
Spinner: A Simple Approach to Reconfigurable User
Interfaces

Shigeru Kobayashi
International Academy of Media Arts and

Sciences
3-95, Ryoke-cho, Ogaki City

Gifu, Japan 503-0014

mayfair@iamas.ac.jp

Masayuki Akamatsu
International Academy of Media Arts and

Sciences
3-95, Ryoke-cho, Ogaki City

Gifu, Japan 503-0014

aka@iamas.ac.jp

ABSTRACT
This paper reports our recent development on a reconfig-
urable user interface. We created a system that consists
of a dial type controller ‘Spinner’, and the GUI (Graphical
User Interface) objects for the Max/MSP environment[1].
One physical controller corresponds to one GUI controller
on a PC’s display device, and a user can freely change the
connection on the fly (i.e. associate the physical controller
to another GUI controller). Since the user interface on the
PC side is running on the Max/MSP environment that has
high flexibility, a user can freely reconfigure the layout of
GUI controllers. A single ‘Spinner’ control device consists
of a rotary encoder with a push button to count rotations
and a photo IC to detect specific patterns from the GUI
objects to identify. Since ‘Spinner’ features a simple iden-
tification method, it is capable of being used with normal
display devices like LCD (Liquid Crystal Display) or a CRT
(Cathode Ray Tube) and so on. A user can access multiple
‘Spinner’ devices simultaneously. By using this system, a
user can build a reconfigurable user interface.

Keywords
Reconfigurable, Sensors, Computer Music

1. INTRODUCTION
How to access many parameters (e.g. various parameters

of a digital keyboard synthesizer or software synthesizer) by
limited number of physical controllers (e.g. knobs, sliders,
switches and so on) has been a long-term issue for digital mu-
sical instruments. Typically, making controllers assignable
is a solution. For examples, many MIDI controllers equip
assignable physical controllers on their surface, and users
can configure their settings of connections from a physi-
cal controller to a parameter (or multiple parameters)[2][3].
This seems to be a popular approach to associate physical
controllers to a lot of GUI controllers or parameters. How-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME05, Vancouver, BC, Canada
Copyright 2005 Copyright remains with the author(s).

ever, there is a drawback with this kind of approach: It is
hard to remember a connection between a controller and a
parameter.

To solve this issue, some solutions have been provided:

• Put a template sheet for each controller to remember
what parameter is assigned to the controller (e.g. mi-
croKONTROL from KORG[4]).

• Equip a small LCD for each controller to show what
parameter is assigned to the controller (e.g. Nord
Modular G2 from Clavia DMI[5]).

These kinds of approach are rather effective, but still have
drawbacks: Since the layout of physical controllers is fixed,
a user still needs to do a conversion from a position of the
physical controller in a physical space to the position of a
virtual controller in a virtual space. This conversion might
be improved with practice, but still it requires long time to
do it automatically.

One possible solution to this issue is making a user in-
terface reconfigurable. For example, LEMUR from JazzMu-
tant makes a suggestion[6]. LEMUR features a touch-panel
(with multi-touch capabilities) based controller, so a user
can configure the desired layout of GUI objects and access
them via the touch-panel. This is a good example of the
possibilities of reconfigurable user interfaces. But there are
still drawbacks with a LEMUR type of approach:

• Requires a dedicated display device with multi-touch
capabilities, so choice is limited.

• No appropriate tactile feedback that corresponds to
type of controllers (e.g. knobs, sliders, switches and so
on) are provided.

As we discussed, every physical controller has some sort
of drawback in terms of binding a physical controller to a
parameter of synthesis, so we tried an approach to create a
reconfigurable user interface by a simple method. We call
the first dial type of prototype ‘Spinner’.

As a dial (or knob) type of interface, Audiopad[7] is a
well known work. Spinner takes a different approach from
Audiopad. In Audiopad, a dial (puck) is much more than
a physical dial (for instance, it is used to select a sample to
play, set value of a parameter and so on). In Spinner, a dial
is just a simple physical dial. We intended to keep the dial
as simple as possible.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

208



2. BASIC CONSTRUCTION PRINCIPLES
The basic idea of ‘Spinner’ is as follows:

• One dial for one parameter (a physical dial corresponds
to a GUI dial on the PC’s screen).

• Virtually, a user can access many dials simultaneously.

• Assigning a dial to a parameter is simply done by push-
ing the knob of the dial.

