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Abstract
Low-latency streaming of high-quality audio has the poten-
tial to dramatically transform the world of interactive musi-
cal applications. We provide methods for accurately mea-
suring the end-to-end latency and audio quality of a deli-
vered audio stream and apply these methods to an empiri-
cal evaluation of several streaming engines. In anticipation
of future demands for emerging applications involving au-
dio interaction, we also review key features of streaming
engines and discuss potential challenges that remain to be
overcome.

Keywords: Networked Musical Performance, high-fidelity
audio streaming, glitch detection, latency measurement

1. Introduction
Current high-fidelity audio streaming activity covers a wide
range of interactive applications between remote perform-
ers. Sample applications include ensemble recording [1],
group interaction with minimal latency [2, 3], group inter-
action with controlled latency [4, 5], and outdoor mobile in-
teraction [6]. Recent advances in distributed interactive per-
formance have shown the need for coupling video, gesture
and other sensor-based interactions with audio transmission
in order to support simultaneous music, dance, theater and
other interactions in contexts including rehearsal, teaching
and performance. These requirements motivate high-fidelity
audio streaming as the foundation for many aspects of music-
making and remote performing. High-fidelity audio stream-
ing engines will be a key part of large-scale distributed ap-
plications, such as the i-Maestro 1 and the World Opera 2

1 http://www.i-maestro.org/
2 http://www.theworldopera.org/
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projects, where many distributed applications are run simul-
taneously in a highly heterogeneous environment. In this
context, high quality streaming engines face several chal-
lenges, including simplicity of configuration, latency con-
trol, and adjusting to the competition for network resources
resulting from additional independent streams.

In prior literature, latency has typically been the first chal-
lenge to be addressed. Although the International Telecom-
munication Union defines a latency of 150 ms as the thresh-
old for acceptable quality telephony, musicians perceive the
effects at much lower values, often less than 25 ms, depend-
ing on the style of music they are playing. Experiments con-
ducted at CCRMA and USC [7][8] have investigated these
limits. Chew found that latency tolerance in piano duet per-
formance varied depending on the tempo and types of onset
synchronization required; for a particularly fast movement,
this figure was as low as 10 ms. However, for certain genres
of pattern-based music, significantly higher latency (several
seconds) was found to be acceptable, and in fact, preferable
to low latency, provided that the delay value corresponded
to a whole-number multiple of the pattern duration [4].

These studies helped characterize the impact of latency
on musicians interacting exclusively via audio but did not
consider the quality of audio delivery itself. Here, quality
implies playout of the correct audio sample at the desig-
nated instant of time. Latency can be reduced at the expense
of quality, but deployment of audio streaming in most prac-
tical contexts requires both accurate control of user-to-user
latency and sufficient quality of audio delivery, regardless
of the hardware and software used. We are thus motivated
to gain a better understanding of the capabilities and perfor-
mance provided by current high-fidelity streaming engines,
as relevant to supporting distributed audio interaction. In or-
der to do so, we must first define the methods and metrics for
evaluating user-to-user latency and the quality of delivered
audio, across systems. With such tools, we can then conduct
a performance evaluation of uncompressed audio streaming
engines, taking into account these issues in addition to the
choice of parameter configuration. The experiments take a
consistent black-box approach, in which only the audio in-
put and output are analyzed. Our subsequent analysis pro-
vides the basis for an extended discussion of the challenges

NIME 2009135



Audio 
acquisition

Streaming engine
(sender side)

Driver
Optional
format 
conversion

Packetization
Audio 
playout

Streaming engine
(receiver side)

Driver
Optional
format 
conversion

Buffering 

Network

Figure 1: Components involved during audio streaming

that must be addressed by such systems. To our knowledge,
such methods and comparisons have not previously been ad-
dressed formally in this context.

The remainder of this paper is organized as follows. First,
we present a general overview of high-fidelity audio stream-
ing engines in Section 2. We then introduce our methodo-
logy for measuring audio latency and delivered audio qua-
lity in Section 3. Next, we provide experimental results in
Section 4, and finally, we review current streaming engine
features and discuss challenges that audio streaming engines
will need to overcome in the future in Section 5.

