
GestureRNN:
A neural gesture system for the Roli Lightpad Block

ABSTRACT
Machine learning and deep learning have recently made a large impact
in the artistic community. In many of these applications however, the
model is often used to render the high dimensional output directly e.g.
every individual pixel in the final image. Humans arguably operate in
much lower dimensional spaces during the creative process e.g. the
broad movements of a brush. In this paper, we design a neural gesture
system for music generation based around this concept. Instead of
directly generating audio, we train a Long Short Term Memory
(LSTM) recurrent neural network to generate instantaneous position
and pressure on the Roli Lightpad instrument. These generated
coordinates in turn, give rise to the sonic output defined in the synth
engine. The system relies on learning these movements from a
musician who has already developed a palette of musical gestures
idiomatic to the Lightpad. Unlike many deep learning systems that
render high dimensional output, our low-dimensional system can be
run in real-time, enabling the first real time gestural duet of its kind
between a player and a recurrent neural network on the Lightpad
instrument.

Author Keywords
Recurrent Neural Networks, Gestures, Machine Learning, Deep
Learning, Roli Lightpad Block

CCS Concepts
• Computing Methodologies → Machine Learning; • Applied
computing → Sound and music computing; • Hardware →
Sensor and Actuators

1. INTRODUCTION
The recent boom of machine learning (ML) and deep learning (DL)
has greatly impacted the artistic community. In the visual arts, Deep

Neural Networks have shown incredible capacity at generating
artwork that can fool human beings [1], create new Japanese anime
avatars [2] and hallucinate new Chinese characters [3]. In the musical
domain, Eck et al [4] first showed how Long Short Term Memory
(LSTM) networks can improvise Blues melodies, Bretan et al [5] used
Recurrent Neural Networks (RNN) to generate music using a unit
selection approach while Engel et al [6] employed a groundbreaking
architecture for audio called WaveNet to interpolate between various
different musical instrument sounds.

 Whilst tools for using machine learning in artistic domains such as
the popular Wekinator by Fiebrink et al [7] have been available for
several years, it has only been in the last couple of years that newer
methods such as deep learning, a subfield of machine learning, have
been computationally feasible, open sourced and applicable to art. To
put this intersection in context, The Neural Information Processing
Systems or NIPS, a conference traditionally dedicated to statistical ML
and DL breakthroughs, recently hosted a separate thread called
“Machine Learning for Creativity and Design” in 2017.
 However the majority of DL applications for art often focus on the
final “high dimensional” output that is the finished piece of art itself.
For example, a deep learning model generates the individual pixels of
an image directly (64*64*3 ~ 4000 dimensions) [2] or generates the
piano waveform directly (over 5M dimensions!) [8,10].
 Arguably, humans do not operate at this level of high
dimensionality. For example, an artist does not think about exact RGB
pixel values but instead operates in broader brush strokes forming the
final image. The movement of brushstrokes experienced by an artist is
arguably in a lower dimensional space than the equivalent state space
of pixel values seen by machine learning models. A musician does not
improvise music by thinking of permutations of notes to fit on a final
score. Instead, a combination of musical knowledge, the user’s
physical constraints, the instrument’s physical constraints and current
musical setting all influence the final choice of notes in a musical
sequence [9].
 We thus implemented a recurrent neural network (RNN) around the
concept of this low dimensionality in the creative process. The system
is designed to learn from a user’s input in terms of three low
dimensional values: instantaneous 𝑥, 𝑦 and pressure 𝑝, which in turn
give rise to the complex sonic output generated from Wekinator and
Ableton Live. Our system, called GestureRNN, has no concept of the
final sound, it only forms a representation of three input values

Figure 1. Generated sequences by the Recurrent Neural Network on the surface of the Roli Lightpad Block

.

