
OOPS: An Audio Synthesis Library in C for Embedded
(and Other) Applications

Michael Mulshine
Princeton University

310 Woolworth Center
Princeton, NJ 08544

mulshine@princeton.edu

Jeff Snyder
Princeton University

310 Woolworth Center
Princeton, NJ 08544

josnyder@princeton.edu

ABSTRACT
This paper introduces an audio synthesis library written in
C with “object oriented” programming principles in mind.
We call it OOPS: Object-Oriented Programming for Sound,
or, “Oops, it’s not quite Object-Oriented Programming in
C.” The library consists of several UGens (audio compo-
nents) and a framework to manage these components. The
design emphases of the library are efficiency and organiza-
tional simplicity, with particular attention to the needs of
embedded systems audio development.

Author Keywords
Library, Audio, Synthesis, C, Object-Oriented, Embedded,
DSP

ACM Classification
Applied computing Sound and music computing, Computer
systems organization Firmware, Software and its engineer-
ing Software libraries and repositories

1. INTRODUCTION
In our lab, we’ve moved toward creating instruments that
revolve around embedded audio synthesis. As opposed to
developing general purpose controllers for sound synthesis
software on multimedia computers, embedded audio syn-
thesis allows us to create instruments that have distinctive
and long-lasting identities. We avoid maintenance issues
associated with connection to personal computers, such as
updates to the operating system and changes in USB data
transfer protocols.

One way to achieve embedded audio synthesis is to use
embedded Linux computers, such as the Raspberry Pi [13]
or the BeagleBoneBlack [1]. While these embedded com-
puters allow designers to develop using C/C++, as well
as higher-level music-specific languages like Supercollider
[9] and PureData [12], these platforms come with longer
startup times, less direct access to low-level peripherals like
SPI and I2C, and the weight of an operating system. One
example of an ingenious system to address many of these
concerns is the Bela[10], which takes advantage of the ex-
tensive features of the BeagleBoneBlack, but uses Xenomai

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

RT Linux1 to make audio and analog/digital input process-
ing the highest priority (even above the operating system).
For many researchers, installation artists, and instrument
builders, this solution meets their needs.

If the developer’s goal is to affordably build attractive
sound installations and standalone electronic musical in-
struments, the aforementioned embedded computers aren’t
always suitable. They are expensive and, depending on
the physical design specifications of an application, some-
what bulky. Embedded Linux computers have compara-
tively high current demands, and have little control over
power consumption. Furthermore, they generally rely on
3rd-party hardware, which may cause issues if the project
has commercialization goals.

We opt instead to use 32-bit microcontrollers, such as
the STM32F7 [14]. These microcontrollers are small, inex-
pensive, and low-power. They run “bare-metal,” indepen-
dent of an operating system, using only interrupts to con-
trol program flow. 32-bit ARM microcontrollers have begun
to approach the processing power that was previously only
available through the use of dedicated DSP ICs. They en-
able very low latency and deterministic run-time control
while providing enough overhead for useful audio calcula-
tion. While we use a custom-designed board in our lab
(a minimal design with nothing but a microcontroller, an
audio codec, and a voltage regulator), there are affordable
development kits for these microcontrollers that include au-
dio codecs for input and output2. An example of a use case
where this solution is the best option is a sound art project
we are developing that involves hiding tiny audio circuit
boards in birdhouses that need to run indefinitely on solar
power, while occasionally doing complex audio tasks. Using
32-bit microcontrollers has allowed us to control the current
consumption and still have the necessary processing power
available when needed.

While developing various embedded audio projects us-
ing ARM platforms like the STM32F7, we found ourselves
frequently rewriting basic audio synthesis code. We deter-
mined that a single repository of portable and efficient code,
low-level and general enough to meet the needs of all of our
projects, would ease development. We began work on our
audio synthesis library, OOPS, in the fall of 2016.

https://github.com/mulshine/OOPS

1.1 Why another audio library, and why in
C?

C and assembly are the primary languages for embedded de-
velopment. Most existing libraries, frameworks, and drivers
1Xenomai’s home page, https://xenomai.org/
2ST Microelectronic’s STM32f7 Discovery provides I/O
audio codecs as well as interfacing compatibility with
the Arduino: http://www.st.com/en/evaluation-tools/
32f746gdiscovery.html.

