
Freepad: A Custom Paper-based MIDI Interface

Sungkuk Chun

HCI Lab.
School of Media

Soongsil University
Seoul, South Korea

+82-2-812-7520

k612051@ssu.ac.kr

Andrew

Hawryshkewich
School of Interactive
Arts & Technology

Simon Fraser University
Surrey, BC, Canada

+1 778.785.0746

aha50@sfu.ca

Keechul Jung

HCI Lab.
School of Media

Soongsil University
Seoul, South Korea

+82-2-812-7520

kcjung@ssu.ac.kr

Philippe Pasquier
School of Interactive

Arts& Technology
Simon Fraser University

Surrey, BC, Canada
+1 778.782.8546

pasquier@sfu.ca

ABSTRACT
The field of mixed-reality interface design is relatively young
and in regards to music, has not been explored in great depth.
Using computer vision and collision detection techniques,
Freepad further explores the development of mixed-reality
interfaces for music. The result is an accessible user-definable
MIDI interface for anyone with a webcam, pen and paper,
which outputs MIDI notes with velocity values based on the
speed of the strikes on drawn pads.

Keywords
Computer vision, form recognition, collision detection, mixed-
reality, custom interface, MIDI

1. INTRODUCTION
Musical interfaces for MIDI are becoming more and more
accessible, and with current software, can frequently be used for
a variety of different control modalities. This type of accessible
and customizable interface is important as it provides musicians,
and those exploring musical expression with a customizable
form of interaction.

Freepad takes custom interface design one step further,
allowing users to draw their own musical interfaces. While
simple MIDI trigger pads require users to purchase hardware,
Freepad will take a set of shapes on a piece of paper and
through using computer-vision techniques, recognize them as
interface objects to generate MIDI notes from. The system will
work with a variety of shapes and automatically detect them for
use as a music interface.

Taking into consideration musical interface design, Freepad
focuses on developing an extremely customizable and
accessible mixed-reality interface. This system offers the
benefits of being able to prototype interface designs, quickly
create a performance tool, and all with a webcam, pen and a
piece of paper.

2. BACKGROUND
Freepad focuses on three key areas – customization,
accessibility and mixed-reality – each of which are discussed to

provide scope for the system. In particular, Freepad is compared
to a small range of systems each of which embodies some of the
elements Freepad is capable of. The Lemur, is an example of a
customizable multi-touch piece of music hardware [1]; as it
allows users to design and use their own MIDI or OSC (Open
Sound Control) based controls on a digital display. Leaning
more towards physical gestures approximating musical ones are
Wii Music [2] and ZOOZBeat [3], both which use
accelerometers in Wii-motes and iPhones to enable musical
expression. For example, in the case of Wii Music the
percussion playback with the Wii-mote takes on a similar
physical action to the playing of a drum, whereas in ZOOZBeat,
the shaking of an iPhone influences the pitch of the drum being
struck. Moving away from musical interfaces, VooDooSketch is
another reference point in some ways closer to Freepad. As an
example of a user-definable interface, VooDooSketch will
accept drawn interface elements, though at the same time
differs by using dials and sliders that can be pinned to a reactive
surface to detect their state [6]. This presents some of the
similarities to Freepad’s user-drawn interface, though further
distancing VooDooSketch is its demonstrated application in the
context of Photoshop [6].

2.1 Accessibility
Freepad offers a MIDI interface which only requires the use of
a webcam, paper and a pen, where the majority of interfaces for
the computer require the purchasing of additional hardware to
function. In some cases, one is able to employ the computer
keyboard as a basic MIDI interface [5], but this does not offer
the customizability of Freepad, and could not be struck like the
table under the paper on which an interface is drawn.

In comparison with the other examples, Freepad offers a much
higher level of accessibility as it uses only one piece of
equipment – a webcam – in addition to standard computer
hardware. Wii Music requires a Wii and at least one Wii-mote,
and ZOOZBeat the ownership of an iPhone. Both Wii Music
and ZOOZBeat are also geared for entertainment, not for more
rigorous music interface applications. The Lemur requires the
purchase of their multitouch interface, and VooDooSketch
requires the use of a digital pen (Anoto) and a special
conductive mat for assembling the controls on [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME2010, June, 2010, Sydney, Australia
Copyright remains with the author(s).