Lamtharn Hantrakul*, Zachary Kondak
Georgia Tech Center for Music Technology

840 McMillan St. NW
 Georgia Institute of Technology

Atlanta, GA 30318
lhantrakul3,zakondak@gatech.edu

NIME Proceedings Template for LaTeX

Ben Trovato
⇤

Institute for Clarity in
Documentation

1932 Wallamaloo Lane
Wallamaloo, New Zealand
trovato@corporation.com

G.K.M. Tobin
†

Institute for Clarity in
Documentation
P.O. Box 1212

Dublin, Ohio 43017-6221
webmaster@marysville-

ohio.com

Lars Thørväld
‡

The Thørväld Group
1 Thørväld Circle

Hekla, Iceland
larst@affiliation.org

Lawrence P. Leipuner
Brookhaven Laboratories
Brookhaven National Lab

P.O. Box 5000
lleipuner@researchlabs.org

Sean Fogarty
NASA Ames Research Center

Moffett Field
California 94035

fogartys@amesres.org

Anon Nymous
Redacted

8600 Datapoint Drive
San Antonio, Texas 78229

cpalmer@prl.com

ABSTRACT
This paper provides a sample of a LATEX document for the
NIME conference series. It conforms, somewhat loosely, to
the formatting guidelines for ACM SIG Proceedings. It is an
alternate style which produces a tighter-looking paper and
was designed in response to concerns expressed, by authors,
over page-budgets. It complements the document Author’s
(Alternate) Guide to Preparing ACM SIG Proceedings Us-
ing LATEX2

✏

and BibTEX. This source file has been written
with the intention of being compiled under LATEX2

✏

and
BibTeX.
To make best use of this sample document, run it through

LATEX and BibTeX, and compare this source code with your
compiled PDF file. A compiled PDF version is available to
help you with the ‘look and feel.’ The paper submit-

ted to the NIME conference must be stored in an

A4-sized PDF file, so North Americans should take

care not to inadvertently generate letter paper-sized

PDF files. This paper template should prevent that from
happening if the pdflatex program is used to generate the
PDF file.
The abstract should preferably be between 100 and 200

words.

Author Keywords
NIME, proceedings, LATEX, template

CCS Concepts
•Applied computing ! Sound and music comput-

ing; Performing arts; •Information systems ! Music
retrieval;

⇤Dr. Trovato insisted his name be first.
†The secretary disavows any knowledge of this author’s ac-
tions.
‡This author is the one who did all the really hard work.

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’18, June 3-6, 2018, Blacksburg, Virginia, USA.

Please read the comments in the nime-template.tex

file to see how to create the CCS Concept Classifi-

cations!

1. INTRODUCTION
The proceedings are the records of a conference. ACM seeks
to give these conference by-products a uniform, high-quality
appearance. To do this, ACM has some rigid requirements
for the format of the proceedings documents: there is a
specified format (balanced double columns), a specified set
of fonts (Arial or Helvetica and Times Roman) in certain
specified sizes (for instance, 9 point for body copy).
The good news is, with only a handful of manual set-

tings,1 the LATEX document class file handles all of this for
you.
The remainder of this document is concerned with show-

ing, in the context of an “actual” document, the LATEX com-
mands specifically available for denoting the structure of a
proceedings paper, rather than with giving rigorous descrip-
tions or explanations of such commands.

2. THE BODY OF THE PAPER
Typically, the body of a paper is organized into a hierar-
chical structure, with numbered or unnumbered headings
for sections, subsections, sub-subsections, and even smaller
sections. The command \section that precedes this para-
graph is part of such a hierarchy.2 LATEX handles the num-
bering and placement of these headings for you, when you
use the appropriate heading commands around the titles of
the headings. If you want a sub-subsection or smaller part
to be unnumbered in your output, simply append an aster-
isk to the command name. Examples of both numbered and
unnumbered headings will appear throughout the balance
of this sample document.
Because the entire article is contained in the document

environment, you can indicate the start of a new paragraph
with a blank line in your input file; that is why this sentence
forms a separate paragraph.

1Two of these, the \numberofauthors and \alignau-

thor commands, you have already used; another, \bal-

ancecolumns, will be used in your very last run of LATEX
to ensure balanced column heights on the last page.
2This is the second footnote. It starts a series of three
footnotes that add nothing informational, but just give an
idea of how footnotes work and look. It is a wordy one, just
so you see how a longish one plays out.

*First author implemented deep learning and publication report.
Second author contributed to the design and execution of the real-
time server and Max/MSP patch.

