
Stride for Interactive Musical Instrument Design

Joseph Tilbian
Media Arts and Technology Program
University of California Santa Barbara

Santa Barbara, California
jtilbian@mat.ucsb.edu

Andrés Cabrera
Media Arts and Technology Program
University of California Santa Barbara

Santa Barbara, California
andres@mat.ucsb.edu

ABSTRACT
Stride is a language tailored for designing new digital musi-
cal instruments and interfaces. Stride enables designers to
fine tune the sound and the interactivity of the instruments
they wish to create. Stride code provides a high-level de-
scription of processes in a platform agnostic manner. The
syntax used to define these processes can also be used to
define low-level signal processing algorithms.

Unlike other domain-specific languages for sound synthe-
sis and audio processing, Stride can generate optimized code
that can run on any supported hardware platform. The gen-
erated code can be compiled to run on a full featured op-
erating system or bare metal on embedded devices. Stride
goes further and enables a designer to consolidate various
supported hardware and software platforms, define the com-
munication between them, and target them as a single het-
erogeneous system.

Author Keywords
Stride, Domain-Specific Language, Declarative, Reactive,
Interaction Design, Code Generation, Sound Synthesis, Dig-
ital Signal Processing

ACM Classification
D.3.2 [Programming Languages] Language Classifications—
Very high-level languages, D.3.3 [Programming Languages]
Language Constructs and Features—Frameworks, D.3.4 [
Programming Languages] Processors—Code generation

1. INTRODUCTION
The development of new electronic musical instruments of-
ten requires a mix of software and hardware. Stride[6], a
domain-specific programming language for real-time sound
synthesis, processing, and interaction design, abstracts hard-
ware and software architectures, simplifying the process of
software/hardware integration while giving the user control
over the code generation process. These abstractions are
defined in Stride systems which represent the inner work-
ings of the target hardware and software, exposing them in
a simple and consistent manner across platforms.

Stride enables its user to declare the frequency at which
Stride expressions are evaluated and provide the user with
the ability to control and fine tune the quality of the sounds

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.
.

they seek. Stride also enables its user to control where ex-
pressions get evaluated and computed. This type of control
is essential to optimizing code running on a resource con-
strained system such as a microcontroller. A user of Stride
can also design interaction using Stride Reaction, an ab-
straction to handle asynchronous events.

Because of Stride’s ability to abstract hardware, hetero-
geneous systems can be defined and consolidated under a
single Stride system. This is achieved by abstracting the
communication between the hardware and software plat-
forms encompassing the heterogeneous system. In other
words, different pieces of hardware (e.g. Arduino, Rasp-
berry Pi, Desktop, etc.) can be grouped together to appear
within Stride as a single system, as the communication be-
tween the devices is handled internally by Stride according
to the system definition.

The Stride language is part of the Stride environment
which also encompasses the Stride integrated development
environment (Stride IDE), an intermediate code generator,
and a target code generator.

2. STRIDE
In the following sections we present the Stride language, the
Stride environment, and Stride systems.

2.1 The Stride Language
Although Stride is a textual language inheriting concepts
from Unit Generator languages like Csound[1], SuperCol-
lider[2] and ChucK[7], its basic construct is the streaming
operator � which makes it conceptually similar to dataflow
languages like Pure Data[5] and Max1 (see Code 1). Stride
is not a dynamic unit generator graph manager, but rather a
code generator like Faust[4]. Additionally, Stride is designed
to facilitate both low-level signal processing algorithms and
high-level constructs, like granular synthesis and frequency
domain processing, using the same syntax.

Oscillator(frequency: 440) >> Level(gain:
0.2) >> AudioOut;

Code 1: Basic Stride code showing the stream
operator

Stride is designed around the declarative and dataflow
paradigms. The language only has two constructs: block
declarations and stream expressions. Stride allows both
push (reactive) and pull programming, achieved by control-
ling the rate of the signal block, which is the fundamen-
tal building block of the language. Stride borrows some
of the best features of other programming languages like
multichannel expansion, single operator interfacing, multi-
ple control rates, and per sample processing. Stride is also
a self documenting language.