2.2 Customizability
Both the Lemur and VooDooSketch offer a very high level of
user customization: The Lemur provides users with an
extensive set of control elements which can be set up however
the user sees fit. Similarly VooDooSketch provides elements,
but are in this case a mix of physical and drawn elements such
as sliders and buttons defined or pinned down by the user. For

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

31

customization, both Wii Music and ZOOZBeat offer little
control in the type of interactions the user can perform with the
phone. At the same time, it is important to keep in mind that
both ZOOZBeat and Wii Music are not designed with interface
customizations in mind.

Freepad currently offers users the ability to draw their own
interface for output of MIDI notes. Though it does not offer the
extensive amount of control demonstrated by the Lemur or
VooDooSketch, Freepad's further development will involve the
integration of more complex MIDI control objects (see Section
4.1.1), beyond its current performance focus.

2.3 Mixed-Reality Interfaces
Mixed-reality interface design is a relatively new field which
strives to integrate physical and digital aspects to achieve
interactions in a smooth and usable way [7]. The main drive
behind mixed-reality interfaces is the need to integrate these
two aspects more smoothly, and includes research in tangible
interfaces, augmented reality, augmented virtuality and
embodied interfaces.
Of this set of systems, the only one which really exemplifies a
mixed-reality interface is VooDooSketch. It integrates the
ability of users to define their own controls on a physical object,
and then use them as an interface to digital software. Similarly,
Freepad seeks to achieve this kind of balance between the
physical and digital by using common physical elements –
paper and pens – to generate an interface for playing MIDI
notes on. Unlike other computer-vision based systems, Freepad
also does not require the use of fiducial markers to identify
where pads have been drawn.

3. SPECIFICATIONS
As has been discussed, Freepad works with user-drawn
interfaces to generate MIDI notes using variables such as which
form – known as pad from now on – is being struck and the
speed of the hit. To determine these variables, the system uses
computer vision techniques such as background subtraction [8],
connected component labeling [9], image moments [10], and
collision detection [11] by employing an OpenCV library [12].
These techniques allow the system to parse all closed shapes
and assemble the interface in three stages (overview in Figure
1): Drawing the pad, analyzing the real-time video stream, and
generating MIDI messages.

3.1 Freepad Setup
In Freepad, a user can draw multiple pads without limitations to
what shape or number can be drawn. Outside of these elements,
there is only one limitation, being that the drawn pads must be

within the visual space of the webcam being used. Figure 2
shows the setup and drawing the virtual pads with the webcam.

Figure 2. Setup and drawing of virtual pads.

Figure 1. An overview of Freepad's architecture.

Freepad works with any surface on which a user could draw
pads to form their interface. The pads can then be played either
with hands or 'sticks', such as a pair of pens. For each detected
hit the system outputs a MIDI note message, which can then be
routed into software or hardware synthesizers or samplers.
Within the area viewed by Freepad, each hit is determined using
collision detection algorithms detailed in the next section.

3.2 Pad Definition & Collision Detection
The computer vision component of Freepad deals with two
processes: 1. Defining locations of drawn pads, 2. Detecting
pad hits, which includes calculating the speed of the hit. To
extract multiple pads, the system applies background
subtraction and heuristic filtering based on connected
component labeling [9], and image moments [10] techniques
which are both described below. Then, it continuously surveys
the webcam input to detect hits (collisions) within the area of
each pad. Additionally, if an event occurs, Freepad calculates
the properties of the detected collision: Such as which pad was
struck and the speed of the hit with which it generates an
appropriate MIDI message.

3.2.1 Defining Pads
Interfaces drawn for Freepad are not expected to be drawn the
same way twice, and are therefore not restricted to one shape.
The interface itself is entirely dependent on how the user draws
it. To deal with different shapes, the system extracts the drawn
regions using the computer vision methods of background
subtraction and heuristic filtering.

Background subtraction is a technique used to sort out objects
of interest in a scene and involves comparing an observed
image with a modeled background image. This method looks
for and assesses if any objects of interest exist using
comparison algorithms to model the background against the
observed image.

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

32

Freepad first constructs background image. The pixels of which
are modeled by a single v upd ed by: alue, and at

 B୲ ൌ ሺ1 െ ሻB୲ିଵߙ ൅ αI୲ (1)

B୲ is a background pixel and I୲ is an input pixel at time t. ߙ is a
value dependant on how the background is modeled, and is kept
small to prevent artificial noises which are contained in the
input image. In Freepad, α is assigned 0.01, to reflect that
Freepad use the average of 100 frames as the background image.