132

(𝑥, 𝑦, 𝑝), and tries to predict and generate future triplets of (𝑥, 𝑦, 𝑝).
The system relies on learning these values from a musician who has
already developed a palette of musical gestures idiomatic to the
Lightpad, analogous to learning brushstrokes from an expert painter
on a canvas.
 This approach has several advantages: notably the deep learning
system can be run in real time. Systems that render the final audio
output can take hours to generate a short fragment of sound [10].
Moreover, the problem of learning and predicting lower dimensional
values is arguably an easier task than modelling the high dimensional
audio output directly. More importantly, this enables the player and
GestureRNN to interact at the “gestural” level. Some of the sonic
results from the interplay between model generated gestures and user
input gestures result in surprisingly delightful timbres not possible with
an equivalent duet between two physical hands on the Lightpad.

2. RELATED WORK
2.1 Overview
The notion of a system that “listens” and “completes” a player’s
musical input has been extensively explored. The most salient musical
example is The Continuator by Pachet [11]. The system uses variable
length Markov Models and a tree of patterns to form a statistical model
of the user’s MIDI input gathered from a Disklavier player piano. The
system then generates a sequence that is melodically and rhythmically
related to the original input, playing this back on the player piano.
 In the deep learning domain, Bretan et al [12] have implemented
real-time call and response systems using techniques such as unit
selection and a Deep Structured Semantic Model [9]. The model is
able to generate related musical sequences in real-time with a pianist.
 GestureRNN on the other hand, operates in terms of predicting
gestures, not the next discrete note. The system is closer to gestural
systems that leverage controllers such as the Kaoss Pad [13], Microsoft
Kinect [14], Leap Motion [15] or IMU gloves [16]. In these
applications, parameters such as height or instantaneous coordinates
are used to modulate sound generating parameters [13-16]. However,
unlike these previous works, we present an interactive system in which
machine-generated and expressive gestural responses are created, in
real-time, by a recurrent neural network instead of Markov or
probabilistic models.
 GestureRNN was influenced by a generative system in the visual
arts: a system called SketchRNN developed by Ha et al [17]. An
encoder-decoder RNN was trained on thousands of human sketches
and is able to “draw” new sketches based on tags such as a “firetruck”
or “pig”. The system can “complete” a seed sketch from a user by
continuously regressing the change in 𝑥 and 𝑦 coordinates of the pen,
as well as determine whether the pen is in a “lifted” or “writing” state.
More impressively, SketchRNN can smoothly interpolate between
contrasting input tags, such as generating a series of intermediate
sketches between a “cow” and a “car” to produce a “cow-like car”.

2.2 Novelty
Analogous to learning the sketch movements as in Ha et al [17], we
treat a musical gesture across the Lightpad Block as the “series of
movements” to be learned.

 Given a configuration of Wekinator’s many-to-many mappings
between the Lightpad’s multi-polyphonic expression (MPE) output
and an Ableton Live synthesizer, an expert player is able to generate
many gestures that are idiomatic to the instrument. These include for
example, rapid circular movements between zones on the Lightpad or
straight lines that zigzag between different corners. It is precisely these
idiomatic and expressive movements that the GestureRNN tries to
learn and imitate. The “lower dimensional” generated gestures are then
sent through the same Wekinator mapping to Ableton Live to produce
the more complex and “higher dimensional” audio output.
 The RNN essentially learns to generate musical output through the
proxy of gesture. This approach enables the system to be run in real
time in a live and improvisatory setting, a feat not currently possible
with deep learning systems designed to render final output waveforms.
 Moreover, unlike other XY pad-like controllers, the Lightpad
features a programmable RGB LED panel below the sensor surface,
enabling us to create an immersive experience by visually rendering
GestureRNN’s output directly on the instrument in tandem with sound.
To our knowledge, this is the first implementation of a recurrent neural
network used to generate gestures on an XY pad instrument like the
Roli Lightpad. Moreover, the instrument’s deformable tactile surface,
full RGB LED matrix and our sound generation system all combine
into a cohesive experience across modalities, facilitating fluid
interactions between RNN-generated output and user gestures in a
real-time, live performance setting.

