the dancer performes in a shallow pond,
located in the middle of the Satospher, our 31 audio chan-
nel dome with 360◦ projection (see Figure 3). Position and
gesture tracking allow for the dancer to interact with a syn-
chronized surrounding virtual 3D environment. The show
was developed in Unity3D and in SATIE, where physical
models for bells were implemented as SATIE plugins, gen-
erating sound in over 100 audiovisual objects in the Unity

2http://aquakhoria.com/

scene. On a larger movement scale, covering the inside of
the dome (250 square meters) where the dancer roamed dur-
ing the performance, dome-top camera was used to track
an infrared light source worn by the dancer. Thus, the
dancer’s position in the performance space was captured
and used to animate objects in the virtual scene, such as
light sources, or the virtual camera. A particularly success-
full result was acheived by mapping the dancer’s position
to that of a candle-like light source in the surrounding vir-
tual scene; objects in the virtual scene were “lit up” as the
dancer moved in their direction.

7. DISCUSSION AND SUMMARY
We have presented various aspects of SATIE, our Spatial
Audio Toolkit for Immersive Environments. Its use is based
on creation, control and deletion of sound sources. The
sound source parameter set is defined as the union of source
(audio or effect) parameters, spatialization parameters and
possible extra parameters defined by specific spatializers
and/or mappers. The sound objects can be grouped, allow-
ing for parameter updates by group, as well as group dele-
tion. SATIE can be controlled from a SuperCollider Client
or from external processes, such as Unity3D and Blender,
via OSC messaging.

In this paper, particular emphasis is made about design
strategies that scale well, to support hundreds of simultane-
ous sound objects on a single SATIE server. One such strat-
egy is to eliminate direct dependencys on the DSP graph.
We accomplish this by generating sound object types by as-
sembling plugin code, enabling parallelization of audio com-
putation. We also introduced a mapper plugin that allows
for balancing geometry computations, reducing the number
of inbound parameter updates needed to update groupes of
independent but related sound sources. To illustrate this,
we provide an example implementation of a particle swarm
of sound objects, using low-bandwidth control from a game
engine.

Our experience with SATIE’s ability manage dense 3D
audio scenes with hundreds of sound sources, and render
them to large multi-channel hemispheric playback systems
has serendipitously offered us a new and unexpected listen-
ing sensation, which we describe as a heightened sense of au-
ral depth of field effect. While this effect could be the object
of separate study, it would seem that this effect is proba-
bly linked to the perception of a listening space of great

408



dimension, delineated by numerous sound sources at vari-
ous directions and distances (intensities) from the listener,
giving rise to a well-defined aural foreground, background
and space in between. We suspect that this effect depends
on the audio scene density, and the number of channels
of surrounding loudspeaker diffusion. Finally, with a large
amount of perceivable sonic detail available, we are encour-
aged to experiment with the complex musical forms of a
larger polyphonic scale that are associated with symphonic
music. This effect is particularly apparent when rendering
swarm system simulations, such as rain, and in particu-
lar, when rendering dense musical material where harmony
comes into play.

From a musical point of view, the ability to organize
sound using particle dynamics holds great potential–particularly
when coupled to dense multi-channel audio displays. Pitch
material can be assigned to each particle, giving rise to sym-
phonic textures of complex and shifting harmonies, a la De-
bussy. The flow of pitch-sequenced particles in the air, and
their multiple collisions with particular resonant surfaces
in space offer great potential for spatial counterpoint, a la
Charles Ives or Steve Reich. From a performance point of
view, the flow of particles in the 3D scene can be redirected
to collide with this surface or that, and thus, sound pitches
or timbres pertaining to the particular surface of collision.

Stemming from our need to manage spatialized parti-
cle systems, we have added an experimental new type of
object to SATIE: the “process” object, which, like source
and effects objects, can be localized in space. Contain-
ing user-programmable behavoirs (running on the Super-
Collider Client) for local managemet of sound or effects ob-
jects, process objects respond to inbound OSC messages
and can spawn and animate the sound nodes they are as-
sociated with. Typically, a process object is defined and
updated in the same way that sound or effects objects are;
however, when created, a process object will automatically
be assigned to its own unique group.

We are currently working on the definition of one single
unified OSC protocol, and the addition of a query-based
“resource” agent that can provide clients with a descrip-
tion for SATIE’s capabilities (available plugins, audio files,
etc), and better control over pre & post spatialization and
effects. Currently, preparing SATIE with custom sound ob-
ject types is written in the SuperCollider language.