In Figure 3, the difference image (Figure 3(c)) is calculated by
subtracting the initial pad image (Figure 3(b)) from a
background image (Figure 3(a)), which is an average of 100
frames worth of images before the user has drawn an interface.
As shown in Figure 3(c), the difference image contains not only
the drawn pads but also some background noise which appears
as the edge of the pad of paper.

To reduce the noise in the image, heuristic filtering is applied
based on the geometric information obtained from connected
component labeling and image moment techniques. Connected
component labeling is used to detect connected regions in
binary digital images, and enables Freepad to detect closed
shapes. Image moment techniques are used to describe the basic
properties of objects such as the centroid, width, height, density,
and orientation of the shape. From these properties, Freepad
calculates the number of pixels and the aspect ratio that is the
ratio of the width of the shape to its height, and then cuts out the
drawn shape if the shape is too small or the of width and height
are extremely different. The used minimum number of pixels is
100, and the aspect ratios are 10:1 and 1:10. Nearing
completion, the system reduces the noise and defines the index
of the shapes using image moments on the detected closed
shapes. The detected pad image appears as shown in the final
frame of Figure 3(d).

Figure 3. Result of defining pads; (a) background image, (b)
initial pad image, (c) difference image, (d) final pad image.

3.2.2 Collision Detection
After defining the pad regions of the input interface, Freepad
has to detect when and how collisions occurs. In Freepad, a
collision occurs when the user’s hand, finger or some form of
stick hit the defined pad. Note that the system uses one camera
without image calibration and the captured image is two-
dimensional. However, the real space in which virtual pads are
played is three-dimensional, which means that Freepad needs to

be able to detect the three-dimensional collision event using a
sequence of two-dimensional reference images.

Figure 4. Distance between top of the pad’s region and

bottom of the stick.
We assume that a collision occurs when the object striking the
pad appears in the pad’s region. In Freepad, the movement of
the object is detected by tracking the distance between the top
point of the region and the bottom point of the striking object in
the set of collision detected frames. At the point which the
distance is determined to be the maximum among that, the
collision event is generated.

Collision Detection Pseudo Code
Variables

1. () : top point of the pad’s region. x୲, y୲

2. , y୧) : bottom point o stick. (x୧ f the
3. : distance between (x୲, y୲) and (x୧, y୧) at time i. d୧
4. Tୱ : time of collision beginning.
5. d(i) : one dimensional discrete function, d(i) = d୧.
6. δሺiሻ : differentiation function.
7. llision_b in : flag to represent beginning of

ion.
co eg
collis

8. T୮ୣୟ୩ and Tୟୢ୨ : threshold value. Local maximum
which is more than T୮ୣୟ୩ are detected by finding
zero crossings of the difference function δሺiሻ. And
the detected local maximum is far from other local
maxima more than Tୟୢ୨.

Pseudo Code
Begin
For(i = 0 ; ; i++){

 Com istances d୧ = ඥሺx୧ െ x୲ሻଶ ൅ ሺy୧ െ y୲ሻଶ pute d .

 IF(d୧ ൐ 0),
 Then collision_begin is true, Tୱ ൌ i.
 IF(collision_begin is true),
 Then
 Compute δሺiሻ ൌ dሺiሻ െ dሺi െ 1ሻ
 If(δሺiሻ ൌൌ 0, dሺiሻ ൐ T୮ୣୟ୩ and Tୱ െ i > Tୟୢ୨),

 Then
 collision occurs at time i.
 veloc is decided based on 1/(Tୱ-i) and ity
 dሺiሻ/(Tୱ-i).
}
End

Figure 5. Algorithm for collision detection

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

33

Figure 6. Collision detection using local maximums; distance function (blue), differentiation result (red), collision point (local

maximum; arrow), and beating speed (duration of collision).
To detect collision events, Freepad first calculates a subtracted
image, which is the difference between the input image and the
initial pad image (Figure 3(b)). It then multiplies the subtracted
image by the final pad image (Figure 3(d)). Then a subtracted
image of the pad’s regions is obtained (Figure 4). From the
pad’s subtracted image, the system calculates the distance
between the top of the pad and the bottom of any colliding
element within the pad’s region. Feepad tracks the distances of
every frame in the distance function, and collision is detected at
the local maximum in the distance function. This maximum is
found by extracting the zero-crossing point in the differentiation
of distance function. The collision detection algorithm used in
Freepad is detailed in Figure 5, and Figure 6 illustrates the
detection of pad hits using a distance function.

