
CaMus2 – Optical Flow and Collaboration in Camera Phone
Music Performance

Michael Rohs
Deutsche Telekom Laboratories

TU Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany

michael.rohs@telekom.de

Georg Essl
Deutsche Telekom Laboratories

TU Berlin
Ernst-Reuter-Platz 7

10587 Berlin, Germany

georg.essl@telekom.de

ABSTRACT
CaMus2 allows collaborative performance with mobile cam-
era phones. The original CaMus project was extended to
support multiple phones performing in the same space and
generating MIDI signals to control sound generation and
manipulation software or hardware. Through an optical
flow technology the system can be used without a reference
marker grid. When using a marker grid, the use of dynamic
digital zoom extends the range of performance. Semantic
information display helps guide the performer visually.

Keywords
Camera phone, mobile phone, music performance, mobile
sound generation, sensing-based interaction, collaboration

1. INTRODUCTION
In this paper we describe how the basic CaMus system,

which was first presented at last year’s NIME conference [8],
was extended to allow simultaneous and collaborative per-
formance of multiple phones and reference-free performance
through optical flow detection. We call the collaborative ver-
sion CaMus2. Multiple camera phones connect to a Blue-
tooth enabled personal computer that then maps camera
interaction parameters to MIDI format controls, which can
be easily mapped to a wide variety of MIDI-enabled soft-
ware and hardware. In addition CaMus2 allows the mobile
phones to be informed about the semantics of the mapping
of interaction parameters to sound generation and modifica-
tion parameters and can now share, modify, and display this
information. On the technical side we have implemented an
optical flow based paradigm to untether the performance
from marker grids and enabled the use of dynamic digital
zoom to increase the range of the height parameter and
extended the grid surface area. The user can now choose
whether to use the marker grid or optical flow mechanism.
The first allows a fixed reference and precise positioning.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME07, New York, NY, USA
Copyright 2007 Copyright remains with the author(s).

The latter permits the performer to move freely and use a
wider range of expressive gestures. Interaction takes place
single-handed, as is in line with current mobile phone inter-
action styles.

Mobile technology for music performance has been con-
ceptualized and implemented in various ways [1, 4, 5, 9, 10,
11]. See [3] for a recent review of this community. Currently
CaMus is the only system that uses the cameras of mobile
phones as sensing device for this purpose.

2. OPTICAL MOVEMENT DETECTION

old image

new image new image

old imagex

y

Figure 1: Finding differences in displacements in
two successive block images to compute relative
movement. Translational (∆x, ∆y) and rotational
(∆α) displacements are checked.

The optical movement detection algorithm turns the cam-
era phone into an optical mouse. The algorithm is a refine-
ment of the method described in [6]. It detects relative linear
(∆x, ∆y) movement of the phone in the display plane and
relative rotational (∆α) movement of the phone around the
optical axis, representing three degrees of freedom (see Fig-
ure 1). The algorithm operates on the video stream of the
camera at a frame rate of 15 fps. Higher frame rates would
be desirable and a few devices already provide 30 fps. For
movement detection a resolution of 176×144 pixels is suf-
ficient. The algorithm subdivides each frame into a block
image, computes cross-correlations between successive pairs
of block images for a range of different shift and rotation
offsets, and looks for the maximum correlation.

In more detail, the algorithm works as follows: Each frame
from the camera is divided into blocks of 8× 8 pixels. This
down-sampling is required to make the method computa-
tionally feasible. With a video resolution of 176×144 pixels
the block image has 22 × 18 blocks. From each block four
pixel samples are taken at pixel positions (x, y), x, y ∈ {1, 5}.
In effect, the whole frame is uniformly sampled with a spac-

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

160

ing of 4 pixels. In total, 4 × 22 × 18 = 1584 samples are
taken in each frame. Since the video stream of the devices
we use has a planar YUV 4:2:0 format with 8 bits per pixel,
there is no need for gray scaling. The Y components rep-
resent the luminance (gray scale) pixel data on which the
sampling operates. The average gray value for each block
is computed and recentered to 0, i.e. the resulting average
gray values are in the range {−128, . . . , 127}.