3. IMPLEMENTATION
3.1 System Overview
A simplified system diagram of our system is shown in figure 3. Given
the relatively young presence of deep learning tools, our
implementation section is purposefully detailed to share best practices
from machine learning literature with interested readers in the NIME
community.
 On a high level, the Lightpad Block sends (𝑥, 𝑦, 𝑝)		values to
Max/MSP via the blocks max object provided by Roli. When a user
plays a gesture on the Lightpad surface, Max/MSP forwards the triplet
of values via OSC to the Wekinator. The three-dimensional values are
interpolated into a 5 dimensional output from Wekinator. These
correspond to 5 macro knobs in Ableton Live, which control a
multitude of parameters in a synthesizer chain designed around the
DAW’s native Tension physical modelling synth. The final output
sound is generated from Ableton Live.
 At the same time, (𝑥, 𝑦, 𝑝)	triplets from the Lightpad are also
forwarded to a python server running a GestureRNN. The predicted
collection of values based off this seed gesture are sent back via OSC
to Max/MSP, and in turn forwarded through the same aforementioned
chain of Wekinator and Ableton Live to generate sound. Thus, it is
possible for both GestureRNN and user to both be sending coordinates
simultaneously.

Figure 2: sketches from the sketchRNN model

Figure 3: system diagram

133

Figure 7: GestureRNN network architecture

3.2 Roli Lightpad Block
The Lightpad Block is a small and portable multidimensional
polyphonic expression (MPE) instrument developed by Roli Inc.
Readers may be familiar with the company’s flagship product, the
Seaboard, which features a unique rubber-like keyboard with multi-
touch and support of five degrees of freedom per finger. The same
technology is employed in the Lightpad Block but in a smaller,
wireless and square form factor.

 The device is primarily designed as an input controller to Roli’s
proprietary Equator AU/VST synth and Noise iOS application. These
applications take full advantage of the Lightpad’s MPE output in
modulating sonic parameters. Roli also provide a well-supported
blocks object for Max/MSP that make all instantaneous MPE values
available to Max.
 The Lightpad’s RGB LED matrix enables the surface to be
reconfigured into a clip launcher, drum pad, XY pad and a step
sequencer. In this paper, we take advantage of the LED surface to
render visual feedback given a user’s input and render the behavior of
the RNN.

3.3 Wekinator + Ableton Live
We designed a synthesizer chain in Ableton Live revolving around the
DAW’s native Tension physical modelling synthesizer. Five macro
knobs are tied to synth parameters such as force and position as well
as effect parameters such as reverb mix and LFO rate etc. The
synthesizer chain is able to generate a wide range of timbres including
metallic sounds, melodic sweeps and low rumbles. The reader is
strongly encouraged to view the accompanying two-minute video [23]
 The use of Wekinator enabled us to take advantage of Lightpad’s
MPE output and use the instrument beyond a simple XY pad. When
the triplet of values from the Lightpad is sent into Wekinator, the
interpolated output values enabled smooth and continuous control of
the 5 macro knobs in Ableton Live, producing sounds rivalling in
expressiveness with Roli’s native Equator Synth.

 Wekinator is “trained” by providing examples of an input and output
state pair. For this application, we define four sonic states
corresponding to each corner of the Lightpad. The top left corner for
example, is a metallic shimmering sound while the bottom left has a
smoother bass-like timbre. Although only four states were formerly
defined in training, Wekinator uses neural networks to regress
intermediate output values between these states. Thus when a user
moves from a corner to the middle of the Lightpad, the changing input
triplets are smoothly mapped to an interpolated output values
representing varying mixtures of the four states. Wekinator excels at
this task and enabled quick synthesizer prototyping in this manner.