As shown in Figure 5, the system uses the thresholds of T୮ୣୟ୩
and Tୟୢ୨ to prevent faulty local maximum detection, because
finding local maximums by differentiation makes it susceptible
to noise in the sequence of data. For example, if the stick only
appears in one frame or some camera noise suggests the
movement of a stick, the system may misunderstand it as a
collision event. Additionally, noise located closely to the local
maximum can result in two collision events from one hit. To
reduce these faulty detections, the system recognizes collisions
only if the distance is over T୮ୣୟ୩ , or the detected local
maximum is far from other local maxima more then Tୟୢ୨ .
Through testing T୮ୣୟ୩ has been given a value of 10, and Tୟୢ୨ is
defined by the user, since it is related to collision detection
sensitivity (see Section 3.4). Small Tୟୢ୨ values enable Freepad
to capture faster hits, whereas, large Tୟୢ୨ values are capable of
reducing faulty collision detections from the camera noise.

As shown in Figure 6, the local maximum can be found from
calculating the zero-crossing point in the differentiation of
distance function. Also, the speed of the hit is based on the
amount of time and the average distance which transpires from
the beginning of a collision to the local maximum occurring in
the distance function. For example, if the number of frames is
smaller and the average distance is higher, the speed would be
higher accordingly. Consequently, the index of a beaten pad and
speed of the hit is used for the generation of MIDI messages,
which is explained in the next section.

3.3 MIDI Message Generation
Using MIDI for output provides users with a variety of options
regarding design and use of a custom interface for music. The
ability to select a variety of synthesizers, samplers or to even
patch the data into other applications such as Max 5 or
PureData could be extremely beneficial to interested users.

Considering these advantages of MIDI, Freepad provides MIDI
note output with two parameters; a note-value and velocity
based on the properties of the detected collision.

Table 1: MIDI Message properties and parameters

Table 1 shows the parameters used in MIDI message generation.
The note-value is the pitch at which a note-on and a note-off
pair occur, and velocity is equal to the volume of a note. Both
are respectively determined by the index and speed of the pad
hit. For example, if the detected pad hit is at index 0, and the
speed of the hit is moderate, the output note would have a pitch
equal to that which has been set by the user (see Section 3.4)
and a velocity around 60. With regards to velocity, if user hits
the pad faster, the output velocity increases accordingly.

3.4 GUI
The GUI for Freepad focuses on easing setup of a newly drawn
interface, so it may be as quick and straightforward as possible.
The result is a three-step setup process to ensure that the
interface works well and consistently for users. The steps are:
Setting the background, parsing the interface and playing it, in
addition to a preference panel for additional setup.

The first step in the process requires the user to establish the
background image which Freepad uses to discern its interface
from. The only requirement is that the user places the desired
pad of paper in front of the camera, and clicks to set the
interface (Figure 7). Once this background image is set, the
paper cannot be moved or the system will lose the ability to
track any of the drawn pads.

Figure 7. 1st step, setting a background image.

Collision property Parameter in MIDI message Range

Pad index Note-value 0~127

Beating speed Velocity 0~127

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

34

In the second step the user is actually drawing and then setting
the interface. The system works with shapes such as rectangles
or ellipses, and cannot detect shapes which are too small, long,
or not closed (see Section 3.2 for details). Similar to the first
step, once the interface is drawn, the user simply needs to click
to set the interface. Freepad then prompts the user with an
image of the detected forms to indicate that it has detected an
interface to play (Figure 8).

Figure 8. 2nd step, drawing and recognizing the interface.

The final step lets the user start playing their custom interface.
Within Freepad is indicated the pad that has been struck, and
the velocity at which it was struck. To the right of the visual
indicators, there are also a set of controls for setting up the
MIDI output of the system (Figure 9). MIDI controls available
to the user include setting a pitch for each pad, instrument
values, and a MIDI channel. The final control available is a
three-level sensitivity setting for collision detection, which
adjusts the Tୟୢ୨ value discussed in Section 3.2.2.

Figure 9. 3rd step, playing the new interface.

The final portion of the GUI which is not presented above is the
preferences for Freepad. These preferences currently offer the
user the option of adjusting camera settings such as frame-rates.