2. Streaming engines
In general, streaming engines are intended to transmit media
from a source location to one or more destinations. Whereas
the ideal for networked musical performance is to enable
performers to interact through the audio link as if physi-
cally co-present, traditional audio streaming systems fail to
support such interactivity due to their use of high-latency
buffering and/or heavy compression. In contrast, live per-
formance streaming uses small buffers and no compression
or computationally lightweight compression algorithms to
minimize latency. A significant challenge such engines face
is maintaining the periodicity, at delivery, of the audio data.
However, in IP networks such as the Internet, available band-
width and scheduling are shared equally among clients, which
often leads to variable performance, including packet delay
variation or jitter. 3 Live audio streaming engines employ
various strategies to reduce these network effects.

Figure 1 shows the components involved during live au-
dio streaming. At both ends, sound cards accessed by the
streaming engine through a driver provide audio acquisition
and playout. Signal quality and introduced latency can be
optimized using professional audio equipment; however, re-
mote sound cards are subject to clock skew [9], which can
cause data underflow or overflow. Streaming engines op-
tionally provide a format conversion component to enable
audio transmission among heterogeneous hardware, but this
introduces additional latency. Audio compression can be
considered a format conversion, but this may also introduce
significant latency and quality degradation. 4

3 Note that this is a general assumption concerning end-to-end commu-
nication. Even if some sub-parts of the Internet provide guaranteed perfor-
mance, this cannot be assumed for every possible IP communication.

4 Note that ultra-low-delay codecs, such as ULD [10] and CELT (www.
celt-codec.org), which introduce less than 10 ms of latency, allow
for high-fidelity audio transmission over low bandwidth networks.

The packetization component, present on the server side,
is responsible for filling a network packet with audio data.
Since data are produced periodically, packetization deter-
mines the tradeoff between introduced latency and network
scheduling: using a small packet size means waiting less
time before sending the current packet, but this increases
the number of transmitted packets, as well as the packet
rate, which can have negative effects on performance. On
the receiver side, the buffering component is responsible for
ordering received packets, concealing the effects of network
losses, and dealing with network jitter. This is achieved by
placing the data in a queue, from which samples are passed
to the sound card at regular intervals. The queue size must
balance between variability in packet arrival times and la-
tency overhead: a small queue size minimizes latency, but
may result in a disrupted audio stream if data is received late
due to higher than expected jitter. A buffer manager decides
when audio data must be unqueued and forwarded either
directly to the sound card driver, or to an optional format
conversion component.

The description above provides an overview of some of
the challenges faced by streaming engines designed for in-
teractive installations and performances. However, the en-
gine itself is not the sole determinant of audio quality. Rather,
this is additionally dependent on external parameters, in-
cluding the varying state of the network and operating sys-
tem scheduling. Accurate measurement of end-to-end la-
tency and resulting audio quality has thus remained an open
problem, despite the fact that it is critical to the successful
deployment of interactive remote applications.

3. Methodology
Streaming engine settings engine are typically tweaked man-
ually to optimize perceived quality. In most cases, an un-
dersized queue, failing to avoid network jitter, and network
losses lead to missing audio data that produces audible glitches
during playout. While subjective evaluation by the actual
performers exacerbates the complexity of deployment, it is
nevertheless important to allow the performers to evaluate
the effects of latency while actually interacting. In this sec-
tion, we provide methodologies for latency and signal defect
measurement. To our knowledge, such methodologies have
not previously been described formally in this context.

Although end-to-end latency measurements are difficult
to accomplish over long distances, they can be completed
easily in a laboratory. Figure 2 shows a setup where a trans-
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Figure 2: Setup for end-to-end latency measurement of a single
audio stream

mitter streams audio to a physically nearby receiver. In this
way, the sound source, as well as the resulting audio, can
be duplicated and recorded using a multichannel recorder.
Since we assume that every channel is recorded simultane-
ously, the resulting audio file allows for an off-line compar-
ison of both audio quality and temporal differences. 5

3.1. Accurate end-to-end latency measurement
End-to-end latency measurements, e.g., from sound source
to the listener, rely on many aspects of hardware, software
and the underlying network. As such, accurate measure-
ment cannot be obtained from within the operating system
or streaming engine. Fortunately, the previously described
configuration allows for simultaneous recording of the source
and delivered audio, outside of the operating system and
sound engine. Although it may be useful to compute latency
and audio quality automatically and continuously from the
sound file by using cross analysis, such a tool does not,
unfortunately, appear to exist within the sound processing
community. The MATCH software [11] includes an algo-
rithm for temporal alignment of audio, but this cannot pro-
vide useful statistics for our purposes since it is unable to
cross analyze sound files containing glitches. A cross-analysis
algorithm that would allow such an evaluation is under de-
velopment by the Audacity software team, 6 but at the time
of this writing, is not yet available for use.

