
Chess-based Composition and Improvisation for Non-musicians
Dale E. Parson

Kutztown University of Pennsylvania
P. O. Box 730

Kutztown, PA, 19530, USA
parson@kutztown.edu

Abstract
“Music for 32 Chess Pieces” is a software system that
supports composing, performing and improvising music by
playing a chess game. A game server stores a
representation of the state of a game, validates proposed
moves by players, updates game state, and extracts a graph
of piece-to-piece relationships. It also loads a plugin code
module that acts as a composition. A plugin maps pieces
and relationships on the board, such as support or attack
relationships, to a timed sequence of notes and accents.
The server transmits notes in a sequence to an audio
renderer process via network datagrams. Two players can
perform a composition by playing chess, and a player can
improvise by adjusting a plugin’s music mapping
parameters via a graphical user interface. A composer can
create a new composition by writing a new plugin that uses
a distinct algorithm for mapping game rules and states to
music. A composer can also write a new note-to-sound
mapping program in the audio renderer language. This
software is available at
http://faculty.kutztown.edu/parson/music/ParsonMusic.html.

Keywords: algorithmic composition, chess, ChucK,
improvisation, Max/MSP, SuperCollider.

1. Introduction
Performing and improvising music are activities that
typically have high entry fees in terms of time and
incremental skill development required before producing
listenable results. Composition requires creative mastery of
music theory within a cultural context. Performance
requires automation of mechanical skills demanded by a
musical instrument before creative playing and
improvisation become possible. The initial path to
exploring these skills is too steep for some people.

This paper reports initial results of an effort to introduce
non-musicians to musical composition and performance by
way of an interactive computer chess game. The resulting

system allows two players to create music by playing chess
using networked computers. Mapping software within the
chess game translates relationships on the board to musical
structures. The chess program then transmits these musical
structures to a sound generation software process.

Performer for White

Performer for Black

Game Server
process, written
in Python.
Server accepts
move commands
and configuration
changes from
players, and runs
the game

Game-to-sound
plugin maps board
relationships to
tonal phrases. Each
different plugin
yields a different
composition.

Each performer moves &
can change sound plugin
configuration parameters
via UDP networking.

display
updates

ChucK
patch generates
tones from OSC
messages.

Supercollider
patch generates
tones from OSC
messages.

Max / MSP
patch generates
tones from OSC
messages.

or

or

Open Sound
Control (OSC)
messages

Figure 1. Chess-to-music software components.

This modular software architecture supports
composition, improvisation and performance. One form of
composition entails writing a software composition plugin
that maps game structures to musical structures. Another
form of composition entails writing an audio renderer in a
sound generation language. This renderer translates the
musical structures mapped by the composition plugin into
sound.

Figure 2. Piece-to-piece relationships, shown by arrows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or a fee.
NIME09, June 3-6, 2009, Pittsburgh, PA
Copyright remains with the author(s).

NIME 2009157

Provision of a number of plugin-specific configuration
parameters via a graphical user interface (GUI) makes it
possible for players to examine and alter game-to-musical
structure mapping at play time. An example plugin maps
piece-value differential in an attack or support relationship
to sustain duration, maps players’ move speed to tempo,
and maps depth of look-ahead on the board to phrase
length. A different plugin can provide other configuration
parameters to players. A related, current project in an
undergraduate programming course maps sequences of
words in a crossword puzzle game to chords in a MIDI
sequence, where configuration parameters support play-
time manipulation of tonic and scale for letter-to-pitch
mapping, tempo, meter, accents, arpeggiation, and voices
(patches). In addition to sequences of words, other game
state variables such as player identity, score, word length
and point value are available for student translation into
musical properties. Players learn performance and
improvisational constructs both by playing the game and
by learning the game-to-music structure mapping via
graphical parameter manipulation.

2. Related Work
Using a game’s rules and state to compose and generate
music at play time is a relatively new area for exploration.
Game-based compositions in ChucK include an
improvisational ensemble piece based on multiple player
slot machines [1] and a piece based on a video game [2].
The chess system differs from these compositions by
exposing music mapping configuration parameters to
players for manipulation outside the scope of the game.

A notable commercial example is the Lumines™
interactive software game [3] that integrates a block
placement puzzle program with visual effects and music
that are synchronized to the game state. The game
generates music from rules and state in the same spirit as
the chess system. The chess system extends the game-as-
performance concept of Lumines to allow composers to
create new plugins and audio renderers and to allow
performers to improvise by manipulating configuration
parameters directly, outside the scope of the game.

3. Playing Dynamics and Experiences
The most productive approach to generating listenable

music from comes to light when moving into game
configurations that create interesting patterns of sound,
and then bringing patterns to fruition by manipulating
mapping parameters. A sound pattern is intrinsically
interesting because of sequences of harmonies and rhythm
generated by the game state and audio renderer. The
graphical mapping controller makes such a pattern elastic,
so that a player can explore and elaborate a good pattern
before going on by making a move. Alternation between
game playing and parameter manipulation is the main
modus operandi for improvisation.

The author has introduced several populations of
players with some chess playing ability to this music
generation system, including high school students
considering computer science as a field of study, musically
inclined software engineers, and software inclined
composers and musicians. A game distributed across two
computers served as an interactive installation at college
recruiting fairs and at an electronic music festival [4].

Players typically start out by concentrating on chess
playing. Players with some musical background are quick
to begin manipulating plugin configuration parameters. At
some point a switch in focus by a waiting player to the
configuration parameters occurs. Once that switch takes
place, even musical novices can begin exploring concepts
such as tempo, sustain, harmony, transpositions and phrase
structure in a manner that is seamless with playing the
game. Most players with experience in chess become
actively interested in manipulating the musical structures.
There has been no opportunity yet for long term
observation of a population of players to determine effect
on musical skills. However, non-musician players are
clearly learning musical concepts related to both
composition and performance. Musical skill improves with
practice, as with a conventional musical instrument. A
series of plugins with configuration parameters designed
as a music tutorial laboratory could be written to lead
players through composition and performance concepts
beyond those embodied in current parameters.

This body of software is under active, iterative
development. The goal is to create an interactive
framework for constructing new virtual 2D board games
that are oriented towards game state-to-musical structure
mapping determined by compositional plugins with
graphical configuration parameters. Creation of a new type
of musical tutorial laboratory is a long-term goal.

References
[1] S. Smallwood, “On the Floor,” PLOrk: Live at Richardson

Auditorium, http://plork.cs.princeton.edu/listen/richardson/.
[2] S. Smallwood and G. Wang, “Chuck Chuck Rocket,”

PLOrk in the Round, May 2, 2006,
http://plork.cs.princeton.edu/listen/green/.

[3] Lumines™, http://lumines.jp/, January, 2009.
[4] Electro-Music 2008 Festival, August 14-16, 2008,

Kingsport, TN, http://event.electro-music.com/.
[5] Open Sound Control (OSC), http://opensoundcontrol.org/,

January, 2009.
[6] Cycling ’74 Max/MSP, http://www.cycling74.com/,

January, 2009.
[7] G. Wang, The Chuck Audio Programming Language, Ph.D.

dissertation, Princeton University, 2008,
http://www.cs.princeton.edu/~gewang/thesis.html.

[8] SuperCollider, http://www.audiosynth.com/, January, 2009.
[9] G. Loy, Musimathics, Volume 1: The Mathematical

Foundations of Music, MIT Press, 2006.

158

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