1https://cycling74.com/products/max

446



2.2 The Stride Environment
The Stride language has been implemented as part of a
full Stride environment that includes an integrated devel-
opment environment (IDE), a parser and a set of platform
files that allow building and deploying on specific hardware
platforms. When Stride code is compiled, an intermediary
representation of code in the form of an abstract syntax
tree (AST) is processed and passed to a set of code gen-
erator scripts. The resulting code is finally compiled (or
cross-compiled) and deployed to hardware.

Stride is designed with embedded hardware in mind, so it
can be an alternative to software tools targeting audio pro-
cessing and interaction on embedded devices like Bela[3],
Axoloti2, and the OWL[8]. The main advantage of Stride
is that it is platform agnostic, and can be easily ported to
work on these devices. Because Stride is a programming
language, it is not restricted by a fixed number of build-
ing blocks or objects and can be used to perform low-level
functions with native speed.

2.3 Stride Systems
A System in Stride is a set of domains with their associated
software and hardware platforms. For example, a simple
embedded audio development board based on a microcon-
troller with a network peripheral can be presented to Stride
as three domains: the Audio domain, the Computation do-
main and the Network domain. Signals and processing will
be assigned to one of these domains and the code will be run
appropriately. The Audio domain, a synchronous domain,
has a fixed rate set by the digital to analog converter (DAC)
clock and will constantly compute as the DAC requires sam-
ples. The Network domain is asynchronous and has no rate,
therefore it reacts and processes data only when a message
from the network is received. The Computation domain
is an immediate domain, that is, computation will happen
as quickly as possible within the domain, but depending
on the complexity and the amount of computation required
the duration will vary. The Computation domain can be
used to compute changes in parameters resulting from mes-
sages received through the Network domain. The computed
parameters can then be asynchronously passed to the Au-
dio Domain when ready. All these domains belong to the
same platform, so the code will be generated for the board’s
microcontroller and deployed accordingly. The system also
defines the relationships between these domains and their
corresponding processing priority on the hardware. In this
scenario, the Audio domain will have the highest priority,
followed by the Network domain and then the Computation
domain.

The Stride system exposes the inner workings of a target
computer and its peripherals to the user in an abstracted
form. Stride does not only abstract the hardware but also
the software architecture used to organize various processes.
For example, the relationship between an audio callback
and a network listener thread/interrupt. These abstractions
grant the user full control of the underlying system without
having to know the implementation details.

A noteworthy advantage of a Stride system is in its ability
to expose hardware interrupts. An Interrupt domain offered
by a such a system can be associated with digital input pins
configured by the user to operate in interrupt mode. This
allows the user to design a highly reactive system which
responds to external change immediately. This is in contrast
to polling a digital pin at a quasi synchronous rate.

A Stride system also enables the user to synchronize in-
puts and outputs from various peripherals to achieve the

2http://www.axoloti.com/

desired response. Values generated by an analog to digital
converter (ADC) running at a predefined rate connected to
a sensor can be read in the Audio domain and allow for true
sample-accurate synchronization with an external event.

3. MUSICAL INSTRUMENT DESIGN ON
EMBEDDED HARDWARE

The design of a new musical instrument with a physical in-
terface and whose sound is generated by an embedded com-
puter requires multidisciplinary knowledge and deep under-
standing of complex hardware systems to achieve the de-
sired means of interaction, acoustic quality, and the required
response.

Stride was designed with these requirements in mind, to
allow the designer to quickly model their instrument and
fine tune it to achieve the artistic results they seek without
having to delve deep into the complex world of programming
embedded systems.