3.4 GestureRNN training
A Long Short Term Memory (LSTM) is a type of recurrent neural
network designed for time-based sequences. Unlike fully connected
neural networks, such as the ones emplyed in Wekinator, an RNN
receives two inputs: the input signal and the previous state of the RNN.
This enables an RNN to keep a memory of earlier occurences in a
sequence when making a prediction later in the sequence. A much
more detailed treatment of RNN’s and LSTM’s can be found in
existing machine learning literature [19]. The most important aspect of
an LSTM is the presence of memory gates that control how much a
previous state is used to influence the output of a current state. LSTM’s
have become foundational building blocks in language and time series
modelling, leading to recent breakthroughs in machine translation [20]
and predictive forecasting [21].
 The LSTM architecture for GestureRNN is shown in figure 7 below.
We used a simple two-layer LSTM with 64 and 32 hidden units
respectively. These are followed by two layers of fully connected
neurons (FC) of 16 and 3 units respectively. The last 3 units correspond
to the regressed triplet of (𝑥, 𝑦, 𝑝) predicted by the model.

 The model is trained on 3000 datapoints sampled at a rate of 33Hz
from an expert player of the Lightpad. We found this sampling rate to
be optimal for the model to learn and generate smooth values across
the Lightpad. We used a lookback length of 30 i.e. the LSTM sees
30 previous values (about 1 second) when making a prediction.
We found that shorter lookback lengths did not enable the system
to generalize and produce varied gestures. Thus the input to the
model is (3x30) matrix consisting of 30 time-steps of (𝑥, 𝑦, 𝑝)
triplets. The output is a single (3x1) vector prediction
corresponding to the next triplet (𝑥, 𝑦, 𝑝). This is a regression
task, meaning the network is trained to produce continuous
values for each of the outputs (𝑥, 𝑦, 𝑝). All input and output values
are normalized between 0.0 and 1.0.
 The network was trained for 100 epochs with a batchsize of 256,
achieving an RMSE error of 0.004 and being able to generate
sequences that mimicked the original training set. Figure 8 shows a
graph of (x,y,p) triplets from the model. The system is implemented in
Google’s open sourced tensorflow framework and keras library.

Figure 4: Roli Lightpad Block [20]

Figure 5: Mapping pipeline

Figure 6: Synth engine mapping on Lightpad surface

134

3.5 Real-time GestureRNN server
Although deep learning models take a long time to train, using the
model for prediction or “inference” is a computationally cheaper task.
Our model takes an average of 0.8 seconds to make a prediction on a
CPU of a 2012 Macbook Pro, enabling the system to be used in real-
time. The training process on CPU is approximately 20 minutes, but
can be dramatically sped up using a GPU (Graphics Processing Unit).
 As the user plays across the Lightpad, (𝑥, 𝑦, 𝑝) triplets are sent to
the python server via UDP and stored in a queue of values. Because
the model was trained with a lookback of 30, it needs at least 30
(𝑥, 𝑦, 𝑝) triplets or “frames” to make a prediction. When the server
queue exceeds 30 frames, the model begins predicting a sequence.
 We use a prediction length of 100 frames (4 seconds) i.e. the
LSTM predicts 100 steps into the future after the input seed. We
found that longer lengths caused the network to “even out”. Past
3 seconds, the outputs would simply rest at the same values. This
is largely because many of the original training gestures were
about 3 – 5 seconds in length.
 It is important to note the model does not directly output 100 frames.
To generate 100 consecutive frames, we first feed the original seed
window of 30 frames, which produces a single frame prediction. This
single frame value is saved in an output buffer and at the same time,
appended to the original seed window. The earliest value in the seed
window is removed to maintain the length of 30 (like a FIFO queue of
length 30). This new window is then passed into the LSTM to generate
a second new frame. This second new frame is saved to the output
buffer and then appended again to the seed window. This process of
sliding the input window by appending the last predicted triplet is
repeated iteratively until 100 frames are generated. It is standard

practice in machine learning literature to predict values using LSTM’s
in this manner [22]. Figure 9 shows this process diagrammatically.
 Lastly, the output queue, now at length 100, is sent in bulk to
Max/MSP, which steps through the predicted triplets at the original
sampling rate of 33Hz so the sequence plays with correct timing.

3.6 Interaction considerations
To facilitate a robust and predictable real-time experience, we
implement the following features:

• The user can activate GestureRNN by tapping three fingers
simultaneously on the Lightpad surface. The RNN can be
deactivated in the same manner

• When GestureRNN is activated, a progress bar is displayed
on the topmost area of the Lightpad to signify how many
frames have been captured. A full bar indicates the system
has acquired the 30 samples it needs to make a prediction.