• No special display device is needed and works with
usual display devices like LCD, CRT, PDP (Plasma
Display Panel) and so on.

Figure 1 shows a basic usage of ‘Spinner’. One dial is
connected to the interface device, and then the interface
device is connected to the PC. A user can access a parameter
on the PC’s screen by rotating the dial. If the person wants
to access another parameter, he can just lift the dial off
from the display device, then put it on another GUI object
(virtual dial) and push the knob to start an identification
process. In the identification process, a special pattern for
identification is displayed on the display device, and the dial
device detects where it is located.

Dial I/F

PC

Dial

Figure 1: One dial is associated with the GUI dial
that is where the physical dial is located on.

Figure 2 shows the typical transaction between a PC side
and a dial interface side. At first, the dial interface sends a
request to start identification, then the PC side starts the
identification process. During the identification period, the
PC side sends the current index number to the dial interface
side just before showing the identification pattern. When all
indexes have been iterated, the PC side and the device side
both exit the identification period. Once the identification
period finished, the interface device sends commands with
the new ID.

3. IMPLEMENTATION AND RESULTS

3.1 Materials
The ‘Spinner’ system consists of the following components

(only main components are listed):

PC Interface Device

Recognition Request

Notification of Start

Notification for 1st

Notification of Finish

try to detect
Presentation for 1st

Notification for Nth

try to detect
Presentation for Nth

Figure 2: Typical transaction between a PC side and
an interface device side.

• PC side

– Dial manager object (spinner.dial manager.js)

– GUI dial object (spinner.dial.js)

• Dial interface device side

– Interface board

∗ dsPIC30F4011 (Microchip)

– Dial

∗ Rotary encoder EC11E1834404 (ALPS Elec-
tric)

∗ Photo IC S7184 (Hamamatsu Photonics)

Figure 3 shows actual basic blocks of the first prototype.
The interface board is connected to PC via the USB connec-
tion. The dial devices are connected to the interface board
via the special cable.

3.1.1 PC side implementation
PC side components are programmed on Max/MSP en-

vironment. Both dial manager and GUI dial object are
written in Javascript. An instance of dial manager (‘spin-
ner.dial manager’) handles all messages from/to interface
board via ‘serial’ object. Instances of GUI dial object (‘spin-
ner.dial’) act as GUI version of dial. Figure 4 shows an
example screenshot.

3.1.2 Dial side implementation
Figure 5 shows components of a dial device. The rotary

encoder is a popular rotational sensor which turns continu-
ously, and outputs a sequence of digital pulses[8]. All signals
from rotary encoders are processed by a dsPIC[9] on the in-
terface board. dsPIC is a microcontroller from Microchip,
which combines a 16-bit microcontroller (MCU) with a dig-
ital signal processor (DSP). In the first prototype, we use
only the MCU part of the dsPIC, but we have a plan to use
the DSP part to improve accuracy of identification.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

209



D2D1

USB

Figure 3: An example of setup. Two dial devices are
connected to the interface board, and the interface
board is connected to the PC via USB. Since the
interface board is USB bus-powered, the setup will
be simple.

Figure 4: Four ‘spinner.dial’ objects are connected
to a ‘spinner.dial manager’ object. Since ‘spin-
ner.dial’ object is configurable (color, shape, size
and so on), a user can easily make variations. A
user can make deeper changes by modifying the
Javascript code.

Knob

Rotary Encoder

Photo IC

Connector

Rubber

Registers and Capacitors

Figure 5: Side view of a dial device. The dial has
a push button, and a photo IC is mounted on the
bottom face.

As shown in figure 5, a photo IC is mounted on the bottom
face of a dial to detect what color is presented on a display
where the dial is located on.

3.2 Identification
In the first prototype, the method of identification is very

simple. Figure 6 shows the timing chart of the identification
process.

In each period, a message showing a current index is sent,
and a pair of identification patterns are presented. The mes-
sages are sent from the PC side to the dial I/F side via USB.
The identification patterns consist of black or white.

Index messages are sent to the physical dial and the cor-
responding dial is painted black. Other dials are painted
white. If the physical dial detects thet the GUI dial be-
neath it is black, it looks at the last index message sent to
know with which GUI dial it is associated.

For example, a message that indicates “current dial should
be 2” is sent and a physical dial detects ”black”, this means
that the physical dial is located on the second GUI dial
object, so the dial will be associated with the second GUI
dial.