3.1 Rates and Domains
Typically, for a digital musical instrument, interactions by
the player are captured through sensors. Sensors are either
sampled periodically (e.g. potentiometer) or monitored for
asynchronous events (e.g. button). The instrument might
also be designed to receive or send messages over a physical
communication layer (e.g. MIDI, OSC[9], etc.). Periodi-
cally sampled data are processed and assigned to control
various parameters of the synthesized sounds by an embed-
ded computer. Asynchronous events captured by sensors
are used to start, stop, or re-trigger various elements of the
sound generation process, while messages are used to con-
trol parameters, trigger events, or do both simultaneously.

Stride abstracts the hardware input and output periph-
erals and enables the designer to configure their proper-
ties. Stride also allows the designer to choose how often
to process periodic signals by setting the rate of these sig-
nals and choose where to perform computations effected by
these changes through domain assignments. Code 2 demon-
strates how a sensor connected to control input 1 of a target
hardware platform is used to adjust the frequency of a sine
oscillator and how an event on digital input 1 is used to
reset the oscillator. The output of the oscillator is routed
to audio outputs 1 and 2 of the target hardware platform.

signal FrequencyValue {
default: 440.0
rate: 2048
domain: ControlDomain

}

signal OscillatorOutput {
default: 0.0
rate: AudioRate
domain: AudioDomain

}

trigger Reset {}

ControlIn [1]
Map (

minimum: 55.0
maximum: 880.0

)
>> FrequencyValue;

DigitalIn [1] >> Reset;

Oscillator (
type: ’Sine’
frequency: FrequencyValue
reset: Reset

)

447



>> OscillatorOutput;

OscillatorOutput >> AudioOut [1:2];

Code 2: Controlling the frequency and resetting the
phase of an oscillator

In Code 2 two signal blocks and a trigger block are de-
clared followed by four stream expressions. The two signals
are called FrequencyValue and OscillatorOutput. Frequen-
cyValue has a rate of 2048Hz and gets computed in the
ControlDomain. OscillatorOutput3 runs at AudioRate, a
constant, which represents the default audio sampling rate
of the AudioDomain domain where the signal is computed.
The declared trigger is called Reset. In the following stream
expressions, blocks are connected to each other to build a
processing graph using the stream operator �. Oscillator is
a module block. It encapsulates blocks and stream expres-
sions which in turn define the module’s processing graph.
Properties of external blocks, such as rates and domains,
become accessible to the module when these blocks are con-
nected to it. In turn the module uses this information to
declare the rates and domains of signals it encapsulates.
Since FrequencyValue is computed in the ControlDomain,
all blocks inside the Oscillator module associated with the
frequency property of the module also get computed in the
ControlDomain. The phase increment of the Oscillator is
one of those values. The phase increment is assigned to
the ControlDomain and is set to compute at 2048Hz. The
rate at which the FrequencyValue and phase increment are
updated are not tied to the rate of the ADC. When con-
trol input 1 is connected to FrequencyValue a rate change
takes place. This change is defined by the system being tar-
geted. The phase of the Oscillator gets its rate and domain
assignment from the block connected to the output of the
Oscillator, which is OscillatorOutput and is assigned to Au-
dioDomain and computes at AudioRate. The domain sep-
aration promotes optimization of the audio callback func-
tion represented by the AudioDomain domain. Because of
these particular domain assignments to FrequencyValue and
OscillatorOutput the phase is computed per audio sample
while the phase increment is only computed 2048 times per
second outside the audio callback and passed to it asyn-
chronously. The rate at which the phase increment is com-
puted can have a significant effect on the output quality of
the generated sound. If it is set too low, it will result in
a ‘zipper’ effect and setting it high will result in excessive
computations. The designer has the choice to balance these
rates to achieve the desired sound quality and response they
seek.

The Control Rate has been an important feature of Music-
N languages (and successors like Pure Data) that allows
running computation at a lower rate to save computation
cycles. In these systems, the control rate is considered a
different “type” that can not be mixed with regular audio
signals, and unit generators must be programmed to han-
dle them specifically, since control rate signals are typically
scalar values while audio signals are vectors. In Stride each
signal has its own rate at which it is processed, and when
it is connected to a different rate, automatic up or down-
sampling occurs4.