• If a user continues playing past the 30 samples, the server
simply uses the most recent ones for prediction.

• The user can “interrupt” the GestureRNN mid-playback.
This enables gestures to be chained and interrupted
beyond a simple call-and-response paradigm with
GestureRNN. By coupling longer gestures and
strategically activating and deactivating GestureRNN, a
fluent player can create long-term phrases.

4. PRELIMINARY EVALUATION
GestureRNN was demoed during an interactive session as part of
an end-of-course demonstration. The authors acknowledge this
does not constitute a comprehensive nor robust formal
evaluation, which should be conducted in future work. This
evaluation should be considered preliminary. Nonetheless, given
the relatively small number of works leveraging RNN’s and
music hardware, the authors highlight how the observations
noted here still provide insightful feedback on how the next
iteration of GestureRNN can be improved as well as possible
design paradigms that should be adopted when designing
sequence generation models based on RNN’s with a live user.
 The interactive demonstration consisted of approximately 15
users; all were graduate students studying Music and nearly all
have some musical training. Each user had approximately 5 – 10
minutes to interact with the system individually. Feedback was
through the form of verbal interaction with no formal
questionnaire.

4.1 Strengths
 Many users opted for traditional call and response interactions,
but when told that they could “interrupt” the generated sequence,
began chaining together longer phrases. Longer term interactions
between user and GestureRNN lasted approximately two to three
minutes, indicating a degree of continuity in hand-off between
the two agents relative to the short demo time each user spent. A
full live performance would be better suited to evaluate the
system’s potential for phrase building in longer structures. A
user study is appropriate, and will be implemented for the next
iteration of GestureRNN with improvements based from this
pilot interaction.
 We note that many of the users exhibited some form of delight
when GestureRNN was activated and played its first gesture
across the surface. We noticed how users actively tried to
understand and predict where the generated gestures would go
next and carry on the gesture from there.
 Users discovered how playing on top of the generated
sequence resulted in synth timbres not possible with an
equivalent duet of two fingers. To this extent, the system is very
different from say, two musicians playing on the same guitar, or
two musicians on two separate guitars. This is because one

Figure 8: Continuous trajectories of (𝒙,𝒚, 𝒑) generated
from GestureRNN

Figure 9: Iterative prediction using GestureRNN

135

cannot physically place two fingers on top of the exact same
location on the instrument. However in this case, when a user
presses in the same location as the generated sequence on the
Lightpad, it is equivalent to two (𝑥, 𝑦, 𝑝) triplets being sent
simultaneously from the same location. The resulting synth
texture is modified with a rapid LFO-like effect.
 Many of the player remarked how they enjoyed the synthesizer
sound design and how movements across the Lightpad generated
surprisingly expressive sounds and changes in timbre. Many
were surprise the synth engine was not developed directly by the
manufacturer.

5.2 Weaknesses
The Lightpad surface is small (9cm x 9cm), limiting the

range of motion available to both the user and the RNN.
Moreover the pad nature of the Lightpad makes playing melodic
sequences difficult. The recently released Lightpad “M” model
fixes this problem by adding grooves on the surface of the
instrument [18].

Many users attempted to play short percussive taps on the
surface of the Lightpad. While the synth engine is designed to
support these gestures, GestureRNN cannot generate successive
taps in response to the user. This is perhaps the greatest pitfall of
our current system.

To some users, the progress bar on top of the device was
confusing. Some users kept playing continuously without ever
lifting their finger, expecting the generated gesture to begin
playing as they continued. In the current iteration of
GestureRNN, a prediction is only made once the user ends a
gesture i.e. lifts a finger. Approaches to account for other
gestures and interactions are discussed in section 6: Future
Work.

Some players wanted more unpredictability and did not
appreciate how the GestureRNN could be turned “on” and “off”.
A secondary system that decides when to activate and deactivate
may be an interesting avenue of research, but was beyond the
scope of this paper.

