
Using MIDI to Modify Video Game Content
Jukka Holm

Nokia Research Center
Visiokatu 1

33720 Tampere, Finland

jukka.a.holm@nokia.com

Juha Arrasvuori
Nokia Research Center

Visiokatu 1
33720 Tampere, Finland

juha.arrasvuori@nokia.com

Kai Havukainen
Nokia Technology Platforms

Visiokatu 1
33720 Tampere, Finland

kai.havukainen@nokia.com

ABSTRACT
This paper discusses the concept of using background music to

control video game parameters and thus actions on the screen.

Each song selected by the player makes the game look different

and behave variedly. The concept is explored by modifying an

existing video game and playtesting it with different kinds of

MIDI music. Several examples of mapping MIDI parameters to

game events are presented. As mobile phones’ MIDI players do

not usually have a dedicated callback API, a real-time MIDI

analysis software for Symbian OS was implemented. Future

developments including real-time group performance as a way

to control game content are also considered.

Keywords

Games, MIDI, music, rhythm games, background music

reactive games, musically controlled games, MIDI-controlled

games, Virtual Sequencer.

1. INTRODUCTION
Music has an important role in contemporary video games. It

can help to make a right kind of atmosphere for gaming, and

emphasize actions on the screen. It is common that the

background music is adaptive i.e. it changes according to game

events, between different parts of the game, and is synchronized

to the game actions. As an example, when an avatar is moving

in a safe area the music may be slow and relaxing, but during an

enemy attack it becomes faster and more aggressive.

The development of an adaptive music soundtrack and sound

effects for a modern video game is an expensive and time-

consuming process. Due to this, many games just loop the same

relatively short music files over and over. Some developers

have started using songs from popular artists as background

music in their games. Repetition has also its cost: The gamer

may become bored with the non-adaptive soundtrack and turn it

off after a while. The study by Cassidy et al. [19] suggests that

the best player experience emerges when a player can choose a

game’s background music to something that he or she prefers.

The scope of that study was limited to driving games.

Since 1990’s, we have also seen the rise of musically oriented

games. As Blaine points out in [14], the majority of these are so

called “rhythm games” that prompt a single player or a group of

players to perform rhythmic actions in time with a

predetermined musical sequence. The game genre has also led

to the development of new low-cost interfaces such as drum,

guitar, and dancemat controllers that make the games more

enjoyable to play. Many rhythm games suffer from the same

problem as non-adaptive game soundtracks: As the number of

music files is limited, the games may have quite short lifecycles.

To improve the situation (and earn more money), some

developers have started offering game upgrades such as

catalogues of popular songs.

This paper describes a novel way to use music in games.

Instead of adaptive background music that reacts to the game

events, the authors propose the concept of games that react to

their background music. Throughout this paper, this kind of

games are referred to as “background music reactive games.” In

[17] and [18], the authors have also used the term “musically

controlled games.” The idea works both in the case of rhythm

games and non-adaptive background music soundtracks.

The contents of this paper are as follows: Chapter 2 discusses

some relevant previous work, Chapter 3 presents an overview

of the idea, and Chapter 4 justifies using MIDI to control game

content. Chapter 5 lists some interesting MIDI parameters and

ways to use them to modify games. Chapters 6 and 7 discuss

authors’ test platform “AudioAsteroids” and MIDI analysis

software for Symbian mobile phones. Finally, Chapter 8 draws

some conclusions and Chapter 9 suggests some topics for future

work.

2. PREVIOUS WORK
When thinking about “music games”, most people are probably

referring to “rhythm games.” In PlayStation game “Parappa the

Rapper” (NanaOn-Sha 1997) [9] and other similar rhythm

games, the player has to trigger musical events by pressing

specific buttons to the beat of the music. In “Gitaroo Man” [3]

for PlayStation 2, the player must also follow the pitch of lead

instrument with the joystick. In “Mad Maestro” [7] for

PlayStation 2, the “appropriate” tempo of each song determines

the speed with which the player must press the buttons. In all of

these games, the sets of songs are fixed and the programmers

have had to define the occurrence of each sequence in every

song. In other words, the generation of game levels from pieces

of music is not automatic.

