
JamSketch: A Drawing-based Real-time Evolutionary
Improvisation Support System

Tetsuro Kitahara
College of Humanities and Sciences,

Nihon University,
Tokyo, Japan

kitahara@chs.nihon-u.ac.jp

Sergio Giraldo
Music Technology Group,
Universitat Pompeu Fabra,

Barcelona, Spain
sergio.giraldo@upf.edu

Rafael Ramírez
Music Technology Group,
Universitat Pompeu Fabra,

Barcelona, Spain
rafael.ramirez@upf.edu

ABSTRACT
In this paper, we present JamSketch, a real-time improvisa-
tion support system which automatically generates melodies
according to melodic outlines drawn by the users. The sys-
tem generates the improvised melodies based on (1) an out-
line sketched by the user using a mouse or a touch screen,
(2) a genetic algorithm based on a dataset of existing mu-
sic pieces as well as musical knowledge, and (3) an expres-
sive performance model for timing and dynamic transfor-
mations. The aim of the system is to allow people with no
prior musical knowledge to be able to enjoy playing music
by improvising melodies in real time.

Author Keywords
Improvisation, melodic outline, melody creation

ACM Classification
H.5.5 [Information Interfaces and Presentation] Sound and
Music Computing

1. INTRODUCTION
Improvisation is one of the most enjoyable forms of mu-
sic performance in which musicians create music compo-
sitions in real time combining communication of emotions,
instrumental technique and spontaneous response to others.
There have thus been attempts to support improvisation by
unskilled players using computing technologies [1, 2, 6, 7].

In this paper we present JamSketch, a real-time improvi-
sation support system which automatically generates melodies
according to melodic outlines drawn by the users. We de-
veloped a melody editing system that creates a melody ac-
cording to a melodic outline drawn by the user [9]. Once the
user draws a melodic outline, the system creates a melody
according to the outline. Given the intuitive nature of draw-
ing, several drawing-based systems have been proposed to
allow people with no prior music knowledge to specify their
musical ideas [3, 4, 8]. However, these systems do not create
melodies in real time, so they are not unsuitable for sup-
porting of real-time improvisation. Our system is able to
generate expressive improvised melodies in real time given
an outline drawn by the user.

2. SYSTEM OVERVIEW
A screenshot of our system is shown in Figure 1. Once the
system is launched, a piano-roll interface is displayed on the

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’17, May 15-19, 2017, Aalborg University Copenhagen, Denmark.

Figure 1: A piano roll with the melodic outline
drawn by the user (blue) and the corresponding
melody generated by the system (orange)

screen. During the playback of an accompaniment (given by
a MIDI file with a chord transcription), the user can draw a
melodic outline on the piano-roll screen by using the com-
puter mouse or touch pad as an input device. The melody
is created individually for each measure. Once the mouse
coursor enters the region of measure m and then moves out
from that region (or the mouse button is released there), the
creation of a melody for measurem starts. After the melody
is created, the most likely expression parameters (the onset,
duration, and energy for each note) are estimated. Gener-
ation of melody and expression parameters in the current
implementation takes approximately 0.5 s and 0.2 s. Thus,
users are required to draw their melodic outlines one bar in
advance.

2.1 Drawing Melodic Outline
During the playback of the accompaniment, the user draws
a melodic outline {y(t)} on the piano-roll screen. Here,
y(t) represents the pitch of the outline at time t. The time
resolution is an eighth-note triplet.

2.2 Determining Rhythm of Melody
When the mouse cursor moves out from measure m in the
piano roll (i.e. it moves to measure m+1) or the mouse but-
ton is released, melody generation for measure m iniciates.

First, the rhythm (i.e., the melody notes’ durations) is
determined. The key idea is to generate a note onset at time
points of high-variability of y(t). This is achieved through
the following steps:

1. A set of note onset candidates, R, is defined. Each
element of R is a 12-dimensional binary vector, where
1 stands for an onset and 0 stands for a non-onset.
For example, (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) represents a
sequence of two half notes.

2. We decide a tentative rhythm R′ from {y(t)}. The i-th
element of R′, denoted by R′(i), is defined as follows:

R′(i) =

{
1 (|y(tm+i)− y(tm+i−1)| > δ)
0 (otherwise)

505

where tm is the start time of m, and δ is a threshold.
3. We search for the closest candidate to R′, that is,

R̂ = argmin
Rk∈R

||Rk −R′||.

2.3 Determining Pitches
For each of the 1-value elements in R̂, the pitch (MIDI note
number) is detemined. Let L be the number of 1-value

elements in R̂. What should be determined here is N =
(n0, · · · , nL−1), where ni is a MIDI note number.

To determine these pitches, we use a genetic algorithm
(GA), in which N = (n0, · · · , nL−1) is regarded as a chro-
mosome. To achieve a quick melody creation, the optimiza-
tion through GA is limited to 0.5 s.

2.3.1 Initializing chromosomes
Melodies taken from a melody corpus are memorized as a
prefix tree. Initial chromosomes (sequences of note num-
bers) are generated by randomly proceeding in this prefix
tree from the root.