460



for microcontrollers are written in C. Despite a few strong
arguments encouraging the transition to C++ in the embed-
ded realm3, we set out to write our pseudo-object oriented
library in C. On one hand, this was because we already had a
sizable C codebase. On the other hand, our projects do not
require the higher-level class structures and subclassing ca-
pabilities provided by C++, which we were concerned could
slow performance. In a recent performance evaluation, we
verified our concerns, at least for our specific compiler and
embedded environment.See “Case Studies and Performance
Evaluation” section for more information.

Moreover, no C/C++ audio synthesis library exists that
is both well-suited for microcontroller-specific needs and
general enough to be used on many microcontroller plat-
forms. Some of the most popular C++ audio synthesis
frameworks, like STK by Perry Cook and Gary Scavone [5]
and CSL (CREATE Signal Library) by the researchers at
UCSB [11], are tailored towards use on personal computers.
They provide features such as debug logging and rely heav-
ily on stdlib and dynamic memory allocation, which are not
well-suited for or supported by most embedded platforms.
TeensyAudio [15] by Paul Stoffregen is a complete audio li-
brary for a microcontroller platform; however, it is designed
and optimized for a specific board, the Teensy [16]. The ex-
isting C options did not meet our needs for similar reasons
(e.g. dependence on memory allocation). Axoloti [18] pro-
vides a C repository of code for embedded audio synthesis,
but it is designed specifically for STM32f4. We aimed to
produce an easily reconfigurable library that would suit the
needs of more than one platform.

1.2 What it is
OOPS is a collection of pseudo-classes and functions written
in C. It includes audio components that function similarly
to traditional UGens, as introduced by the MUSIC-N lan-
guages of Max Mathews [8]. OOPS provides various oscil-
lators, filters, envelopes, waveshapers, reverbs, delays, and
other basic utilities (midi-to-frequency conversion, clipping,
etc.). The DSP implementations are derived from a variety
of sources. Many of these algorithms are collected from the
Music-DSP mailing list archives and discussions or ported
from STK, while some are original. Lookup table optimiza-
tions are preferred over computationally intensive routines.
However, a near-future aim for OOPS is to provide both
accurate (less efficient) and efficient (less accurate) versions
of most components in the library. The OOPS audio library
is structured for ease and flexibility of use, with the needs
of embedded developers in mind.

Included in the OOPS repository are the OOPS library
itself, a Python script for the quick creation of lookup tables
(wtgenerator.py), and the source for an audio plugin devel-
oped using the JUCE framework [17]. The plugin features
an easily reconfigurable UI of sliders, buttons, and menus,
and provides the basic structural skeleton for writing audio
synthesis code using OOPS.

1.3 What it is not
OOPS is not a music-specific programming language, like
Supercollider [9] or ChucK [19]. Unlike some of the clos-
est relatives of OOPS (JSyn [3], Common Lisp Music [7],
CSound [2], RTCMix [6]), OOPS does not provide any high-
level functionality for managing an audio stream or connect-
ing UGens together in a DSP chain. OOPS does not include
a scheduler. It is assumed that the user has a system in
place with an audio callback that happens per frame and

3See Saks and Associates’ founder Dan Saks’ keynote pre-
sentation, C++ for embedded C Programmers: http://
www.dansaks.com/talks/ESC-205.pdf.

another “process audio” function that runs the per-sample
processing. This is reasonable to assume in the embedded
environment, and frameworks like JUCE provide for this
functionality on more complex computers running standard
operating systems. The standard embedded audio appli-
cation relies on a powerful MCU with one or more fast
clocks. A clock is divided down to audio sample rate to
generate callbacks for the developer to perform signal pro-
cessing, sometimes involving audio input from an ADC, and
fill an output buffer. The output buffer’s data is periodi-
cally funneled to a DAC. Every architecture accomplishes
this basic configuration differently. It would be very diffi-
cult to create a C audio library for embedded development
that could manage this particular kind of configuration for
every embedded project, and OOPS does not attempt to
provide this functionality.

2. THE LIBRARY
In the following section, we provide a description of the
features and structure of the library.

2.1 Library Structure
The library consists of a set of audio components. A com-
ponent is a self-named type-defined structure and a set of
functions that initialize and act on that structure. The
structure definitions live in OOPSCore.h, while the APIs
provided for each component live in appropriately named
header and source file pairs. For example, the API and
implementation for the tCycle (sine oscillator) component
lives alongside the tSawtooth, tNoise, and various other os-
cillator components in OOPSOscillator.h/c.