In [14], Blaine discusses alternative game controllers that have

been used with music games. These controllers border double-

function as musical controllers. Experimental hybrids between

games and new types of multi-user musical controllers,

including Jam-O-Drum, Jam-O-Whirl, and Jam-O-World, have

been discussed in [16].

One example of a video game in which music becomes the

result of players’ actions, that in themselves are unrelated to the

theme of making music, is Shockwave game “BLiX” [10].

“Rez” (Sonicteam 2001) [11] for PlayStation 2 is a third-person

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

NIME 06, June 4-8, 2006, Paris, France.

Copyright remains with the author(s).

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

65

shoot ’em up game with drum samples instead of conventional

weapon sounds. When the player shoots, the triggering of

samples is quantized so that they always match the background

music rhythmically. It could be said that in games such as BLiX

and Rez, player’s actions on top of the background music

produce a certain soundtrack along each play session. However,

these games cannot be played with background music of

player’s own choice.

A couple of games that respond to the pitch of player’s

whistling, singing, or humming have been implemented. In

many cases, the pitch is rounded to the nearest semitone.

Hämäläinen et.al. [4] discuss games controlled by singing. One

of their examples is a pitch-controlled Pong. The authors also

discuss the technical and psychoacoustic issues of pitch

detection. In karaoke game “Staraoke” (Intervisio 2003) for

Windows 98/XP, the pitch of background song’s melody forms

a path. The player must guide his or her character through the

path by singing the melody correctly. Pitch is represented on

the vertical axis and time on the horizontal axis. [2]

Of all music games on the market, the one that most closely

resembles ideas presented in this paper is Playstation game

“Vib-Ribbon” (NanaOn-Sha 1999) [8]. At the time of its

release, Vib-Ribbon was welcomed as a refreshingly new kind

of game. It is best described as an obstacle track game, in which

the background music (any song from any audio CD) affects the

appearance of obstacles, the points in time when these obstacles

appear, and the spawning of certain additional objects. Player’s

character seems to walk along the stylized waveform. One issue

with Vib-Ribbon is that the correspondences between

characteristics of music and obstacle track are not that obvious

for casual players. The obstacle track just appears different with

different pieces of music.

In addition to audio-control, a small number of games that use

MIDI controllers for input have been developed. David

Bagno’s “Musical Space Invaders” and "Music Scale Teacher"

[6] for Windows 98/XP and Macintosh are note teaching games

played with a MIDI keyboard. “Musical Invaders” [5] for

Windows 98/XP is a music learning game that responds to real-

time MIDI input. The goal is to play the notes as they appear on

the screen. By doing this, the player performs a melody at the

same time. Players can also load their own MIDI files and play

them as game levels.

3. OVERVIEW
Starting a “background music reactive game” differs somewhat

from traditional games. In the beginning, the player must first

select a music file or collection of files to be used in the game.

The music is analyzed for relevant musical parameters (see

Chapter 5) either in real time, in larger buffers, or the whole

song can be processed before the game starts. The resulting

control data is then sent to the actual game engine, which maps

it to selected game parameters. After this, the player starts the

game and tries to play through as many files as possible.

Depending on the game type and implementation, each file may

be considered as one unique game level.

When music is analyzed to produce control parameters for the

game, novel ideas can be found. Even a very trivial game can be

made interesting if the player can affect the difficulty level by

changing the background music to his or her favorite tune. A

player may end up saying things like: “I passed the game with

Queen’s Show Must Go On, but Steep’s Rise is far too difficult

for me!” In the case of mobile phones, even ringing tones could

be used to control game parameters.

Figure 1. Starting a background music reactive game.

The concept also offers many imaginative possibilities for the

game designers. As an example, consider a submarine combat

game. It is possible to use music to control the behavior of the

enemy so that it can shoot only when a certain note in the

background song is played. Also elements not essential to the

gameplay can be controlled by the music, for instance, the

underwater plants may sway in the rhythm of the background

song. In conventional game implementations, these actions

would be controlled by a random generator or artificial

intelligence (AI). Through music-control, the actions do not

appear random.

