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ABSTRACT
For the purpose of creating new musical instruments, chaotic
dynamical systems can be simulated in real time to syn-
thesize complex sounds. This work investigates a series of
discrete-time chaotic maps, which have the potential to gen-
erate intriguing sounds when they are adjusted to be on the
edge of chaos. With these chaotic maps as studied his-
torically, the edge of chaos tends to be razor-thin, which
can make it difficult to employ them for making new musi-
cal instruments. The authors therefore suggest connecting
chaotic maps with digital waveguides, which (1) make it
easier to synthesize harmonic tones and (2) make it harder
to fall off of the edge of chaos while playing a musical in-
strument. The authors argue therefore that this technique
widens the razor-thin edge of chaos into a musical highway.
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CCS Concepts
•Applied computing → Performing arts; Sound and
music computing; •Mathematics of computing →
Nonlinear equations;

1. INTRODUCTION
1.1 Background
Since the late 80s and early 90s, computer music researchers
have studied chaos [9]. Chaotic dynamical systems have
been explored in greater detail by di Scipio and Truax [14, 4,
5]. Essl reinvestigated this idea in the following framework
[7, 6]. For example, with a simple chaotic map, the next
sample vn is computed from the prior sample vn−1 by way
of a nonlinear function φ:

vn = φ(vn−1). (1)
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Figure 1: A sinusoidal oscillator traces out a series
of points that form a circle in (x, y)-space.

2. TWO-DIMENSIONAL MAPS
2.1 Introduction
With two-dimensional chaotic maps, the state vector vn can
be decomposed into xn and yn where vn = [xn yn]. One
nice thing about these maps is that the points

(x1, y1), (x2, y2), (x3, y3), ... (2)

can be plotted in phase space to observe the behavior.
The sinusoidal oscillator can serve as a nice introductory

example. It is not a chaotic map, but its state can be rep-
resented in (x, y)-space. As shown in Figure 1, the state
traces out a series of points that form a circle, with the
x-coordinate or the y-coordinate used alone to generate a
sinusoidal output.

2.2 Peter de Jong Chaotic Map
In contrast, chaotic maps trace out much more complex
series of points. Consider the Peter de Jong chaotic map as
specified by (3) and (4):

xn = sin(ayn−1)− cos(bxn−1) (3)

yn = sin(cxn−1)− cos(dyn−1). (4)

The series of points traced out by the Peter de Jong chaotic
map contain a lot of detailed structure and depend in detail
on the a, b, c, and d constants. One example shape for
a = 1.641, b = 1.902, c = 0.316, and d = 1.525 is shown in
Figure 2.1

1See http://paulbourke.net/fractals/peterdejong/
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Figure 2: The Peter de Jong chaotic map traces out
complicated shapes in (x, y)-space, with the exact
details depending on the particular values of a, b, c,
and d.

Figure 3: The Tinkerbell chaotic map can generate
a complex shape such as this one when its state
vector is plotted in (x, y)-space over time.

2.3 Tinkerbell Map
The Tinkerbell map can also be represented using two re-
cursive equations with four parameters a, b, c, and d as
follows:

xn = x2n−1 − y2n−1 + axn−1 + byn−1 (5)

yn = 2xn−1yn−1 + cxn−1 + dyn−1. (6)

The Tinkerbell map also generates a lot of structure. One
example series of points for a = −0.3, b = −0.6, c = 2.0,
and d = −0.27 [2] is shown in Figure 3.