5. FUTURE WORK
Our first implementation of an RNN for real-time gesture generation
garnered positive feedback and excitement from a small group of pilot
test users. To address some the current version’s shortcomings in
preparation for a larger user base, we propose the following changes.
• Multiple Lightpads can be chained together to produce a larger

surface. Although it is possible to simply use a larger
touchscreen, the user would lose the carefully engineered tactile
properties of the Lightpad which nicely deform when pressed.
A larger surface would enable broader strokes, as well as
provide a larger area over which Wekinator can interpolate
between the four sonic states.

• To address taps and gestures that momentarily lift off from the
Lightpad surface, two important network architecture changes
can be made. Firstly, we can adopt a training scheme more
similar to sketchRNN in Ha et al [17]. Ha used a vector of 5
values (D𝑥,D𝑦, 𝑝+, 𝑝,, 𝑝-). Here, D𝑥 and D𝑦 refer to
changes in position between frames rather than absolute
coordinates. The first 𝑝+ represents whether the pen is
currently touching the paper. 𝑝, indicates whether the pen will
be lifted after the current point. 𝑝- indicates whether the
drawing has ended. Similarly, we can define a Lightpad gesture
to have a similar feature vector of finger position (D𝑥,D𝑦) and
finger states (𝑝+, 𝑝,, 𝑝-), with the addition of (D𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒).

• Secondly, we can use what is known as a Bidirectional
Sequence to Sequence Variational Autoencoder (VAE) [17].

Without going into too much detail, the network architecture
has increased capacity to predict not only 𝑥 and 𝑦 positions, but
the sequence of pen states that result in the final sketch. Like the
original sketchRNN, this would enable the model to produce
predictions of variable length, expanding the model’s gestural
vocabulary to shorter taps and longer arcs. The additional
constraint of a normal distribution during training forces the
network to output smooth transitions between predictions. This
would enable the model to interpolate between various gesture
trajectories and in theory, mix between its existing library and
newly collected gestures from the current player.

• Although the system currently has no concept of the final sound
output, this can be changed by extracting features such as
MFCC’s or a compressed STFT and feeding this into the model
as a set of features in addition to the regular triplet of values.
The size of the input feature vector needs to be kept at
minimum, but this would enable the model to make predictions
based not only on the instantaneous position and pressure, but
also the timbre content of the current sound. The authors note
how in reality, the feedback modality of timbre is an important
part of how a gesture is created and thus, may be advantageous
to model from a machine learning perspective.

• Lastly, we noted how the user was in charge of activating and
deactivating GestureRNN. A more interesting interaction is
allowing the system to decide when to come in. This can be
achieved by training the model on duets between an expert
player with the current system. By recording when the system
is turned on and off, the coordinates of the player and sequence
generated by the model, the system can learn to triangulate the
best moment to enter the musical conversation.

6. CONCLUSION
In this paper we present GestureRNN, a neural gesture system for the
Roli Lightpad Block. The system is modelled around the concept of
using machine learning to operate in lower dimensional spaces
associated with the creative process rather than the final high
dimensional artistic output. It consists of two main components,
GestureRNN and an accompanying synth engine. We trained an
LSTM network to generate a sequence of movements based on
collected data of an expert player. Our choice of network architecture
and implementation enables the system to be run in real-time, allowing
players to interact in a live improvisatory setting with GestureRNN.
The results are duets between a player and RNN at the gestural level,
giving rise to interesting and complex sonic output. In some cases, this
interaction achieves timbres not possible with the equivalent duet of
two physical players.
 To the author’s knowledge, this is the first implementation of an
LSTM with an XY pad-like instrument in this manner. We hope our
open-sourced code and detailed discussion of implementation in
section 4 will provide a point-of-entry for members of the community
interested in using deep learning in their works and creative process.
 Deep learning is a new and rapidly changing field. We hope to see
more applications that combine art and deep learning, collaborations
between machine learning and artistic communities, as well as
hardware implementations that embed these models into familiar
form-factors so players can interact with these systems on tactile,
physical hardware.

7. REFERENCES
[1] Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M.

(2017). CAN: Creative Adversarial Networks, Generating"
Art" by Learning About Styles and Deviating from Style
Norms. arXiv preprint arXiv:1706.07068.