Examples of musically controllable game elements and

characteristics include e.g.:

• Speed and difficulty level of the game;

• Location of game objects (enemies, ammo, guns,

bonus objects, buildings, etc.);

• Number, size, type, color, and shape of objects;

• Time and frequency of appearance of new objects;

• Movement (e.g. speed, direction, rhythm, starting

point, trajectory) of objects;

• Properties of avatars (e.g. skills and endurance);

• Context of gameworld (e.g. location of game events,

time of day); and

• Camera angle.

4. BENEFITS OF MIDI
With the current technology, MIDI has certain advantages over

other file formats such as Wave and MP3. As MIDI is a

symbolic format, it is more precise to use to control game

content than digital audio. Certain MIDI parameters such as

Note On messages can be directly used as game control

parameters, while more control parameters can be found by

making some simple calculations based on MIDI events for

instance on a specific channel.

The file size of MIDI is considerably smaller than that of digital

audio. Because of this, a larger amount of files can be stored to

e.g. a portable device and new files can be rapidly downloaded

over the air. Due to the recent increase in storage space and

computational power, there are no longer strict limits to the size

of wavetable soundbanks and sophisticated synthesis methods

such as physical modeling can also be used to generate the

sounds.

MIDI has also some important benefits if compared to other

symbolic audio formats such as Open Sound Control [1]. The

format is widely spread so there are lots of software and

hardware tools available. People can easily download new

songs from the Internet, and in the case of mobile phones even

ringing tones can be used to create new game levels.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

66

5. MAPPING MIDI EVENTS TO GAME
PARAMETERS
Mappings between musical control parameters and game

parameters are most effective when players immediately

understand the relationship between what they hear and what

they see. If a player knows a certain piece of music well and

understands the mapping used in the game, he can anticipate

some of the actions that will occur in the game.

In order to support a large number of players having different

musical tastes, the mapping should not be tailored to a single

genre. There are undoubtedly interesting differences between

musical styles, but in most cases the game designer should aim

at a generic mapping that works nicely in the case of any genre.

It is beneficial if distinct musical genres produce distinct game

experiences, but this should not be done at the cost of the

general playing experience.

While most MIDI parameters affect how the music sounds like,

some may not be noticed by inexperienced listeners. Parameters

that are understood by most players should usually be

connected to major foreground events in the game, while the

not as obvious ones can be used to control less important things

like background graphics and so on.

For the purposes of background music reactive games, MIDI

parameters and control data calculated based on them can be

divided into three principal groups: “Event”, “state”, and

“transition”. In the following, we describe these groups in more

detail (but not exhaustively) and make suggestions on how

useful they would be to control a game.

5.1 Event Parameters
“Event” parameters are musical features that occur occasionally

and last for a brief time. They are appropriate for e.g. triggering

new objects or causing some abrupt actions in the game. Most

useful musical features belong to this parameter group.

According to our experiences, the most useful MIDI message

type belonging to this category is Note On. All Note On events

in the song or only certain pitches could be mapped to e.g.

spawn new game objects to the screen. Another interesting

possibility would be to map higher notes to spawn objects to

the top of the screen, and lower notes to the bottom of the

screen. Note On velocities, which typically have values above

50, can also be used to modify the game.

An average listener seems to notice quite well when a certain

percussive sound (such as bass drum or crash cymbal) has an

effect on the game. In the case of polyphonic music, mappings

between harmonic notes (especially those on accompanying

tracks) and game events seem to be more difficult to notice.

In general, MIDI channels that have a low number are more

widely used than channels having a high number. Channel 10 is

an exception, as almost all MIDI files include at least one drum

or percussion track. If only a subset of MIDI channels is

mapped to the game parameters, drums are a good alternative as

an average listener can easily separate them from the mix.

Another interesting musical feature, although not directly a

MIDI event, is polyphony. As high-polyphony music often

sounds more massive and intensive than low-polyphony,

exceeding a certain polyphony threshold could be mapped to

e.g. game’s difficulty level, amount of enemies, and so on.

By mapping Program Change messages to game parameters, it

is possible to modify the game according to instruments used in

the song. Traditional instruments such as piano are really

popular, while e.g. different sound effects sounds are quite

rarely used. Almost all songs include at least one drum or

percussion track, and the basic drum set (bass drum, snare

drum, hihat, etc.) is usually used.