2.3.2 Calculating fitness function
The fitness function assigns higher values to melodies which:

• are similar to the melodic outline,
• have similar characteristics to the melodies in the melody

corpus,
• are not dissonant with respect to the accompaniment,
• are not too monotonous.

We therefore define the fitness function F (N) as follows:

F (N) = w0 sim(N) + w1 seq1(N) + w2 seq2(N)

+w3 harm(N) + w4 ent(N),

where

• sim(N): Similarity to outline

sim(N) = −
L−1∑
i=0

(ni − y(ti))
2 ,

in which ti is the onset time of note ni.

• seq1(N): Pitch bigram probability

seq1(N) =

L−1∑
i=1

logP (ni | ni−1).

• seq2(N): Interval (pitch-motion) bigram probability

seq2(N) =

L−1∑
i=2

logP (ni − ni−1 | ni−1 − ni−2).

• harm(N): Conditional probability for given chords

harm(N) =

L−1∑
i=0

logP (ni | ci, bi),

in which ci is the chord name at time ti, and bi is the
metrical position at ti (bi ∈ {head, on-beat, off-beat}).
We consider bi because the acceptability of out-of-
scale notes depends on their metrical positions.

• ent(N): Entropy

ent(N) = −(H(N)−Hmean − ε)2,

in which H(N) is the entropy of {n0, · · · , nL−1}, and
Hmean is the averaged entropy calculated from a melody
corpus. Above, ε is usually zero, but setting this to
more than zero will result in more complex melodies.

Above, P (ni | ni−1), P (ni−ni−1 | ni−1−ni−2), P (ni | ci, bi),
and Hmean are learned from a corpus, while w0, · · · , w4 and
ε are manually set.

2.4 Estimating Expression Parameters
The expression parameters, that is, the onset deviation, du-
ration ratio, and energy (velocity) ratio for each note are
estimated with Giraldo’s method [5]. Here, we use the k-
nearest neighbor estimator. The upper and lower bounds,
if necessary, can be given to each parameter.

3. IMPLEMENTATION AND TRIAL
We implemented this system on a touch-screen laptop PC.
As a melody corpus, we used 53 melodies with the tonality
of Blues taken from Weimar Jazz Database1. We used a
12-bar blues chord progression in the key of C, i.e.,

| C7 F7 C7 C7 F7 F7 C7 C7 G7 F7 C7 G7 |.
Preliminary tests of our system have been very positive.

Users were satisfied with the usability of the system and
with the quality of their improvisations, which clearly con-
tained characteristics of blues melodies, e.g. melodies make
use of notes such as E♭, G♭, and B♭ in the key of C. In
the future we plan to conduct a formal perceptual test to
evaluate the performance of the proposed system.

4. CONCLUSION
In this paper, we proposed an improvisation support sys-
tem, JamSketch, in which the user can enjoy improvisation
just by drawing a melodic outline. Melodies are generated
in real time based on a genetic algorithm according to an
outline drawn by the user and are expressively performed.
Future work includes evaluations of both the user experi-
ence and the qualities of generated melodies as well as fur-
ther improvements with a larger-scale melody corpus.

Acknowledgments: This work was supported by JSPS
KAKENHI Grant Numbers 26240025, 26280089, 16K16180,
16H01744, and 16KT0136, as well as by the Spanish TIMuL
Project (TIN2013-48152-C2-2-R), and the TELMI Project
of the Horizon 2020 Research and Innovation Programme
(grant agreement No. 688269).

5. REFERENCES
[1] E. Amiot, T. Noll, M. Andretta, and C. Agon. Fourier

oracles for computer-aided improvisation. In Proceedings of
International Computer Music Conference, 2006.

[2] J. Buchholz, E. Lee, J. Klein, and J. Borchers. coJIVE: a
system to support collaborative jazz improvisation. In
Technical Report, 2007.

[3] M. M. Farbood, E. Pasztor, and K. Jennings. Hyperscore: A
graphical sketchpad for novice composers. IEEE Computer
Graphics and Applications, 24(1):50–54, 2004.

[4] J. Garcia, T. Tsandilas, C. Agon, and W. Mackay.
Inksplorer: Exploring musical ideas on paper and computer.
In Proceedings of International Conference on New
Interfaces for Musical Expression, 2011.

[5] S. Giraldo and R. Ramı́rez. A machine learning approach to
ornamentation modeling and synthesis in jazz guitar.
Journal of Mathematics and Music, 10(2):107–126, 2016.

[6] K. Ishida, T. Kitahara, and M. Takeda. ism: Improvisation
supporting system based on melody correction. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 177–180, 2004.

[7] D. E. Parson. Chess-based composition and improvisation
for non-musicians. In Proceedings of International
Conference on New Interfaces for Musical Expression, 2009.

[8] J.-B. Thiebaut, P. G. Healey, N. B. Kinns, and Q. Mary.
Drawing electroacoustic music. In Proceedings of
International Computer Music Conference, 2008.

[9] Y. Tsuchiya and T. Kitahara. Melodic outline extraction
method for non-note-level melody editing. In Proceedings of
the Sound and Music Computing Conference 2013, pages
762–767, 2013.

1http://jazzomat.hfm-weimar.de/dbformat/dboverview.html

506