2.4 Circle Map
The circle map is a one-dimensional map in which the state
variable θn represents the phase of an oscillator [7, 6]. For
this reason, each time the next state is calculated, it is taken
modulo 2π:

xn =
(
xn−1 + Ω− K

2π
sin(xn−1)

)
% 2π, (7)

and the output signal rn is calculated from the phase

rn = sin(xn). (8)

Therefore, the coefficient K adjusts the nonlinear quali-
ties. If K = 0, this term vanishes and then Ω directly con-
trols the linear advancement of the phase for a sinusoidal
oscillator with fundamental frequency ΩfS/(2π), where fS
is the sampling rate. Otherwise, if K 6= 0, then Ω still tends
to affect the pitch, but in a more complicated way. For in-
stance, if K ≈ 0, then the oscillator is tonal and has a bright

Figure 4: The Standard map can generate more
densely populated shapes when its state vector is
plotted as a series of points in (p, θ)-space.

sound. In contrast, if K is much larger, then the circle map
sounds noisy, as the phase advances in a seemingly random
(but still deterministic) way. For intermediate values of K,
the algorithm may get stuck at a certain phase angle.

Because the circle map only has one state variable, its
trajectories are not displayed for comparison in this paper.
More details can be found in papers by Essl [7, 6].

2.5 Standard Map
The standard map is another map that was investigated.
For a given parameter K, the standard map traverses a
wide range of points in phase space, but the structure is
oddly specific as shown in Figure 4. The chaotic map is
specified by the following equations [3]:

pn =
(
pn−1 +K sin(θn−1)

)
% 2π (9)

θn =
(
θn−1 + pn

)
% 2π. (10)

2.6 Summary
With such models, the sound tends to be most interesting
right on the edge of chaos, just as the parameters change
the dynamic behavior from being very predictable to being
hard for humans to predict intuitively. Through gradual
adjustment of the parameters describing the chaotic map
function, one can explore timbres that evolve in complex
ways. However, since the edge of chaos tends to be razor
thin, it can be challenging to avoid falling off of it when
making music.

It can also be hard to achieve tones that bear much re-
semblance to traditional musical tones. This is because low-
order models generally do not have enough degrees of free-
dom/memory to realize a series of resonance frequencies.

Rodet recognized this drawback in his suggestion that
chaotic models of acoustic musical instruments [8] would
involve a Chua-style nonlinearity [10] connected to a delay
line [11]. However, he did not describe a specific extension
for integrating a delay line with chaotic maps. This is the
concept explored by the present paper.

3. INTERFACING DIGITAL WAVEGUIDES
WITH CHAOTIC MAPS

With great ease, any chaotic map in the form of (1) can
be interfaced with a digital waveguide [13]. The composite
structure still has the potential to oscillate chaotically, and
it retains many of the same behaviors as with (1), yet it also
has the potential to readily make harmonic tones.

To interface a digital waveguide with a chaotic map, one
can simply make (1) refer to an earlier time step vn−L as
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Figure 5: Block diagram illustrating a chaotic map
interfaced with a digital waveguide as in (11).

Figure 6: An embedded acoustic instrument for
controlling the Peter De Jong chaotic map as ex-
tended with a digital waveguide.

follows:

vn = φ(vn−L). (11)

In other words, the chaotic map is applied through a delay
line instead through a single-sample delay.

Then, for certain configurations, (11) has the potential to
produce harmonic tones. Often the tones will tend to be
centered around fS/L (or subharmonics of this if the state
vector is multidimensional), as is the case with many related
digital waveguide structures [13].

Exploring timbre spaces with (11) is quite simple but does
require a concerted effort. One chooses a chaotic map,2

feeds its output into a delay line, and feeds the output of
the delay line back into the input of the chaotic map as
in Figure 5. Then, one finds a suitable way to adjust the
parameters of φ in order to control the timbre.