Pitch Bend MIDI event is typically used in the case of stringed

instruments and lead sounds, and its effect on the music is quite

clear. The event can be used e.g. to control the vertical position

of objects on the screen.

System Exclusive and NRPN messages are quite laborious to

create. If they occur in a song, the composer has most probably

used them to modify some parameter of some specific

synthesizer. If another synthesizer is used to play the song, it is

very likely that the listener will not hear the effect at all. These

messages are really rare, and therefore can be used to create

random –like surprise elements to the game.

There are 127 different MIDI Control Change messages, most

of which are rarely used in songs. Popular messages include

Channel Volume (#7), Pan (#10), Modulation Wheel (#1), and

Damper pedal i.e. sustain (#64). Their effect on the music is

quite evident, while some other CC messages may be such that

an average listener does not notice if they have been used or

not. Rare CC messages should be mapped to create random –

like behaviour to the game or neglected.

5.2 State Parameters
“State” parameters are musical features that stay more or less

the same for a longer time. This kind of features are suitable for

controlling longer-term game properties such as speed of game

and average number of enemies.

According to authors’ experiences, the most important and

easily noticeable mapping seems to be connecting song’s tempo

to control the overall speed of the game. Other interesting

alternatives include e.g. controlling a single moving game

object and modifying the difficulty level according to tempo.

All MIDI files include a tempo meta-event, and it usually

remains constant throughout the song. The tempo of most

pieces of music lies between 60 and 140 BPM (beats per

minute). Values outside this range can be used to create e.g.

some kind of surprises and extreme speeds.

Key and time signature meta-events are much less common than

tempo. If the time signature does not exist, a default signature

of 4/4 is used. Most songs are in 4/4, so other divisions can be

used to create surprises to the game. Key signature information

(e.g. C major or F minor) could have an effect on e.g. the mood

of the game, time of day, and so on. As lyric and text meta-

events are mainly used in karaoke MIDI files (*.kar), a

background music reactive game should not rely on them.

Other examples of state parameters include e.g. average

polyphony inside a specified time window and “note density”

i.e. the number of notes inside a specified time window.

5.3 Transition Parameters
By “transition” parameters, we are referring to significant

changes from one musical quality to another. Examples include

large intervals in a melody line, the change from silence

between two pieces of music to an aggressive beginning of the

next piece, large change in note density, and change in time

signature. “Transition” parameters can be used for similar

purposes to control game content as “event” parameters.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

67

6. AUDIO ASTEROIDS TEST
PLATFORM
The authors specified a demonstrative game that could be used

to evaluate the “background music reactive games” concept in

practice. The idea was to study useful connections between

MIDI parameters and game content. An open source game

“Maelström” [13], which is based on the well-known arcade

game Asteroids, was modified accordingly and renamed

“AudioAsteroids”. The game was selected because it is simple

and intuitive, and has several types of objects flying around that

can be controlled by music. The most important modification

was the integration of a custom software synthesizer as game’s

MIDI player engine. The synthesizer was able to analyze the

MIDI file during the playback and thus control the actual game

engine. The MIDI engine also supports simultaneous real-time

input from a MIDI controller.

In the game, the player controls with the alphanumeric

keyboard a spaceship that must avoid colliding with asteroids

and other objects flying around in space. The player must

attempt to shoot dangerous objects such as asteroids, enemy

ships, and black holes with the ship’s laser weapon. There are

also some bonus objects the player must collect in order to get

more points, more lives, etc.

6.1 Defining Connections
The players were able to define the connections between MIDI

control parameters and game events by themselves. Two types

of musical control parameters, namely “event” and “state”, were

supported. The properties (e.g. speed and amount) of game

objects could be controlled by musical events like the pitch of a

note and the number of simultaneous notes. Overall speed of

the game could be made dependent on the musical tempo, and

so on.