Since two temporally adjacent block images are only ∆t
= 67 ms apart (at 15 fps) we assume that there is consider-
able overlap between them (if movement is not too fast). To
compute the spatial displacement between two block images
we use cross-correlation as a matching function. It deter-
mines which displacement to shift one block image against
the other results in the best match. The cross-correlation
function (between block images b1 and b2) is defined as:

rt(dx, dy) =

Ph−1
y=0

Pw−1
x=0 b1(x, y)b2(x + dx, y + dy)

(w − |dx|)(h− |dy|)
The denominator normalizes the cross-correlation to the size
of the overlapping area. rt is evaluated in the range dx, dy ∈
{−4, . . . , 4}, i.e. at 81 points. This requires 25276 integer
multiplications per frame. The most likely relative linear
movement (∆x, ∆y) is the point at which rt has a maximum:

(∆x, ∆y) = argmax
dx,dy∈{−4,...,4}

rt(dx, dy)

If the displacement was scaled by the magnification of the
camera view, the real velocity could be computed. How-
ever, since the scaling factor depends on the unknown cam-
era parameters and the variable distance of the camera to
the background, no scaling is performed. This means that
the computed relative movement depends on the distance
of the camera to the background. The obtained movement
parameters are still useful for interaction.

Relative rotation ∆α is computed in a similar fashion by
rotating the block images against each other. The current
block image is rotated by α values between −24◦ and 24◦,
with a step width of 6◦. The rotational coordinate map-
pings are precomputed and stored in tables for performance
reasons. The rotated block image is cross-correlated with
the previous block image and the angle ∆α with maximum
correlation is chosen as the most likely amount of rotation.

rr(α) =

Ph−1
y=0

Pw−1
x=0 b1(x, y)b2(rotate(α, x, y))

number of overlapping blocks

In order to suppress spurious movements and shakes, move-
ment is only reported if the signal-to-noise ratio – the maxi-
mum relative to the mean correlation – is above a threshold.

The algorithm works quite reliably and detects the relative
motion even if the sampled backgrounds only have a limited
number of features, like a wall or a floor. Because only a
few pixels are sampled, the algorithm performs quickly and
leaves enough time for rendering the workspace. On a Nokia
6630, it runs at the full frame rate of 15 (∆x, ∆y, ∆α) triples
per second. When rendering the workspace (with 5 targets
in the active layer) and sending updates via Bluetooth the
average display update rate is still 14.6 updates per second.

Since movement detection is relative, drift is unavoidable.
Particularly if the user makes fast movements the overlap be-
tween successive images is not sufficient and relative move-
ment cannot be computed. If the user moves the phone in

one direction and then reverses movement back to the start-
ing position, the final workspace position is not identical to
the original one. The right selection key of the phone is
used as a clutch, which fixes the workspace on the screen
and allows the user to reposition his arm. This mechanism
is similar to lifting the mouse from the table.

3. GRID TRACKING WITH EXTENDED
VERTICAL RANGE

As an alternative option to optical flow, camera phones
are tracked over a grid of visual markers. The grid provides
a fixed frame of reference for the virtual workspace within
which the user interacts. Grid tracking does not suffer from
the drift problem of optical flow and can precisely sense very
subtle movements. However, the grid has to be present in
the camera view, which limits user mobility. The absolute
position and orientation of the device within the physical
space above the grid is tracked with low latency and high
precision. The graphics is rendered perspectively, as if look-
ing through the device onto the background surface.

The approach discussed here is an extension to the one
described in [8]. The markers have been extended to a ca-
pacity of 16 bits: 2×7 bits for index positions and 2 par-
ity bits. The maximum grid size is thus 128×128 markers
or 1024×1024 ccu. Suitable printing sizes are 1.5 mm to
2.0 mm per black-and-white cell, which yields a maximum
grid area of 1.54 m to 2.05 m.

In the original implementation, the vertical tracking range
(the distance of the camera lens to the grid) was limited to
between 2 and 10 cm. This proved insufficient for effective
interactions along the z-dimension. In the current exten-
sion we use the digital zoom feature that is present in many
camera phones to substantially extend the vertical tracking
range. Digital zoom increases the apparent focal length at
which an image was taken by cropping an area at the image
center with the same aspect ratio as the original image. The
cropped area is rescaled to the original dimensions by inter-
polation. No optical resolution is gained in this process, but
digital zoom is done by the camera before any compression
and does not have to be done by the main processor of the
device, it essentially gives high-quality rescaling for free.

The Symbian camera API allows to set the digital zoom
level between 0 and some device-dependent maximum value.
In an experiment we kept the distance to an object in the
camera view constant, continuously changed the digital zoom
level, and measured the size at which the object appeared
in the camera view (sizezoomed). We found that sizezoomed

= sizeunzoomed × ek×level, or equivalently distancezoomed =
distanceunzoomed × e−k×level. For Nokia the 6630 (6× digital
zoom) k = 0.0347 (R2 = 0.9983), for the Nokia N70 (20×
digital zoom) k = 0.0386 (R2 = 0.9992), and for the Nokia
N80 (20× digital zoom) k = 0.0345 (R2 = 0.9974).