8. ACKNOWLEDGEMENT
This work has been done at the Société des Arts Tech-
nologiques and funded by the Ministère de l’Économie, de
l’Innovation et des Exportations (Québec, Canada). Thanks
to the people involved into the Aqua Khoria piece: Peter
Trosztmer, Susan Paulson, Osman Zeki, Romain Tavenard,
Olivier Bradette, Luc Courchesne, Thea Patterson, Lee An-
holt, Pierre Corsy, Olivier Rhéaume, Louis-Philippe Saint-
Arnault, Joseph Lefevre, Guillaume Bourassa, Guillaume
Raymond, Sean Caruso, Carl Lavoie, Emmanuel Durand,
Sebastien Gravel, Martin Lapointe.

9. REFERENCES
[1] M. A. Baalman. Spatial composition techniques and

sound spatialisation technologies. Organised Sound,
15:209–218, 12 2010.

[2] T. Blechmann. Supernova, a scalabale parallel audio
synthesis server for SuperCollider. In Proceedings of
the International Computer Music Conference 2011,
University of Huddersfield, UK, August 2011.

[3] J. McCartney. Rethinking the computer music
language: SuperCollider. Computer Music Journal,

(26):61–68, 2002.

[4] R. McGee and M. Wright. Sound element spatializer.
In proceedings of the ICMC conference, Huddersfield,
UK, 2011.

[5] N. Olaiz, P. Arumi, T. Mateos, and D. Garcia.
3D-audio with CLAM and blender’s game engine. In
proceedings of The Linux Audio Conference, Parma,
Italy, 2009.

[6] R. Penha and J. P. Oliveira. Spatium, tools for sound
spatialization. In Proceedings of the Sound and Music
Computing Conference, Stockholm, Sweden, 2013.

[7] A. Perez-Lopez. 3dj: a supercollider framework for
real-time sound spatialization. In Proceedings of the
21th International Conference on Auditory Display
(ICAD–2015), Graz, Austria, July 2015.

[8] N. Peters, T. Lossius, and J. C. Schacher. The spatial
sound description interchange format: Principles,
specification, and examples. Computer Music Journal,
Vol. 37(No. 1):Pages 11–22, May 2013.

[9] D. Poirier-Quinot, D. Touraine, and B. F. Katz.
BlenderCAVE: A multimodal scene graph editor for
virtual reality. In Proceedings of the 19th International
Conference on Auditory Display (ICAD2013), Lodz,
Poland, July 2013. Georgia Institute of Technology &
International Community for Auditory Display.

[10] Z. Settel, N. Bouillot, and M. Seta. Volumetric
approach to sound design and composition using
SATIE: a high-density 3D audio scene rendering
environment for large multi-channel loudspeaker
configurations. In 15th Biennial Symposium on Arts
and Technology, Ammerman Center for Arts and
Technology at Connecticut College, New London,
February 2016. 8 pages.

[11] D. Wagner, L. Brümmer, G. Dipper, and J. A. Otto.
Introducing the zirkonium MK2 system for spatial
composition. In proceedings of the ICMC/SMC
conference, Athens, Greece, September 2014.

[12] G. Wakefield and W. Smith. COSM: a toolkit for
composing immersive audio-visual worlds of agency
and autonomy. In Proceedings of the International
Computer Music Conference 2011, University of
Huddersfield, UK, August 2011.

[13] M. Wozniewski, Z. Settel, and J. R. Cooperstock. A
framework for immersive spatial audio performance.
In Proceedings of the International Conference on
New Interfaces for Musical Expression, pages
144–149, Paris, France, 2006.

[14] M. Wozniewski, Z. Settel, and J. R. Cooperstock. A
paradigm for physical interaction with sound in 3-D
audio space. In Proceedings of International Computer
Music Conference (ICMC), 2006.

[15] M. Wozniewski, Z. Settel, A. Quessy, T. Matthews,
and L. Courchesne. spatosc: Providing abstraction for
the authoring of interactive spatial audio experiences.
In Panel session at ICMC, Montreal, Canada, 2012.

[16] M. Wright. Open sound control 1.0 specification.
Published by the Center For New Music and Audio
Technology (CNMAT), UC Berkeley, 2002.

409