Figure 2 shows a window where a mapping for the game is

specified. A single connection could be described with the

following formula: ”A MIDI event from a certain MIDI channel

is connected to a game event that affects a game object with a

certain factor”. Connections can be scaled (“fine-tuned”) with a

factor between –100% and 100%, which are represented in the

game as integers 0 and 200, respectively. High positive

percentage values mean that the MIDI event has more effect on

the game event. As an example, when the tempo of a MIDI file

increases the speed of the game could also increase. Negative

percentage values have the opposite effect (e.g. when the tempo

increases the speed decreases). Value 0% has no impact, so if

all the factors are set to it the game works just like the original

Maelström.

Every musical parameter can control multiple game events, and

every game event can be controlled by multiple musical

parameters. In the latter case, the final game event value is a

sum of affecting musical parameters.

AudioAsteroids has also two special connections that are used

in a different way from the basic connections. After turning

either special connection on, the user has to select a drum

sound from the standard General MIDI 1 [13] drum kit, some

game object, and specify how many of these objects can exist

simultaneously. When the selected drum is played in the song,

it will spawn the chosen game object to the screen.

Figure 2. Defining connections in AudioAsteroids.

6.2 Example of Generic Mapping
Although the player can make his or her own mapping before

starting the game, this can be an iterative and very time-

consuming process. Therefore, a representative set of

connections (which would be as illustrative as possible for

several types of background music) was defined. The set was

stored as a generic connection file that is delivered with the

game package. The selected mappings are shown in Figure 3,

where:

• Tempo of music controls game’s overall speed;

• Combined polyphony of all MIDI channels affects the

de-acceleration of UFOs;

• Pitch bend amount on channel 1 controls the number

of damaged spaceships on the screen;

• Pitch of current note on channel 5 affects the amount

of bonus multipliers;

• Pitch of current note on channel 9 controls the

number of small asteroids;

• Pitch of current note on channel 16 spawns steel

asteroids to the screen;

• Hit of crash cymbal spawns the smallest amount of

UFOs; and

• Snare drum spawns the smallest amount of comets.

Figure 3. Example of a mapping used in AudioAsteroids.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

68

6.3 Findings from AudioAsteroids
Many MIDI files were tested with AudioAsteroids. In addition

to showing the value of a generic mapping, they also proved

that the concept works nicely in practice. The selected generic

mapping worked well on any MIDI song generating numerous

variations to the game.

The authors learned that the most important and easily

noticeable mapping was connecting song’s tempo to control

game speed. Another very perceivable connection was mapping

a certain drum being played to generate a specific game object.

In the case of other mappings, it was not always evident why

some things happened on the screen. However, the fact that

different songs made the game appear and behave differently

was enough to provide a satisfying gaming experience for

people who tried the game. In a sense, any MIDI file in the

player’s collection could render a different game level.

In general, musical people seemed to enjoy the game more than

those who had never played an instrument or listened to a lot of

music. They also understood the used mappings better.

7. REAL-TIME MIDI ANALYSIS
SOFTWARE FOR SYMBIAN
Mobile phones are becoming increasingly popular devices for

playing games and listening to music. So far the main use of

their MIDI synthesizers has been the playback of ringing tones.

Therefore, mobile phones’ MIDI players do not usually have a

dedicated callback API (Application Programming Interface). A

MIDI file can be played and stopped, but an application does

not have any way to get detailed information about the contents

of the file.

However, in the case of background music reactive games this

information is required. It is also desirable that the game

receives the information in real time and in synchrony with the

music playback. Because of this, a MIDI analysis software

module called ”Virtual Sequencer” or “VS” was developed. At

the time of programming the software, target platforms were

Nokia mobile terminals with Symbian 6.1 (including N-Gage

game deck, [12]) and 7.0 operating systems. VS was

implemented with C++ programming language.

In the case of a traditional MIDI player engine, a file parser

software component reads the MIDI file to be played and sends

the parsed data to a sequencer component. Sequencer is

responsible for sending scheduled MIDI events to a synthesizer

component at appropriate moments. Synthesizer generates the

actual audio waveform and sends it forward to be played

through loudspeakers or headphones. The implemented Virtual

Sequencer software consists of only file parser and sequencer

components, both of which are considerably simpler to

implement and run than the synthesizer.