During grid tracking, digital zoom is continuously ad-
justed, such that markers appear at a size that is best suited
for detection. If no markers are detected in a camera frame,
different zoom levels are tried. The algorithm is complicated
by the fact that changes to the zoom level via the camera
API do not result in immediate changes in the next camera
frame. Instead, the new digital zoom setting becomes valid
only 2 to 5 frames after the adjustment is made. Therefore,
the algorithm chooses the setting that is most likely to yield
smooth distance changes.

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

161

With this method the vertical recognition range for a grid
with a cell size of 1.5 mm is increased from 10 cm to 30-
50 cm, depending on the device. Markers are recognized in
view finder mode with a frame size of 176×144 pixels at a
rate of 10-15 frames per second, depending on the complex-
ity of the rendered scene. At larger distances the perspective
mapping of the grid gets more unstable, which could be mit-
igated by filtering and smoothing the perspective mapping.
Overall, visual grid tracking provides a 3-D physical inter-
action space of 150×150×30 cm, in which multiple devices
can be tracked with low latency and high precision.

4. COLLABORATIVE PERFORMANCE
CaMus2 allows multiple camera phones to connect to a

Bluetooth enabled personal computer that then maps cam-
era interaction parameters to MIDI format controls, which
can be easily mapped to a wide variety of MIDI-enabled soft-
ware and hardware. In addition CaMus2 allows the mobile
phones to be informed about the semantics of the mapping
of interaction parameters to sound generation and modifi-
cation parameters and can now share, modify, and display
this information.

Bluetooth (www.bluetooth.org/spec) allows multiple si-
multaneous connections to an RFCOMM server. In order
to use this to make CaMus collaborative, we extended the
receiver software on the personal computer from the origi-
nal architecture [8] to allow multiple serial Bluetooth con-
nections to be used. The computer opens and registers the
serial devices as needed upon startup in the local SDP data-
base. The mobile camera phones then get to select which of
the found serial channels are to be used for communication
of this particular phone with the computer. Each phone re-
tains the channel as identifier for itself within the network to
communicate settings with the personal computer and other
devices. All connections currently go through the PC (see
Figure 2) but direct communication between mobile cam-
era phones through the same serial Bluetooth protocol is
planned.

The interaction parameters received from the various cam-
era phones via the serial Bluetooth channels are then in turn
converted into MIDI channels and can be used by any MIDI-
enabled software and hardware. Parameters can be mapped
to the same or separate sounds or effects and hence perform-
ers can jointly manipulate one sound or contribute different
sounds or effects through the same architecture.

The communication protocol currently supports an array
of commands that typically are sent from the camera phone
to the host PC, which may or may not send a response,
depending on the opcode (see Table 1). In principle the
protocol is however non-hierarchical and is set up to support
direct phone-to-phone communication.

5. VISUALIZATION OF SEMANTICS
In order to improve the visualization on the camera phone

display we introduce semantic information and a communi-
cation protocol to share this information between partici-
pants in the Bluetooth network. The semantic information
carries the mapping of interaction parameters from the tar-
get detection system to sounding sources and sound manip-
ulation parameters.

The visual targets of the original CaMus system now will
display a textual description of the function of the target.

PC

Mobile Camera Phones

Bluetooth

Semantics

Request

Bluetooth

Semantics

Response

Figure 2: Bluetooth wireless network between
camera phones running the optical tracking and
workspace visualization software and the PC run-
ning MIDI based sound synthesis software.

For example a target may represent a low-pass filter (see
Figure 3). In this case the relevant semantic information can
be presented inside the target square by the visualization.

Figure 3: Three different filters with their semantics
are located at different places in the workspace.

In addition for each target, semantic information of the
control parameters related to the target can be exchanged.
These control parameters [8] are x and y distance from the
target, Euclidean distance d from the target, height h over
the target sheet, rotation angle α, and tilt angles θx and θy

relative to the x- and y-axis, respectively. Each of these can
be given a semantic name. For example distance d can be
named “Volume.” Furthermore, the raw input data can be
mapped to a new value range. For example height may be
between 40 and 160 but the control parameters used by the

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

162

Opcode Description
CONNECT Inform a host about a connect with initial information about the phone

SEND MOVEMENT Send movement information (x-y position, height, rotation, tilt)
SEND PARAMETERS Send auxiliary parameters (parameters relative to targets, x-y distance, height, rotation, tilt)

DELETE TARGET A target has been deleted
REQUEST SEMANTICS Request semantic information from other participants in the network

SEND SEMANTICS Send semantic information about targets (name, range and mapping of parameters)
NO SEMANTICS No semantic information is available for this participant

Table 1: CaMus communication protocol command opcodes.