3The declaration of the OscillatorOutput signal is not re-
quired. It is added to clarify the oscillator is being run at
audio rate in the audio domain.
4The specifics of this default sample rate conversion are un-
defined and determined by the system. It is typically the
simplest strategy, and more sophisticated forms of conver-
sion are offered as specific functions.

3.2 Reactions
Asynchronous events are handled in Stride through an ab-
straction called Reaction. Reactions are invoked through
triggers which are activated when asynchronous events are
detected. Reactions can be configured to self terminate and
re-arm when certain criteria are met or terminated by other
asynchronous events. Code 3 demonstrates a simple reac-
tion to start and stop a stream when changes are detected
on digital inputs 1 and 2 of a target hardware platform.
The stream connects the audio inputs on the target hard-
ware platform to the audio outputs.

trigger Stop {}

reaction Stream {
terminate: Stop
streams: AudioIn >> AudioOut;

}

DigitalIn [1] >> Stream ();
DigitalIn [2] >> Stop;

Code 3: A reaction to start and stop a stream

In Code 3 a trigger called Stop is declared followed by a
reaction block declaration called Stream. In the following
two stream expressions digital input 1 of the target hard-
ware platform is connected to the Stream reaction while
digital input 2 is connected to the Stop trigger. A rising
edge (default behavior) detected on digital pins 1 and 2
triggers the Stream reaction and activates the Stop trigger
respectively.

4. HETEROGENEOUS SYSTEMS
In Stride, a heterogeneous system can be built from phys-
ically separate hardware platforms. This feature enables
consolidating multiple supported hardware and software plat-
forms under one system. The system can then be targeted
as a single unit. To create a heterogeneous system in Stride,
the communication between the separate hardware plat-
forms needs to be defined and abstracted.

Imagine a scenario where a digital musical instrument
requires a high number of ADC inputs to capture informa-
tion from various sensors and has a computation intensive
audio synthesis graph that requires a dedicated processor.
If Stride supports an embedded development board called
ADC Board with a high number of ADC inputs with an
I2C interface and another board called DSP Board capable
of performing extensive computations with an I2C interface
and two audio output channels, they can be consolidated
to form a new system. By abstracting the communication
between the two boards in Stride over the I2C interface the
user only needs to make the physical connection between
the two boards. Stride will handle generating the code to
enable the communication between the boards and call the
appropriate toolchain and programmers to deploy the re-
sulting firmware on each board.

signal FrequencyValues [12] {
default: 440.0
rate: ADC_Board :: ControlRate
domain: ADC_Board :: ControlDomain

}

signal OscillatorOutput {
default: 0.0
rate: DSP_Board :: AudioRate
domain: DSP_Board :: AudioDomain

}

ADC_Board :: ControlIn [1:12]
>> Map (

448



minimum: 20.0
maximum: 20000.0

)
>> FrequencyValues;

Oscillator (
type: ’Sine’
frequency: FrequencyValues

)
>> Mix()
>> OscillatorOutput
>> DSP_Board :: AudioOut [1:2];

Code 4: Additive synthesis on a heterogeneous
system

In Code 4 a signal block bundle called FrequencyValues
is first declared. The signal bundle has 12 channels and is
assigned a rate and a domain defined in the ADC Board
platform. The declaration is followed by a second signal
block declaration called OscillatorOutput which is assigned
a rate and a domain defined by the DSP Board platform.
In the following stream expression the ADC inputs are read
and mapped on the ADC Board and assigned to Frequen-
cyValues. The interaction between the two platforms oc-
curs in the following stream expression, where the output
of 12 oscillators (multi-channel expansion because of the 12
channles in FrequencyValues) are mixed and streamed to
OscillatorOutput. Since the phase increment of the Os-
cillator module is computed in the domain of the block
connected to the frequency property, in this example the
phase increment gets commuted on the ADC Board and is
asynchronously communicated to the DSP Board where the
phase of the oscillators is being computed.