Figure 4 illustrates using VS in a game for a mobile phone. As

VS has been separated from the actual game engine, it is

possible to utilize the same code module again in other games.

In the figure, the game engine commands VS and MIDI player

blocks to load the same MIDI file. (Here term MIDI player

refers to the software or hardware synthesizer of the used

mobile phone model.) Both blocks then parse the MIDI data.

After receiving a play command, MIDI player’s sequencer

component starts sending scheduled events to its synthesizer

part, while VS’s sequencer starts sending control events to the

game engine. The game engine then maps these events to

selected game parameters, and the game reacts to the music in

real time.

Figure 4. Illustration of using Virtual Sequencer in a game.

Virtual Sequencer is a light-weighted component that does not

consume an excessive amount of processing power even when

using complex MIDI files. It is a dynamically linked library

(DLL) that is used through its API. VS does not generate any

sound or interfere with Symbian's native MIDI player. The

operation of VS is two-way: It can be instructed as a normal

MIDI player (load, play, stop, jump back to song start) and it

can make callbacks to inform its host application (e.g. a game)

about MIDI events, polyphony levels, etc. that the host wants to

be informed about. Some of VS’s control events are derived

directly from individual MIDI messages, while others are based

on some simple calculations. A good example of the latter is

“polyphony N was exceeded” control event.

The host can be informed via callbacks when any of the

following situations occurs during playback:

• Tempo Change message is used in the song;

• A certain number of notes is played simultaneously;

• Note On or Note Off message is used on certain MIDI

channels;

• Program Change, Pitch Bend, or Control Change

(CC) messages are used on certain MIDI channels;

• SysEx message or meta-event is used in the song;

• Certain notes are played on certain MIDI channels;

• NRPN, Polyphonic or Channel Key Pressure events

happen on certain MIDI channels;

• Certain instrument (i.e. defined instrument number) is

played (by Note On) on certain MIDI channels; and

• Any MIDI message is used on certain MIDI channels.

Each callback includes all relevant MIDI data as parameters.

For example, when Note On is called it is important to know

also the note number and its velocity.

8. CONCLUSIONS
This paper elaborated on the concept of “background music

reactive games”, where game’s background music is used to

control game parameters and thus actions on the screen. Each

song generates a new game level with varying characteristics

and difficulty, and players can try to solve playlists of their

favorite music or even mobile phone ringing tones.

A test platform called AudioAsteroids was implemented for

experimenting with different mappings. A generic mapping was

defined in order to test the game behavior with several types of

music. It was learned that the most important and easily

noticeable connection was controlling game’s speed with the

musical tempo. AudioAsteroids convinced the authors that the

idea of using music to control game content works in practice,

and that MIDI is a suitable format for it. By defining an

Game a pplication

MIDI

player

Game
engine

Virtual
Sequencer

Load file

Play

Control

events

Audio

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

69

appropriate mapping between musical control parameters and

game parameters, it is possible to develop games that behave

differently with each piece of background music. The concept

introduces a new dimension into the experiences of gameplay

when players realize how game content and behavior changes

as a result of certain characteristics of the background music.

The benefits of using MIDI were also discussed. Three types of

control information (“event”, “state”, and “transition”) can be

effectively calculated from MIDI data, and one-to-one

mappings between specific musical events and game events are

possible. Similar exact information is currently very difficult to

extract from digital audio, as practical digital audio analysis

algorithms predominantly include detecting changes in sound

volume levels, beat tracking, and monophonic pitch detection.

To name one possible future implementation, MIDI-control is a

way to realize rhythm games that can be played with any MIDI

file as background music.

In order to enable the creation of Symbian games on mobile

phones, a software component called “Virtual Sequencer” was

implemented.

9. FUTURE WORK
An exciting future development would be to combine the

activities of playing a game with those of making music with

musical controllers. Aspects of group performance could be

introduced to this activity. For example, one of the performers

could control the hero in the game, while the musical

performance of others would create obstacles for the hero. In

[15], Blaine and Fels have discussed the principles of

collaborative musical interfaces. These guidelines could be

adapted into the design of background music reactive

multiplayer games.