Every component has an initialization and “tick” func-
tion. The initialization function returns an instance of the
component. The tick function performs the actual sample-
by-sample signal processing or generation. The other func-
tions provide read and/or write access to parameters of the
audio component (frequency, resonance, filter coefficients,
gain, and more). These functions, along with the tick func-
tion, require as their first argument a pointer to an instance
of the appropriate component structure.

Oscillators Filters Utilities Other
tPhasor tOnePole tRamp tPluck
tCycle tTwoPole tEnvelope tStifKarp
tSawtooth tOneZero tEnvelopeFollower t808Snare
tTriangle tTwoZero tCompressor t808BDTom
tSquare tPoleZero tDelay t808Cowbell
tNeuron tBiQuad tDelayL t808Hihat

tSVF tDelayA
tSVFE tPRCRev
tHighpass tNRev

2.2 The OOPS Core
OOPS.h is the only file the user should need to directly in-
clude in their project to begin using the full feature set of
the OOPS library. In it lives a brief API for initializaion
of OOPS and preprocessor includes for compilation of the
needed OOPS components. At the core of OOPS is a type-
defined struct (called OOPS), which indexes memory for the
user-provided sample rate, inverse sample rate, and random
number generating function pointer. It is required that the
user provides their own random number generating function
[0.0f, 1.0f) because the rand/randf function in C’s standard
math library is not supported by every embedded architec-
ture. The OOPS core also contains registries (arrays) for
instances of each type of OOPS component. Components
refer to the OOPS core for calculations based on the sample
rate and random numbers for noise generation. An impor-
tant feature of the OOPS core registry is its ability to call

461



component-specific functions on all instances of each com-
ponent during run-time. The OOPS library takes advantage
of this ability to allow run-time changes to the global sample
rate.

2.3 Static Allocation and Memory
One challenge embedded audio developers face relates to
memory/storage and memory allocation. Most embedded
architectures come with hardware-defined memory limita-
tions that are puny compared to the average personal com-
puter. Moreover, many architectures discourage or don’t
fully support the use of the C standard library memory
allocation functions malloc(), calloc(), and free(), so dy-
namic memory allocation is difficult or impossible. With the
OOPS library, we wanted to address these concerns by mak-
ing static allocation of any number of high level audio com-
ponents simple and easily reconfigurable. To meet the needs
of our own embedded applications, we eschew dynamic al-
location of components altogether, opting for compile-time
static/automatic allocation. This should be advantageous
for most embedded developers.

Any number of user-defined OOPS components are stat-
ically allocated as arrays of components in the OOPS core
structure (see OOPSCore.h). The authors provide a mem-
ory configuration file (OOPSMemConfig.h), which contains
a set of preprocessor macros. Each macro is related to a spe-
cific component and defines the number of instances of the
component to be statically allocated before run-time. If the
developer is facing memory restrictions due to hardware, or
would like to use more of a particular component in his/her
application, s/he may conveniently redefine these macros.
If for whatever reason the allocation limit is reached during
run-time, new instances of the overloaded component will
not be initialized and thus will behave in undefined ways or
not work at all.

2.4 Usage
To begin using OOPS, the developer should add the library
source to their project and include OOPS.h in a convenient
header file. The OOPS core needs to be initialized with
a call to OOPSInit(), which takes as arguments the de-
sired system sample rate and a pointer to a random num-
ber generating function. Developers using OOPS should
create pointers to audio components and assign to them
the return value of their associated initialization functions.
At that point, they may begin setting parameters of their
components and ticking them to process and refill the au-
dio buffer in the main audio callback. Developers should
remember to define the appropriate number of instances of
each component in OOPSMemConfig.h if they are facing
memory restrictions or need more of a certain component.
See the OOPS repository README.md for more details on
usage.