[2] Jin, Y., Zhang, J., Li, M., Tian, Y., Zhu, H., & Fang, Z.
(2017). Towards the Automatic Anime Characters
Creation with Generative Adversarial Networks. arXiv
preprint arXiv:1708.05509.

136

[3] Ha, D. “Recurrent Net Dreams Up Fake Chinese Characters in
Vector Format with Tensorflow
http://blog.otoro.net/2015/12/28/recurrent-net-dreams-up-fake-
chinese-characters-in-vector-format-with-tensorflow/.
Published 28-12-2015. Accessed 12/6/2016

[4] Eck, D., & Schmidhuber, J. (2002). Finding temporal
structure in music: Blues improvisation with LSTM
recurrent networks. In Neural Networks for Signal
Processing, 2002. Proceedings of the 2002 12th IEEE
Workshop on (pp. 747-756). IEEE.

[5] Bretan, Mason, Gil Weinberg, and Larry Heck. "iterA Unit
Selection Methodology for Music Generation Using Deep
Neural Networks." arXiv preprint
arXiv:1612.03789 (2016).

[6] Engel, J., Resnick, C., Roberts, A., Dieleman, S., Eck, D.,
Simonyan, K., & Norouzi, M. (2017). Neural Audio
Synthesis of Musical Notes with WaveNet
Autoencoders. arXiv preprint arXiv:1704.01279.

[7] Fiebrink, R., Trueman, D., & Cook, P. R. (2009, June). A
Meta-Instrument for Interactive, On-the-Fly Machine
Learning. In NIME (pp. 280-285).

[8] Engel, Jesse, et al. "Neural audio synthesis of musical
notes with wavenet autoencoders." arXiv preprint
arXiv:1704.01279(2017).

[9] Bretan, P. M. (2017). Towards An Embodied Musical
Mind: Generative Algorithms for Robotic
Musicians (Doctoral dissertation, Georgia Institute of
Technology).

[10] Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016).
Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499.

[11] Pachet, Francois. "The continuator: Musical interaction
with style." Journal of New Music Research 32.3 (2003):
333-341.

[12] Bretan, M., Oore, S., Engel, J., Eck, D., & Heck, L.
(2017). Deep Music: Towards Musical Dialogue.
In AAAI (pp. 5081-5082).

[13] Kaoss Pad Quad. Product Website.
http://www.korg.com/us/products/dj/kaoss_pad_quad/
Accessed 2/1/2018.

[14] Yoo, M. J., Beak, J. W., & Lee, I. K. (2011). Creating
Musical Expression using Kinect. In NIME (pp. 324-325).

[15] Hantrakul, Lamtharn, and Konrad Kaczmarek.
"Implementations of the Leap Motion device in sound
synthesis and interactive live performance." Proceedings
of the 2014 International Workshop on Movement and
Computing. ACM, 2014.

[16] Voutsinas, J. (2017). The mi. mu Gloves: Finding Agency
in Electronic Music Performance through Ancillary
Gestural Semiotics.

[17] Ha, David, and Douglas Eck. "A Neural Representation of
Sketch Drawings." arXiv preprint
arXiv:1704.03477 (2017).

[18] Roli Lightpad Block. Product Page.
https://roli.com/products/blocks/lightpad-block . Accessed 10-
1-2018

[19] Gers, F. A., Schmidhuber, J., & Cummins, F. (1999).
Learning to forget: Continual prediction with LSTM.

[20] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., & Bengio, Y. (2014).
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078.

[21] Xingjian, S. H. I., Chen, Z., Wang, H., Yeung, D. Y.,
Wong, W. K., & Woo, W. C. (2015). Convolutional
LSTM network: A machine learning approach for
precipitation nowcasting. In Advances in neural
information processing systems (pp. 802-810).

[22] Zaytar, M. A., & El Amrani, C. E. (2016). Sequence to
sequence weather forecasting with long short term
memory recurrent neural networks. Int J Comput
Appl, 143(11).

[23] GestureRNN Demo Video link:
https://www.youtube.com/watch?v=VgoVGpllaSY

137