3.1 Peter de Jong Map
For example, the Peter De Jong chaotic map from Section
2.2 can be fed back into itself (actually through two parallel
delay lines instead of one) by way of four parameters a, b,
c, and d:

xn = sin(ayn−L)− cos(bxn−L) (12)

yn = sin(cxn−L)− cos(dyn−L). (13)

If a, b, c, and d are controlled in real time by four pres-
sure sensors, and if the delay line length L is adjustable
according to a knob, a musical instrument can be realized
such as shown in Figure 6. The sound of this instrument
is presented in the demo video provided with this paper:
https://goo.gl/ZevfrW In addition, another electroacous-
tic miniature made with this instrument entitled Romp in
Chaos is presented in audio and score formats at the fol-
lowing links: goo.gl/hGkt9F and goo.gl/1U5rge

3.2 Tinkerbell Map
The Tinkerbell map from Section 2.3 can also be connected
to two digital waveguides by way of four parameters a, b,
c, and d. This map is sensitive to parameter changes in
real-time, so a clipping nonlinearity can be introduced to
prevent instability. In addition, a unit variance noise signal
Nn can be scaled and added in to help prevent the system
from getting stuck in a fixed point at the origin:

xn = clip
(
− 1, 1, lowpass(x2n−L− y2n−L +axn−L + byn−L)

)
+0.000001Nn

2
https://en.wikipedia.org/wiki/List_of_chaotic_maps

Figure 7: An embedded acoustic instrument for
controlling a pair of coupled circle maps as extended
with a digital waveguide.

yn = clip
(
− 1, 1, lowpass(2xn−Lyn−L + cxn−L + dyn−L)

)
.

+0.000001Nn
Like the De Jong example, a, b, c, and d are controlled

by pressure sensors. A fifth pressure sensor is mapped to
the cutoff frequency of a lowpass filter in the feedback loop,
which provides additional timbral variation.

In this test implementation, a, b, c, and d parameters
start at non-zero values and are mapped inversely to pres-
sure sensor values. That is, increased pressure on the pres-
sure sensors move all parameters closer to zero. This yields
a different interaction paradigm, one in which the instru-
ment is self-actuating and judicious touch gestures are used
for damping purposes [1].

The sound of this instrument is presented in the demo
audio provided with this paper, and it can also be listened
to via the following link: https://goo.gl/ysQouw

3.3 Coupled Circle Maps
Because the basic circle map from Section 2.4 is relatively
simple, it was not investigated in detail. However, it was
interesting to couple two circle maps together, each with
a separately controlled delay line length L1/L2 and cross-
coupling parameters Kcrossx and Kcrossy:

xn =
(
xn−L+Ω− K

2π
sin(xn−L1)− Kcrossx

2π
sin(yn−L2)

)
%2π

yn =
(
yn−L+Ω− K

2π
sin(yn−L2)− Kcrossy

2π
sin(xn−L1)

)
%2π.

The output signals rn and sn were calculated from the phase
using rn = sin(xn) and sn = sin(yn).

For intermediately tuned values, Kcrossx caused the os-
cillator xn to start to lock onto the oscillator yn, and vice
versa for Kcrossy. An electro-acoustic miniature entitled A
Sound Walk Through Chaos Forest was composed for two
coupled circle maps. It was performed using the embedded
instrument shown in Figure 7. The audio and score are
available here: goo.gl/DQkHZR and goo.gl/txKPPF

3.4 “Double Standard” Map
Relative to the other chaotic maps selected, it seemed to be
more challenging to use the Standard map from Section 2.5
musically. It tended to have a noisy character, as suggested
by the fact that Figure 4 appears to be “more random,” in
the sense that its points more densely populate the phase
plane (see Figure 4) than for the other chaotic maps de-
scribed in this paper. Therefore, in order to try to use the
Standard map musically, the authors decided to pull out all
of the stops. Besides using two Standard maps, each aug-
mented with a waveguide, the p-variables of these Standard
maps were coupled together using a waveguide junction pa-
rameter Kmix:

p1,n =
(
p1,n−Lp1 +K1 sin(θ1,n−Lθ1)

−Kmix(p1,n−Lp1 + p2,n−Lp2)
)

% 2π,

p2,n =
(
p2,n−Lp2 +K2 sin(θ2,n−Lθ2)