Instead, we employ a simple manual method for latency
evaluation, illustrated in Figure 3. Using a multichannel au-
dio editor, sound files are displayed and temporally com-
pared. We can zoom into the waveform and identify two
samples that represent the exact same sound, using their
offset to measure the temporal difference. This method, al-
though manual, provides measurements accurate to a single

5 This use of a multichannel audio recorder, connected directly to both
the transmitter and receiver constrains the two units to be close together. To
perform similar measurements over a long distance, i.e., with the audio in-
put and output recorded remotely from each other, over a network, globally
synchronized clocks are required. In this case, each audio sample could
be time-stamped and re-aligned offline. However, further investigation is
required to demonstrate the reliability of such a method.

6 http://audacityteam.org/wiki/index.php?title=
Audio_Diff_Notes

latency

Source audio

Delivered audio

Figure 3: End-to-end latency measurement using a multichannel
editor. Here a 30 ms window is displayed.

sample. In our case, we employ a 48 kHz sampling rate,
which provides an accuracy of 0.02 ms. Note that the audio
content must be non-periodic in order to be amenable to vi-
sual pattern recognition; we must avoid purely sinusoidal or
other repeating signals.

3.2. Measuring audio quality
As noted in Section 2, the typical primary source of qua-
lity degradation is missing audio data at one of the compo-
nents. When such a problem occurs, a glitch can be heard
in the playout. A secondary source of distortion is a for-
mat conversion component that alters the audio fidelity. For
the purposes of our present study, since we use high-fidelity
transmission without compression, we only consider glitch
distortions due to missing audio data.

During our experiment, we observed that delivered audio
was subject to two kinds of defect. The first, seen in Figure
4, is the result of significant amplitude variation over a small
time interval, while the second, called micro silence, is the
result of silence insertion inside an audio stream. These two
distortions are heard as clicks.

Glitch 
detection

Figure 4: The quality of streamed audio can be evaluated off-line
by counting glitches. A band pass filter set to 8-9.5kHz, followed
by an amplification of 25 dB, allows for isolation of glitches in the
resulting audio file, and allows us to count glitches over time by
using an additional algorithm.

In order to characterize the quality of the delivered audio
after transmission, we developed an algorithm that detects
and counts such audio glitches. This detection, illustrated by
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Figure 4 consists of applying a band-pass filter that isolates
frequencies between 8 and 9.5 kHz, followed by an amplifi-
cation of +25 dB. The resulting audio file, when displayed,
exhibits spikes that correspond to the previously described
audio distortions. A simple algorithm is then employed to
count these spikes, based on amplitude analysis. As seen on
Figure 4, this approach provides accurate glitch detection,
but is subject to false positive error when the original audio
source contains significant frequency components inside our
window of analysis. To address this problem, we also ap-
ply our algorithm to the recorded source to locate (false)
glitches in the original signal, and exclude these from the
corresponding analysis of the received audio signal.

4. Experimental results
Our experiments used a one hour radio broadcast containing
both speech and music. We measured latency every 10 min-
utes in the recording, then computed averages for the entire
sound file. We compared the following four low-latency,
high-fidelity streaming engines:

• JackTrip version 1.0.2 alpha, 7 developed by Juan-
Pablo Caceres at Stanford University is a client for
the Jack audio connection kit 8

• jack-tools version 0.0.2-4, 9 developed by Rohan Drape,
includes a streaming engine that acts as a Jack client
• Soundjack, 10 developed by Alexander Carôt at the

University of Lübeck, is a stand-alone program that
can also act as a client for Jack
• nStream version 1.0, 11 developed by Nicolas Bouil-

lot at McGill University, is an external object for Pure-
Data [12] and PureData anyWhere 12 [13]

The configuration of these streaming engines consists pri-
marily of manually setting the packet and queue sizes. Al-
though some engines allow dynamic parameter changes, we
did not vary the parameters during our one hour sessions.
This ensured that we could analyze the stability of end-to-
end latency throughout an extended session.

Our experiments consisted of three conditions. In the
first, we used large parameter values to evaluate the quality
of the resulting audio when the engine components executed
essentially without temporal constraints. Second, we eval-
uated the latency and audio quality of transmissions with
the engine configured using the minimum values allowed.
Third, we manually optimized the parameters for each en-
gine to find a balance between reducing latency and mini-
mizing the number of resulting glitches.