3. CASE STUDIES AND PERFORMANCE
EVALUATION

We have used OOPS in a variety of embedded projects de-
signed by the second author, all with great success: the
Drumbox, an electronic drum circuit, which uses an STM32f4
microcontroler; the Genera, a generic testing/experimentation
board for audio synthesis or processing, which uses an STM32f7
microcontroller; and the MantaMate, a digital controller to
CV Eurorack module, which uses an AVR32UC3a micro-
controller. Both the Drumbox and Genera feature audio
signal pathways built only with OOPS components. The
MantaMate does not perform any audio synthesis but rather
relies on handy OOPS utilities, notably several instances

of tRamp, a basic ramping tool. In all of these projects,
each using different microcontrollers and distinct develop-
ment environments (Keil uVision 5 or Atmel Studio 7.0),
OOPS was easy to integrate and work with. We found our-
selves spending much more time making musical decisions
about our instruments’ sound, usability, and appearance
and much less time writing and re-writing basic audio code
from scratch.

We have also used OOPS in the software domain to de-
velop unique audio plug-ins using the JUCE framework and
XCode. In particular, we have developed a neuron model
algorithm synthesis plugin and an 808 percussion plugin,
both of which have been or will be used in performance by
the Princeton Laptop Orchestra.

Figure 1: The Genera embedded synthesis engine in
Eurorack synthesizer format, front and back view

We have created some test patches to evaluate the ef-
ficiency of the library. With a buffer size of 512 at 48K
sample rate, we can produce up to 34 OOPS sine waves
or 16 bandlimited sawtooth waves at once, each with fre-
quency controlled in real-time via analog input. We have
been able to run some interesting waveguide physical mod-
els on the hardware, although given the limited CPU speed
(216MHz for the STM32f7), we run into performance limi-
tations with more complex models. There is room for im-
provement, particularly if we add support for the CMSIS
DSP library of accelerated commands (which would take
advantage of SIMD capabilities, but would be contrary to
our platform-independence goal), or if we create fixed-point
16-bit versions of our functions. These are both on our list
of planned future work.

Many of the design decisions in the library development
were influenced by how the Keil compiler for ARM handled
the various possibilities for the code structure. For example,
we decided to favor fewer function calls over greater encap-
sulation after noticing that the compiler tended to produce
slower code when more function calls were used. In our most
recent tests, we evaluated the performance of basic OOPS
components against functionally identical C++, inline-C,
and OOPS-alt4 versions of the components on the Genera
board described above. We performed the same tests with
two Keil compiler settings: one with -C, -C99 and –CPP
flags, and the other with only -C and -C99. The table be-
low presents the performance of OOPS, OOPS-alternative,
C++ and inline-C implementations of the same audio task.
In each case, the task is to compute and fill a buffer with

4An OOPS component with pointers to the functions in its
API embedded as members of the component struct. This is
closer to object-oriented and C++ programming, but adds
a function call.

462



512 samples of a 220Hz band-limited sawtooth oscillator.
The tests were performed by setting a pin high at the start
of every buffer frame, setting it low once all 512 samples
were computed, and measuring how long that pin stayed
high during each frame with a Salaea Logic 8 analyzer. The
values presented below are averaged over approximately ten
of these measurements.

CPP (ms) Not CPP (ms)
OOPS 0.7702 0.7610
OOPS-alt 0.7703 0.7617
Inline-C 0.8744 0.8746
C++ 0.8107 n/a

4. CONCLUSIONS AND FUTURE WORK
There are two main areas for improvement that we intend
to explore in the future. First is the need for more au-
dio processing functions. There are several common areas
of synthesis, such as granular techniques and FFT effects,
that are not yet represented in the library. We would also
like to include more unusual and experimental sound meth-
ods, such as Xenakis’s stochastic methods [20] or those de-
scribed in Nick Collins’s “Errant Sound Synthesis” papers
[4]. The second area for improvement is in the efficiency of
the functions, especially for embedded platforms. Since our
primary use cases are ARM Cortex M-series MCUs such
as the STM32 series, we intend to build in functionality
that takes advantage of the MAC and SIMD capabilities of
those processors when they are targeted. Vectorization of
data, rather than use of a sample-by-sample tick function,
would increase efficiency and take advantage of the available
ARM optimizations. We are currently exploring how to in-
corporate these changes while maintaining the simplicity of
the library’s API. Our current plan is to create additional
functions that operate on arrays of data rather than single-
sample inputs. This might necessitate the creation of a
UGen connection scheme to organize which operations may
be done in parallel, but that would add significant complex-
ity to the library.