3.5 Current Limitations
As Freepad is the first iteration of a mixed-reality interfacing
system for music, there are obviously some limitations which
should be addressed. In particular, since the system works with
video input, there are latency issues that warrant discussion.

3.5.1 Latency
As a result of the speed with which the system can parse the
information from the video, there is latency between 30-90
milliseconds (ms) between when the user strikes the pad, and
Freepad sends a MIDI signal. In terms of usability, the latency
issues are an important consideration, and an issue that can be
reduced to about 30-40 ms with webcams capable of higher
frame-rates than the standard 24-30 frames-per-second (fps). So
Freepad was tested 100 times with a webcamera set at four
different frame-rates, and the averages and SDs of latency were
calculated for each frame-rate. As shown in Figure 10, the
average and SD gradually decline as the frame-rate increases.
The small average and SD demonstrate Freepad's ability to

quickly respond to a pad being struck, and the stability of the
system. It is also reasonable to suppose that higher frame-rates
would garner an improvement in collision detection.
With a 30-40ms latency, Freepad falls into the approximated
30-40ms threshold, at which the latency between action and
sound is not perceived [13]. Below is a figure illustrating the
changes of average latency and the standard deviation (SD) on
various frame-rates.

Figure 10. Changes of average latency and standard

deviation dependent on camera’s frame-rate.

3.5.2 Web-Camera Frame-Rate
Due to the fps of standard webcams sitting between 24 to 30
FPS, Freepad cannot always read pad hits as quickly as the user
may perform them, as the action could occur between frames
and is never in fact ‘seen’ by the system. This hinders the
usability of Freepad for more common webcameras, but can be
easily remedied with higher frame-rate webcams, which are
slowly becoming more common. To keep up with ever
improving video technologies, webcamera specifications are
starting to provide more motion sensitive frame-rates of up to
90 fps in consumer-grade cameras [14]. Additionally, we
experimented with the recognition rate of user’s hits in contrast
with changing frame-rates on the webcam. The results are
shown in Table 2.

Table 2: Recognition rate of user’s hitting on different
frame-rates.

Freepad was tested 100 times at each frame-rate with randomly
assigned hitting speeds to check whether the system generated a
MIDI signal or missed it. The result of the experiment showed
that Freepad works better with the higher frame-rate cameras as
expected.
These current limitations also present a possible direction for
the future development of Freepad which involves furthering
Freepad's abilities as a MIDI controller. This is due to the fact
that the latency with which Freepad responds would not be as
imperative when employed as a controller as compared to its
use as an instrument interface.

4. FUTURE WORKS
Freepad is a first step towards user-definable mixed-reality
interfacing in music, and as a result, offers a variety of areas in
which it can be developed. There are two areas of development
which involve Freepad: Control and research.

Frame-rate(fps) 15 30 45 60

Recognition rate(%) 45 88 91 96

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

35

4.1 Further Control in Freepad
Currently, Freepad only offers users the ability to draw simple
shapes and use them as a form of pad-based MIDI controller or
note interface. There are two specific areas which this paper
identifies as means of improvement for Freepad: Control Types
and Playback Styles.

4.1.1 Control Types
Rather than working with basic sliders, the inclusion of other
control types would be a worthwhile avenue of exploration.
Including control elements such as buttons or dials similar to
VooDooSketch [6] would make for an extremely portable and
customizable MIDI interface, and an interface which could be
entirely scalable based on the application. Rather than carrying
around large MIDI devices – each for its own set of controls –
Freepad offers the possibility of simply drawing out an entire
interface for use in performance or otherwise.

4.1.2 Playback Styles
In addition to developing on control abilities, different playback
styles or shapes could be worked into Freepad. For example,
when one plays a hand drum such as a djembe, the drum can be
struck in the middle for lower pitches, or near the edge for a
higher pitched sound. Exploring and integrating similar sorts of
mappings could easily be applied to Freepad based on the
distance of the strike into the drawn pad. This offers further
benefits in the system possibly having more refined controls for
fine or detailed musical applications.

4.2 Mixed-reality interface research
Freepad offers users a mixed-reality interface for musical
expression, an area which has not been looked at in depth with
relation to musical interaction. Research comparing how users
perceive and interact with mixed-reality interfaces such as
Freepad to their singular-reality counterparts such as a MIDI
trigger pad would be the next step. This would be beneficial in
helping understand what further benefits mixed-reality
interfaces offer users, apart from those already discussed or
readily apparent.

