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ABSTRACT
In this paper, we present JamSketch, a real-time improvisa-
tion support system which automatically generates melodies
according to melodic outlines drawn by the users. The sys-
tem generates the improvised melodies based on (1) an out-
line sketched by the user using a mouse or a touch screen,
(2) a genetic algorithm based on a dataset of existing mu-
sic pieces as well as musical knowledge, and (3) an expres-
sive performance model for timing and dynamic transfor-
mations. The aim of the system is to allow people with no
prior musical knowledge to be able to enjoy playing music
by improvising melodies in real time.
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1. INTRODUCTION
Improvisation is one of the most enjoyable forms of mu-
sic performance in which musicians create music compo-
sitions in real time combining communication of emotions,
instrumental technique and spontaneous response to others.
There have thus been attempts to support improvisation by
unskilled players using computing technologies [1, 2, 6, 7].

In this paper we present JamSketch, a real-time improvi-
sation support system which automatically generates melodies
according to melodic outlines drawn by the users. We de-
veloped a melody editing system that creates a melody ac-
cording to a melodic outline drawn by the user [9]. Once the
user draws a melodic outline, the system creates a melody
according to the outline. Given the intuitive nature of draw-
ing, several drawing-based systems have been proposed to
allow people with no prior music knowledge to specify their
musical ideas [3, 4, 8]. However, these systems do not create
melodies in real time, so they are not unsuitable for sup-
porting of real-time improvisation. Our system is able to
generate expressive improvised melodies in real time given
an outline drawn by the user.

2. SYSTEM OVERVIEW
A screenshot of our system is shown in Figure 1. Once the
system is launched, a piano-roll interface is displayed on the
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Figure 1: A piano roll with the melodic outline
drawn by the user (blue) and the corresponding
melody generated by the system (orange)

screen. During the playback of an accompaniment (given by
a MIDI file with a chord transcription), the user can draw a
melodic outline on the piano-roll screen by using the com-
puter mouse or touch pad as an input device. The melody
is created individually for each measure. Once the mouse
coursor enters the region of measure m and then moves out
from that region (or the mouse button is released there), the
creation of a melody for measurem starts. After the melody
is created, the most likely expression parameters (the onset,
duration, and energy for each note) are estimated. Gener-
ation of melody and expression parameters in the current
implementation takes approximately 0.5 s and 0.2 s. Thus,
users are required to draw their melodic outlines one bar in
advance.

2.1 Drawing Melodic Outline
During the playback of the accompaniment, the user draws
a melodic outline {y(t)} on the piano-roll screen. Here,
y(t) represents the pitch of the outline at time t. The time
resolution is an eighth-note triplet.

2.2 Determining Rhythm of Melody
When the mouse cursor moves out from measure m in the
piano roll (i.e. it moves to measure m+1) or the mouse but-
ton is released, melody generation for measure m iniciates.

First, the rhythm (i.e., the melody notes’ durations) is
determined. The key idea is to generate a note onset at time
points of high-variability of y(t). This is achieved through
the following steps:

1. A set of note onset candidates, R, is defined. Each
element of R is a 12-dimensional binary vector, where
1 stands for an onset and 0 stands for a non-onset.
For example, (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) represents a
sequence of two half notes.

2. We decide a tentative rhythm R′ from {y(t)}. The i-th
element of R′, denoted by R′(i), is defined as follows:

R′(i) =

{
1 (|y(tm+i)− y(tm+i−1)| > δ)
0 (otherwise)
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where tm is the start time of m, and δ is a threshold.
3. We search for the closest candidate to R′, that is,

R̂ = argmin
Rk∈R

||Rk −R′||.

2.3 Determining Pitches
For each of the 1-value elements in R̂, the pitch (MIDI note
number) is detemined. Let L be the number of 1-value

elements in R̂. What should be determined here is N =
(n0, · · · , nL−1), where ni is a MIDI note number.

To determine these pitches, we use a genetic algorithm
(GA), in which N = (n0, · · · , nL−1) is regarded as a chro-
mosome. To achieve a quick melody creation, the optimiza-
tion through GA is limited to 0.5 s.

2.3.1 Initializing chromosomes
Melodies taken from a melody corpus are memorized as a
prefix tree. Initial chromosomes (sequences of note num-
bers) are generated by randomly proceeding in this prefix
tree from the root.

2.3.2 Calculating fitness function
The fitness function assigns higher values to melodies which:

• are similar to the melodic outline,
• have similar characteristics to the melodies in the melody

corpus,
• are not dissonant with respect to the accompaniment,
• are not too monotonous.

We therefore define the fitness function F (N) as follows:

F (N) = w0 sim(N) + w1 seq1(N) + w2 seq2(N)

+w3 harm(N) + w4 ent(N),

where

• sim(N): Similarity to outline

sim(N) = −
L−1∑
i=0

(ni − y(ti))
2 ,

in which ti is the onset time of note ni.

• seq1(N): Pitch bigram probability

seq1(N) =

L−1∑
i=1

logP (ni | ni−1).

• seq2(N): Interval (pitch-motion) bigram probability

seq2(N) =

L−1∑
i=2

logP (ni − ni−1 | ni−1 − ni−2).

• harm(N): Conditional probability for given chords

harm(N) =

L−1∑
i=0

logP (ni | ci, bi),

in which ci is the chord name at time ti, and bi is the
metrical position at ti (bi ∈ {head, on-beat, off-beat}).
We consider bi because the acceptability of out-of-
scale notes depends on their metrical positions.

• ent(N): Entropy

ent(N) = −(H(N)−Hmean − ε)2,

in which H(N) is the entropy of {n0, · · · , nL−1}, and
Hmean is the averaged entropy calculated from a melody
corpus. Above, ε is usually zero, but setting this to
more than zero will result in more complex melodies.

Above, P (ni | ni−1), P (ni−ni−1 | ni−1−ni−2), P (ni | ci, bi),
and Hmean are learned from a corpus, while w0, · · · , w4 and
ε are manually set.

2.4 Estimating Expression Parameters
The expression parameters, that is, the onset deviation, du-
ration ratio, and energy (velocity) ratio for each note are
estimated with Giraldo’s method [5]. Here, we use the k-
nearest neighbor estimator. The upper and lower bounds,
if necessary, can be given to each parameter.

3. IMPLEMENTATION AND TRIAL
We implemented this system on a touch-screen laptop PC.
As a melody corpus, we used 53 melodies with the tonality
of Blues taken from Weimar Jazz Database1. We used a
12-bar blues chord progression in the key of C, i.e.,

| C7 F7 C7 C7 F7 F7 C7 C7 G7 F7 C7 G7 |.
Preliminary tests of our system have been very positive.

Users were satisfied with the usability of the system and
with the quality of their improvisations, which clearly con-
tained characteristics of blues melodies, e.g. melodies make
use of notes such as E♭, G♭, and B♭ in the key of C. In
the future we plan to conduct a formal perceptual test to
evaluate the performance of the proposed system.

4. CONCLUSION
In this paper, we proposed an improvisation support sys-
tem, JamSketch, in which the user can enjoy improvisation
just by drawing a melodic outline. Melodies are generated
in real time based on a genetic algorithm according to an
outline drawn by the user and are expressively performed.
Future work includes evaluations of both the user experi-
ence and the qualities of generated melodies as well as fur-
ther improvements with a larger-scale melody corpus.
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