7 http://ccrma.stanford.edu/groups/soundwire/
software/jacktrip/

8 http://jackaudio.org/
9 http://slavepianos.org/

10 http://www.livemusicportal.eu
11 http://www.audioscape.org
12 a fixed point version of PureData for small form factor hardware

Our setup, illustrated in Figure 2, used computers run-
ning Ubuntu Linux 8.04 with a real-time kernel and RME
Hammerfall Multiface II sound cards. Each streaming en-
gine was configured to access the sound card through the
Jack audio connection kit, configured with 64 samples per
frame and two frames per buffer. We used a sampling rate
of 44.1 kHz, except for the Soundjack engine, which only
supported a 48 kHz sampling rate. 13

For the first set of experiments, a common theoretical
latency was specified by setting the packet and queue size
parameters to the values required to produce an overhead
of 10240 samples, corresponding to an anticipated latency
of 232 ms at 44.1 kHz sampling, or 213 ms at 48 kHz.
However, the actual (much smaller) observed latencies, seen
in Table 1, for jack-tools and JackTrip, suggest that these
two engines use the parameters to determine buffer capa-
city rather than buffer latency. Interestingly, perhaps due to
sound card clock skew, Soundjack latency decreased from
218 to 165 ms, indicating that its buffer management did not
try to maintain a constant amount of queued data within the
buffer. While this is not necessarily critical, it could lead to
undesirable underflow or overflow in longer sessions. The
quality results indicate a range of 7 to 16 glitches through
the transmission of the one hour recording. Since these va-
lues are all non-zero, this justifies the need to establish the
range of parameters we seek in the third experiment.

Table 1: Best audio quality observed, expressed as the number of
glitches measured during a one hour streaming session (ordered by
decreasing quality)

Engine # of glitches Anticipated
Latency
(ms)

Actual
latency (ms)

Soundjack 7 213 165–218
nStream 10 232 243
jack-tools 13 232 22
JackTrip 16 232 11

In our second set of experiments, we set the packet and
queue sizes to their minimum allowed values. In theory, this
should result in the smallest possible end-to-end latencies.
For all the engines, the minimum packet and queue sizes
were both 64 samples, apart from jack-tools, for which the
minimum buffer size was 256 samples.

Not surprisingly, as observed in Table 2, there was a clear
inverse relationship between latency and number of glitches.
Both JackTrip and Soundjack exhibited more than one glitch
per second, on average, over the one hour recording. While
this is clearly unacceptable from the perspective of listening
experience, it is nonetheless encouraging to note the feasi-
bility of networked audio transmission under a 10 ms thresh-

13 Note that using a higher sample rate should result in better end-to-end
latency results, but at the expense of increasing both the bandwidth used
and the packet rate.
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Table 2: Latency and quality observed using minimum theoretical
latency (ordered by increasing latency)

Engine latency
(ms)

# of glitches

JackTrip 5.12 20229
Soundjack 8.75 5387
nStream 11.87 130
jack-tools 12.47 78

old using high-performance networks.
The last set of experiments involved setting packet and

queue sizes manually to obtain an approximate “best” trade-
off between latency and quality. As it was not feasible to do
so exhaustively for every possible combination of parameter
values, configurations for optimized transmission were de-
termined manually starting from the minimum packet and
queue sizes and increasing the latter until this resulted in a
subjectively acceptable low number of glitches. In the case
of Soundjack, however, further increase to the packet size
was necessary before acceptable quality was achieved. 14

Algorithmic measurement was then used to confirm that a
good tradeoff was achieved. The resulting configurations,
along with measured latency and number of glitches, can be
seen in Table 3. As a proof of concept, this demonstrates that
low latency can be achieved using existing high-fidelity au-
dio streaming engines, provided that the parameters (at least,
buffer size) is adjusted manually to achieve the best trade-
off between latency and audio quality. However, it is im-
portant to note that this experiment was conducted using an
isolated 100 Mbps Local Area Network, where performance
was significantly better than one can expect from the wide-
area Internet. Moreover, a given configuration that works
well at one time may fail later because of network perfor-
mance variations. Such fluctuations dramatically compli-
cate the deployment of distributed applications that require
audio streaming.

Table 3: Results observed while minimizing latency and maximiz-
ing quality (ordered by increasing latency)

Engine Results Settings
latency
(ms)

# of glitches packet
(samples)

buffer
(samples)

JackTrip 7.04 18 64 128
jack-tools 12.92 13 64 320
nStream 14.54 18 64 128
Soundjack 21.44 52 512 512

14 This may be due to limitations of the operating system scheduler,
which is unable to support the Soundjack requirements efficiently when
packet size is below 512 samples.