Another area of future development will be the creation
of lower and higher resolution versions of the objects. In or-
der to take advantage of the single-precision floating-point
unit (FPU) in the STM32f MCUs, we chose to use single
precision floats throughout (defined as float literals, e.g.
20.0f) and pass data between functions as floats. There
are situations in which using doubles would be necessary
for acceptable precision, but the STK-style solution of a
MY FLOAT define would create additional casting that
could slow the execution time. In the other direction, many
of the hardware-specific optimization possibilities of STM32f
MCUs can only take advantage of 16-bit fixed point val-
ues (such as computing two 16-bit values within a single
32-bit register), so there are efficiency gains to having 16-
bit fixed point versions of functions available. When us-
ing 16-bit fixed-point computations, sending data between
functions as floats becomes a performance bottleneck, since
each component must handle the conversion before and af-
ter performing its operation. The design goal of a simple,
clean library is somewhat at odds with the desire for flex-
ible control of the performance/accuracy continuum. We
intend to eventually include multiple resolution versions of
each component, but we still need to determine how to han-
dle input-output standards in that case.

There are several projects in our lab that use the OOPS
audio synthesis library, and we have so far found it very
useful. We believe that this library also could be useful to
researchers and designers beyond our own lab, so we hope
others will take advantage of this work. We especially be-
lieve it will be of interest to designers of custom instruments

and installations who, like us, are interested in achieving
more complex audio synthesis tasks on embedded proces-
sors without the use of an OS. We would be excited to see
others contribute to the library and expand the range of
UGens it contains.

5. REFERENCES
[1] BeagleBoneBlack. http://beagleboard.org/black.

Accessed 2017-04-17.

[2] R. Boulanger. The Csound Book. M.I.T. Press,
Cambridge, Massachusetts, 2000.

[3] P. Burk. Jsyn - a real-time synthesis api for java. In
Proceedings of the International Computer Music
Conference (ICMC 2003). University of Michigan -
Ann Arbor, Michigan, 1998.

[4] N. Collins. Errant sound synthesis. In Proceedings of
the International Computer Music Conference (ICMC
2008). Sonic Arts Research Center, Queens University
- Belfast, Belfast Ireland, 2008.

[5] P. R. Cook and G. P. Scavone. The synthesis toolkit
(stk). In Proceedings of the International Computer
Music Conference (ICMC 1999). Beijing, China, 1999.

[6] B. Garton. Rtcmix website. http://rtcmix.org/.
Accessed 2017-01-24.

[7] F. Lopez-Lezcano and J. Pampin. Common lisp music
update report. International Computer Music
Association, 1999:399–402, 1999.

[8] M. Mathews. The Technology of Computer Music.
M.I.T. Press, Cambridge, Massachusetts, 1969.

[9] J. McCartney. Supercollider: a new real time
synthesis language. In Proceedings of the International
Computer Music Conference (ICMC 1996). Hong
Kong University of Science and Technology, China,
1996.

[10] A. McPherson. http://bela.io/. Accessed
2017-04-17.

[11] S. T. Pope and C. Ramakrishnan. The create signal
library (sizzle): Design, issues, and applications. In
Proceedings of the International Computer Music
Conference (ICMC 2003). Gothenberg, Sweden, 2003.

[12] M. Puckette. Pure data: Another integrated computer
music environment. In Second Intercollege Computer
Music Concerts Proceedings, pages 37–41. Tachikawa,
Japan, May 1997.

[13] RaspberryPi. https://www.raspberrypi.org/.
Accessed 2017-01-24.

[14] STMicroelectronics. Stm32f7 series. http://www.st.
com/en/microcontrollers/stm32f7-series.html?

querycriteria=productId=SS1858. Accessed
2017-01-24.

[15] P. Stoffegren. Teensy audio. https:
//www.pjrc.com/teensy/td_libs_Audio.html.
Accessed 2017-01-24.

[16] P. Stoffegren. Teensy board.
https://www.pjrc.com/teensy/. Accessed
2017-01-24.

[17] J. Storer. Juce. https://www.juce.com/. Accessed
2017-01-24.

[18] J. Taelman. Axoloti website.
http://www.axoloti.com/. Accessed 2017-01-24.

[19] G. Wang. The ChucK Audio Programming Language:
A Strongly-timed and On-the-fly Environ/mentality.
Princeton University, Princeton, New Jersey, 2008.

[20] I. Xenakis. Formalized Music: Thought and
Mathematics in Composition. Pendragon Press,
Hillsdale, New York, 2001.

463