MIDI software are 0-127. Through the exchange the mobile
phone is informed what the mapping ranges are, and if the
mapping is linear or logarithmic.

This information can be requested for any participant
from the network. Currently the personal computer serves
to host and provide this information, but the protocol in use
is designed to allow exchange and modification of this data
by all participants in the network.

6. CONCLUSIONS
In this paper we presented the extension of the CaMus

system for performance of music with mobile camera phones
for multiple users and untethered from the requirement of a
fixed marker grid through an optical flow detection mecha-
nism. Multiple camera phones communicate with a personal
computer through a Bluetooth network sending performance
parameters derived from a visual tracking system. This in-
formation is then mapped to MIDI to connect to arbitrary
MIDI-enabled sound software or hardware.

In order to enhance the contextual information for the
performer, we have added semantic information that can be
shared by all participants in the network and displayed on
the mobile camera phone’s visualization. Different aspects
of the performance can be placed on multiple separate lay-
ers. This way performers can separate sounding functions
from effect functions and can choose to share a common
performance space or separate it as needed for a given per-
formance context.

Technologically optical flow additionally frees the move-
ment space, but at the cost of a fixed reference and the
potential for some drift. We have also extended the range
of the height allowable by the system through the use of
dynamic digital zoom to improve the possible performance.
This is in part result of an interface study which showed
that the confinement of the vertical movement was a limit-
ing factor [7].

As immediate future work we plan to implement the sound
synthesis and manipulation engine completely on the mobile
device itself and hence remove the need for a personal com-
puter to serve as the sound source. This has already been
prepared by the portation of the sound synthesis toolkit
STK to Symbian [2]. As the mobile device itself defines the
mapping semantics of interaction parameters to sounding
results, we plan to implement editing of this information on
the phone itself. At the same time, the communication will
be extended to allow direct exchanges between multiple mo-
bile devices in the absence of a personal computer. Through
this network semantics information will be sharable among
all users of the CaMus2 system. This allows each phone to
visualize the performance context of all participants inter-
actively and while this context is edited on the fly.

7. ACKNOWLEDGMENTS
We are grateful for the input of numerous NIME’06 par-

ticipants on the original CaMus project, specifically for the
suggestion to implement an optical flow version of the sys-
tem.

8. REFERENCES
[1] W. Carter and L. S. Liu. Location33: A mobile

musical. In NIME ’05: Proceedings of the 2005
Conference on New Interfaces for Musical Expression,
pages 176–179, May 2005.

[2] G. Essl and M. Rohs. Mobile STK for Symbian OS. In
Proc. International Computer Music Conference,
pages 278–281, New Orleans, Nov. 2006.

[3] L. Gaye, L. E. Holmquist, F. Behrendt, and
A. Tanaka. Mobile music technology: Report on an
emerging community. In NIME ’06: Proceedings of the
2006 conference on New Interfaces for Musical
Expression, pages 22–25, June 2006.

[4] M. Kaltenbrunner. Interactive Music for Mobile
Digital Music Players. In Inspirational Idea for the
Intl. Computer Music Conference (ICMC), Sept. 2005.

[5] G. Levin. Dialtones - a telesymphony.
www.flong.com/telesymphony, Sept. 2, 2001.
Retrieved on April 1, 2007.

[6] M. Rohs. Real-world interaction with camera phones.
In Second International Symposium on Ubiquitous
Computing Systems (UCS 2004), pages 74–89. LNCS
3598, Springer, July 2005.

[7] M. Rohs and G. Essl. Which one is better? –
information navigation techniques for spatially aware
handheld displays. In ICMI ’06: Proceedings of the 8th
International Conference on Multimodal Interfaces,
pages 100–107, Nov. 2006.

[8] M. Rohs, G. Essl, and M. Roth. CaMus: Live music
performance using camera phones and visual grid
tracking. In Proceedings of the 6th International
Conference on New Instruments for Musical
Expression (NIME), pages 31–36, June 2006.

[9] G. Schiemer and M. Havryliv. Pocket Gamelan:
Tuneable trajectories for flying sources in Mandala 3
and Mandala 4. In NIME ’06: Proceedings of the 2006
conference on New Interfaces for Musical Expression,
pages 37–42, June 2006.

[10] A. Tanaka. Mobile music making. In NIME ’04:
Proceedings of the 2004 conference on New Interfaces
for Musical Expression, pages 154–156, June 2004.

[11] A. Tanaka and P. Gemeinboeck. A framework for
spatial interaction in locative media. In NIME ’06:
Proceedings of the 2006 conference on New Interfaces
for Musical Expression, pages 26–30, June 2006.

Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA

163