One constraint in AudioAsteroids was that it is controlled with

the alphanumeric keyboard, which most people do not regard as

a real-time musical controller (despite it can be used to trigger

samples). AudioAsteroids (and many other video games) can be

played with as few as three or four distinct buttons, so there are

several musical controllers that could be used for this purpose.

The use of these controllers as well as new mapping strategies

should be examined carefully. In addition, more detailed user

testing than done so far would be required.

Theoretically, there are three ways to combine real-time MIDI

input with video games like AudioAsteroids. The game could

be based on an exclusive real-time performance or the playback

of a prefabricated MIDI file with live parts performed on top of

it. In addition, the actions of the player (e.g. maneuvering a

space ship and shooting) could trigger musical sounds instead

of sound effects. All these interesting possibilities can only be

explored by implementing new game prototypes.

10. ACKNOWLEDGEMENTS
The authors would like to thank their colleagues Mikko

Heikkinen and Antti Eronen as well as Nokia Research Center

student trainees Lauri Oikari and Olli Etuaho for their

contribution to the project.

11. REFERENCES
[1] Open Sound Control. http://www.opensoundcontrol.org/,

25.1.2006.

[2] Staraoke. http://www.staraoke.fi (only in Finnish),

25.1.2006.

[3] Gitaroo Man. http://ps2.ign.com/objects/015/015184.html,

25.1.2006.

[4] Hämäläinen, P., Mäki-Patola, P., Pulkki, V., and Airas,

M. Musical Computer Games Played by Singing. In

Proceedings of the 7th Int. Conference on Digital Audio

Effects (DAFx'04), Naples, Italy, October 5-8, 2004.

[5] Musical Invaders.

http://www.dmi.usherb.ca/minvaders/en/, 25.1.2006.

[6] Musical Space Invaders and Music Scale Teacher.

http://www.sharewaresoft.com/Music-Scale-Teacher-

download-5736.htm, 25.1.2006 .

[7] Mad Maestro.

http://ps2.ign.com/objects/017/017479.html, 25.1.2006.

[8] Vib-Ribbon. http://www.vib-ribbon.com/, 25.1.2006.

[9] Parappa The Rapper. http://www.parappa-the-rapper.com/,

25.1.2006.

[10] Blix.

http://www.shockwave.com/sw/content/blix/blix.html,

25.1.2006.

[11] Rez. http://www.sonicteam.com/rez/, 25.1.2006.

[12] Nokia N-Gage. http://www.n-gage.com, 25.1.2006.

[13] Maelström, S. Lantinga/Ambrosia Software,

http://www.devolution.com/~slouken/Maelstrom/,

25.1.2006.

[14] Blaine, T. The Convergence of Alternate Controllers and

Musical Interfaces in Interactive Entertainment. In

Proceedings of New Interfaces for Musical Expression

(NIME) Conference, Vancouver, Canada, May 26-28,

2005.

[15] Blaine, T., and Fels, S. Design Issues for Collaborative

Musical Interfaces and Experiences. In Proceedings of

New Interfaces for Musical Expression (NIME)

Conference, Montreal, Canada, May 22-24, 2003.

[16] Blaine, T., and Forlines, C. JAM-O-WORLD: Evolution

of the Jam-O-Drum into the Jam-O-Whirl Gaming

Interface. In Proceedings of New Interfaces for Musical

Expression (NIME) Conference, Dublin, Ireland, May 24-

26, 2002.

[17] Holm, J., Havukainen, K., and Arrasvuori, J. Novel Ways

to Use Audio in Games. In Proceedings of Game

Developers Conference (GDC), San Francisco, USA,

March 7-11, 2005.

[18] Holm, J., Havukainen, K., and Arrasvuori, J. Personalizing

Game Content Using Audio-Visual Media. In Proceedings

of Advances in Computer Entertainment (ACE)

Conference, Valencia, Spain, June 15-17, 2005.

[19] Cassidy, G., MacDonald, R., and Sykes, J. The Effects of

Aggressive and Relaxing Popular Music on Driving Game

Performance and Evaluation. Abstract in

http://www.gamesconference.org/digra2005/viewabstract.p

hp?id=94, 2.4.2006.

Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France

70