4.3 Further Uses
The customizable nature of Freepad also offers possibilities for
broader applications. Freepad could offer a quick method for
custom musical interface prototyping, a means for designing
audio controller layouts, or branching outside of music, a
custom video game controller. Camera-based interfaces such as
Freepad can offer a lot of flexibility in the realm of quick and
easy interaction.

5. CONCLUSION
Freepad contributes to the development of mixed-reality
interfaces for musical expression. It offers users an accessible
and customizable interface which could be employed with a
wide variety of synthesizers and audio software due to its MIDI
output. It is only of further benefit in its sheer accessibility by
only requiring a webcam to create a functioning interface for
the user. As Freepad is currently limited somewhat in real-time
interaction due to latency, future development of it as a control
interface will enable users to develop their own MIDI control
interfaces without the need for substantial hardware. Freepad
develops a new way to approach customizable and accessible
music interfaces for any types of users.

6. ACKNOWLEDGMENTS
This research was conducted with the support of the Natural
Sciences and Engineering Research Council of Canada, in

addition to the National Research Foundation of Korea (NRF),
Grant (NRF-2008-000-10175-0), and the Ministry of Culture,
Sports, and Tourism, Korea, under the CTRC (Contents
Technology Research Center) support program supervised by
the KOCCA.

7. REFERENCES
[1] “JazzMutant - Lemur, multitouch modular controller for

sequencers, synthesizers, virtual instruments, vj and light.”
Accessed February 1, 2010.
<http://www.jazzmutant.com/lemur_overview.php>.

[2] “Wii Music | Nintendo.” Accessed February 1, 2010.
<http://www.wiimusic.com/>.

[3] G. Weinberg, A. Beck and M. Godfrey. “ZooZBeat: a
Gesture-based Mobile Music Studio,” Proceedings of the
9th International Conference on New Interfaces of Musical
Expression (NIME), Pittsburgh, PA, USA: 2009, pp. 312-
315.

[4] F. Block, C. Gutwin, M. Haller, H. Gellersen, and M.
Billinghurst, “Pen and paper techniques for physical
customisation of tabletop interfaces,” 3rd IEEE
International Workshop on Horizontal Interactive Human
Computer Systems, 2008, pp. 17–24.

[5] “Sweet Little Piano / A MIDI computer keyboard.”
Accessed February 1, 2010.
<http://www.ronimusic.com/sweet_pi.htm>.

[6] F. Block, M. Haller, H. Gellersen, C. Gutwin, and M.
Billinghurst, “VoodooSketch: Extending Interactive
Surfaces with Adaptable Interface Palettes,” Proceedings
of the 2nd International Conference on Tangible and
Embedded Interaction (TEI), New York, NY, USA: 2008,
pp. 55–58.

[7] E. Dubois, P. Gray, and L. Nigay, eds., The Engineering of
Mixed Reality Systems, London: Springer, 2010.

[8] A. McIvor, “Background subtraction techniques,” In
Proceedings of Image and Video Computing, 2000, pp.
147–153.

[9] H. Samet and M. Tamminen, “Efficient Component
Labeling of Images of Arbitrary Dimension Represented
by Linear Bintrees,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 10, 1988, pp. 579-
586.

[10] C. Teh and R. Chin, “On Image Analysis by the Methods
of Moments,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 10, 1988, pp. 496-513.

[11] S. Kawabata, S. Hiura, and K. Sato, “3D Intrusion
Detection System with Uncalibrated Multiple Cameras,”
Lecture Notes in Computer Science, vol. 4843, 2007, p.
149-158.

[12] “Welcome - OpenCV Wiki.” Accessed February 1, 2010.
<http://opencv.willowgarage.com/wiki/>.

[13] D.J. Levitin, K. Maclean, M. Mathews, L. Chu and E.
Jensen, “The Perception of Cross-Modal Simultaneity,”
Computing Anticipatory Systems Conference, vol. 517,
no.1, 2000, pp. 323-329.

[14] “Philips - Webcams - Webcams with headsets - Headsets -
Notebook webcam - Webcams and headsets - PC products
and phones.” Accessed February 1, 2010.
<http://www.consumer.philips.com/c/webcamsheadsets/13
022/cat/gb/>

Proceedings of the 2010 Conference on New Interfaces for Musical Expression (NIME 2010), Sydney, Australia

36