Start Dial 1 Dial 2 Dial 3

Message

GUI Dial 1

GUI Dial 2

GUI Dial 3

GUI Dial N

Dial N Finish

Figure 6: The timing chart of an identification pro-
cess.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

210



Figure 7: A user put the dial on the screen. The
associated GUI dial is enlarged to let a user see the
current value around the physical dial.

3.3 Results
Figure 7 shows an example of how the first prototype is

used. The user puts the dial on the screen. He can change
the value of the associated GUI dial by rotating the knob
of the physical dial. He can freely change the connection
simply through ‘move and push’ action. the associated GUI
dial is enlarged to let the user see the current value. We
found that it is easy to use. In regard to this point, we saw
many performance possibilities. However this version has
several drawbacks.

We have tested the first prototype with several LCD pan-
els. Recently, most new LCD panel products tend to be
thinner, and as a result, the surface of many LCD panels
are weak and it is a little difficult to use ‘Spinner’ with such
kind of LCD panels. For such kind of LCD panels, we had
to put a thin protection panel that is made of transparent
acrylic on it.

For the identification process, we had to adjust the thresh-
old level manually before using our dial, since the proper
white and black threshold level varies for each LCD display.
After adjustment, the identification process worked as ex-
pected.

For identification time, 75ms is required per one GUI dial,
For example, if a user instantiate 4 ‘spinner.dial’ objects,
about 300ms is required for the identification process. This
might be not so big a problem if a user accesses few pa-
rameters and does not change locations of physical dials fre-
quently. However, we should find a solution for this issue.

One possible solution is replacing the PC side with ded-

icated front-end application instead of Max/MSP environ-
ment. Since the PC side is implemented in Max/MSP us-
ing Javascript, the accuracy of timing for presenting iden-
tification patterns (white or black) is not so good. If we
replace this part with a dedicated application written in
OpenGL[10], we will be able to present identification pat-
terns at higher rate. In addition, if we employ a more so-
phisticated blinking pattern, the identification time will be
shorter. Our goal is under the typical reaction time[11].

4. CONCLUSIONS AND FUTURE WORK
We developed the first version of ‘Spinner’. It is satisfac-

torily usable and we can feel many possibilities. However,
this version has limitations. In the next stage, we would like
to improve ‘Spinner’ as follows:

• Wireless connection via WirelessUSB[13], Bluetooth[14],
ZigBee[15], etc.

• Faster and more accurate identification with automatic
calibration.

• More sophisticated design of physical dial.

• More sophisticated error handling.

• Other types of controllers (e.g. switch, slider).

5. ACKNOWLEDGMENTS
This research was a part of the ‘dspbox’ project[12]. The

‘dspbox’ project was a yearly research project by Masayuki
Akamatsu of IAMAS. Many thanks to Katsuhiko Harada
and Kazuki Saita (students, Institute of Advanced Media
Arts and Sciences) for creating prototypes of ‘Spinner’.

6. REFERENCES
[1] Cycling ’74. Max/MSP. http://www.cycling74.com/,

2005.

[2] EDIROL. http://www.edirol.com/, 2005.

[3] M-AUDIO. http://www.midiman.net/, 2005.

[4] KORG. microKOTNROL. http://www.korg.com/,
January 2004.

[5] Clavia DMI. Nord Modular G2.
http://www.clavia.se/G2/, March 2003.

[6] JazzMutant. LEMUR. http://www.jazzmutant.com/,
January 2005.

[7] Audiopad: A Tag-based Interface for Musical
Performance James Patten, Ben Recht, and Hiroshi
Ishii. in Proceedings of New Interfacefor Musical
Expression (NIME02), May 2002.

[8] B. Bongers. Physical Interfaces in the Electronic Arts.
Trends in Gestural Control of Music. IRCAM,
January 2000.

[9] Microchip. dsPIC. http://www.microchip.com/.

[10] OpenGl.org. http://www.opengl.org/, 2005.

[11] J. Raskin. The Humane Interface. Addison-Wesley,
March 2000.

[12] dspbox project.
http://www.iamas.ac.jp/project/dspbox/, 2005.

[13] Cypress. WirelessUSB. http://www.cypress.com/,
2005.

[14] Bluetooth. http://www.bluetooth.org/, 2005.

[15] Zigbee Alliance. http://www.zigbee.org/, 2005.

Proceedings of the 2005 International Conference on New Interfaces for Musical Expression (NIME05), Vancouver, BC, Canada

211