If the phase increments of the oscillators need to be com-
puted on the DSP Board rather than the ADC Board, the
declaration of a second signal block bundle and the assign-
ment of its domain to one available on the DSP Board plat-
form achieves that. Code 5 shows the incremental changes
made to Code 4 to achieve this result.

...

signal ReceivedValues [12] {
default: 440.0
rate: DSP_Board :: ControlRate
domain: DSP_Board :: ControlDomain

}

...

FrequencyValues >> ReceivedValues;

...

Oscillator (
type: ’Sine’
frequency: ReceivedValues

)
>> Mix()
>> OscillatorOutput
>> DSP_Board :: AudioOut [1:2];

Code 5: Switching domains on a heterogeneous
system

In Code 5, in the declaration of the ReceivedValues sig-
nal block bundle, its rate and domain are assigned to Con-
trolRate rate and ControlDomain of the DSP Board plat-
form. In the following stream expression the information
is asynchronously exchanged between the two boards over
the I2C interface from FrequencyValues to ReceivedValues.
The phase increment of the oscillators is now computed in
the ControlDomain of the DSP Board platform and is asyn-

chronously passed to the AudioDomain of the DSP Board
platform asychronously where the phase is being computed
at AudioRate.

Stride also allows creating synchronous signal groups. If
in Code 5 we wished to updated the phase increment of
the 12 oscillators synchronously, the ReceivedValues signal
block bundle can be assigned to a synchronous signal group.

5. CONCLUSIONS
In this paper we have presented Stride, a language tailored
for designing new digital musical instruments and interfaces.
With its capabilities to target embedded systems by gener-
ating optimized code for each target, it makes it an ideal
choice for designers to design and fine tune the sound and
the interactivity of the instruments they seek to create.

Stride’s capability to consolidate various hardware plat-
forms into a single platform offers a unique advantage to
designers, enabling them to focus on the instrument design
rather than focusing on maintain code and tools for various
platforms.

6. ACKNOWLEDGMENTS
The design and development of Stride and the Stride IDE
were funded in part by a graduate fellowship by the Robert
W. Deutsch Foundation through the AlloSphere Research
Group at UCSB and a grant by the UCSB Center for Re-
search in Electronic Art Technology.

7. REFERENCES
[1] R. Boulanger, editor. The Csound Book: Tutorials in

Software Synthesis and Sound Design. MIT Press,
2000.

[2] J. McCartney. Supercollider: a new real time synthesis
language. In Proceedings of the 1996 International
Computer Music Conference, Hong Kong, 1996.

[3] G. Moro, A. Bin, R. H. Jack, C. Heinrichs, and A. P.
McPherson. Making high-performance embedded
instruments with bela and pure data. In Proceedings of
the 2016 International Conference on Live Interfaces,
Brighton, 2016.

[4] Y. Orlarey, D. Fober, and S. Letz. Syntactical and
semantical aspects of Faust. Soft Computing,
8(9):623–632, 2004.

[5] M. S. Puckette. Pure data. In Proceedings of the 1997
International Computer Music Conference,
Thessaloniki, 1997.

[6] J. Tilbian and A. Cabrera. Stride: A declarative and
reactive language for sound synthesis and beyond. In
Proceedings of the 2016 International Computer Music
Conference, Utrecht, 2016.

[7] G. Wang and P. R. Cook. Chuck: A concurrent,
on-the-fly, audio programming language. In Proceedings
of the 2003 International Computer Music Conference,
Singapore, 2003.

[8] T. Webster, G. LeNost, and M. Klang. The owl
programmable stage effects pedal: Revising the concept
of the on-stage computer for live music performance. In
Proceedings of the 2014 International Conference on
New Interfaces for Musical Expression, London, 2014.

[9] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers. In
Proceedings of the 1997 International Computer Music
Conference, Thessaloniki, 1997.

449