−Kmix(p1,n−Lp1 + p2,n−Lp2)
)

%2π,

θ1,n =
(
θ1,n−Lθ1 +p1,n

)
%2π, θ2,n =

(
θ2,n−Lθ2 +p2,n

)
%2π.
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Initial tests showed that adjusting the K1 and K2 pa-
rameters higher than 0.1 radians began to cause the result-
ing timbre to start to gradually start to sound somewhat
noisy. Pushing the K1 or K2 parameter into the range of
whole-numbers generated more and more significant noise.
Chordal drones could be produced through creative adjust-
ment of the delay line lengths Lp1, Lp2, Lθ1, and Lθ2. For
example, setting Lp1 and Lθ1 at a difference of three to
five milliseconds from each other could produce a gradu-
ally evolving beating effect. Integer multiples of a time
value set across waveguide delay lengths produced octave
drones, while non-integer multiples produced more inhar-
monic pitched results.

An alternate approach could be taken to use long delay
lengths to create rhythmic pulsing patterns—for example,
this could be achieved by setting K1 and K2 to the range
between 0.01 and 0.05 and making any of the delay lines
longer than 100 milliseconds. Generally speaking, the Kmix

parameter was especially fruitful. It could be set to zero
to allow the two Standard maps to evolve separately, or it
could be increased away from zero to cause their sounds
to intermix with each other, which was how the “Double
Standard” name for this algorithm was selected.

4. PRACTICAL CONSIDERATIONS
4.1 Avoiding Instability
For some chaotic maps, configurations may be discovered
that can asymptotically go unstable. One way to prevent
this is if φ is bounded [12]. For example, the output of (12)
and (13) can never be greater than 2 nor less than -2. This
is because the outputs of sin and cos are bounded between
-1 and 1. Accordingly, xn or yn for the de Jong chaotic map
are prevented from growing without bound and becoming
too loud to listen to. Therefore, it is recommend that, when
selecting a function for φ, one strongly considers choosing
φ that are bounded to avoid instability.

In some cases, one might insert a clipping function (or
other limiting nonlinearity) into the feedback loop some-
where to help prevent the energy from spiraling out of con-
trol. This worked well with the Tinkerbell map described
in Section 3.2.

4.2 Potential of Getting Stuck
In this work, it was noticed only in the case of the Tinkerbell
map that the algorithm had the potential to get stuck at a
fixed point. This was observed to happen when all param-
eters were briefly set to zero simultaneously. Therefore, in
Section 3.2 above, a small amount of noise was added in the
recursion to help prevent the Tinkerbell map from getting
stuck at the origin. As more and more chaotic maps are
explored, this the issue of getting stuck will likely resurface;
however, it appears to not be quite as widespread as the
authors originally believed.

5. CONCLUSIONS
The authors argue that (11) is taking the razor-thin edge
of chaos and transforming it into a musical highway. More
experiments are forthcoming, but the results so far suggest
that a wild world of complex dynamical behaviors are wait-
ing to be discovered and used for music composition. The
following points have already been demonstrated:

• By using music controllers to adjust the algorithm pa-
rameters in real-time, intriguing musical instruments
can be created.

• Through the introduction of the digital waveguides
in (11), it becomes easier to generate harmonic tones

using a chaotic sound synthesis technique.

• By gradually adjusting model parameters to interpo-
late between the periodic and noisy/chaotic regimes,
the edge of chaos can be explored more broadly.

Future theoretical work will describe in more detail how
a chaotic map as in (11) can be interpreted as a digital
waveguide termination, particularly if the wave impedance
of the digital waveguide is specified [13]. Future work will
also address the stability properties of (11) in more detail.

As one reviewer noted, it could also be interesting to
someday consider using chaotic dynamical systems not to
construct oscillators themselves as in this paper, but rather
to control the amplitude envelope, pitch or other parameters
of various unit generators. This could be another fruitful
area for future investigation.
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