5. Current features and future challenges
Today, projects involving distributed musical systems touch
on many aspects of interactivity, and integrate a variety of
software technologies and communication modes. At the
communication level, audio, as well as video, real-time data,
file sharing, monitoring data and other streams are transmit-
ted simultaneously, each requiring its own level of perfor-
mance. Far from being fully integrated, a high degree of
flexibility is needed to ensure adequate usability in meet-
ing each scenario. In this context, we enumerate multiple
challenges for future research and for implementing high-
fidelity streaming engines.

Auto-configuration Our experiments have illustrated the
difficulties that arise when deploying a system that seeks
to achieve optimal audio quality. This complexity is a si-
gnificant obstacle to creating a system covering multiple
sites. Appropriately configuring packet and queue sizes, the
two parameters used by the streaming engines, is crucial for
overcoming the problems presented by a variable network.

Fortunately, network state can be monitored in real-time
by the receiver side of the engine, which can continuously
track both network losses and jitter for adapting packet and
buffer sizes. Format conversion, including sample depth
variation and ultra-low delay compression, is also an inte-
resting option that can provide the necessary foundation for
designing adaptive algorithms that will be able to dynami-
cally compute appropriate data rates. By ensuring efficient
use of network resources while optimizing latency vs. qua-
lity, such algorithms may significantly enhance the capabil-
ities of streaming engines.

User control While we believe that auto-configuration is
critical for the future use of audio streaming, engines should
allow users to increase latency optionally. This can be criti-
cal in various performance scenarios, where the perceptible
delay is a key part of the desired interactivity, or when audio
delivery must be synchronized with other real-time data.

Integration Facing the challenges involved with future
large scale distributed interactive applications, where inter-
action is not limited only to audio, we anticipate that com-
bining the audio information with other data, plus engine
state monitoring, will both be required. In this environment,
it is critical that engines provide state monitoring and con-
trol using standard mechanisms, such as the Open Sound
Control (OSC)[14] protocol.

Mobility As interactive mobile applications become more
dominant, we must contend with limitations of mobile pro-
cessors, such as low-power and fixed-point architectures.
Support for heterogeneity within larger distributed interac-
tive systems, taking into account both fixed- and floating-
point systems, along with any associated format conversions,
as appropriate, will be needed.

Table 4 summarizes the features provided by each of the
streaming engines considered in this paper. Most of these
are basic requirements for addressing the high-level chal-
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Table 4: Streaming engine features

Engine Multichannel Compression User controlled
delay

Multicast Fixed-point
version

Dynamical
configuration

nStream
√ √ √ √ √

Soundjack
√ √ √ √

JackTrip
√

jack-tools
√

lenges described above. In addition, we consider dynamic
configuration, i.e., the ability to modify configuration pa-
rameters during streaming, since this is necessary both to
support user control, as previously discussed, and as a first
step toward auto-configurable engines.

Another option to consider is IP multicasting, which en-
ables a single stream to be received by multiple hosts, taking
advantage of a specific packet routing performed directly by
the network hardware. While this allows a more effective
use of available bandwidth and increases system scalability,
it also increases the challenge of sender auto-configuration
when transmitting to multiple heterogeneous receivers.

6. Conclusion
Many distributed audio performances employ high-fidelity
audio streaming engines to support audio interactivity. These
performances require both low latency as well as high au-
dio quality. In this paper, we investigated the trade-off be-
tween these two factors in four high-fidelity streaming en-
gines. After describing our methods for accurately measur-
ing latency between source and destination and evaluating
quality based on the resulting number of audio glitches, we
presented the results of a preliminary experiment involving
these metrics. The engines we tested provided high fidelity
transmission with end-to-end latency ranging between 7 and
21 ms, well withing the thresholds suggested by the litera-
ture (10 - 25 ms) for networked musical performance.

In addition, taking into account recent trends in distributed
interactive audio applications, we discuss several challenges,
including auto-configuration, user control, integration and
mobility, which should be considered as the next generation
of streaming engines is designed for use in increasingly de-
manding applications. Similar investigations should also be
performed over long distance transmission, and might also
be extended to include other computer music related data,
including video and sensor data. We expect the results of
such studies will continue to provide a better understanding
of distributed musical interactions.
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