
Implementing a Finite Difference-Based
Real-time Sound Synthesizer using GPUs

Marc Sosnick William Hsu

San Francisco State University, Department of Computer Science
1600 Holloway Ave. TH 906,

San Francisco, CA, 94132, USA
msosnick@sfsu.edu whsu@sfsu.edu

ABSTRACT
In this paper, we describe an implementation of a real-time
sound synthesizer using Finite Difference-based simulation of a
two-dimensional membrane. Finite Difference (FD) methods
can be the basis for physics-based music instrument models that
generate realistic audio output. However, such methods are
compute-intensive; large simulations cannot run in real time on
current CPUs. Many current systems now include powerful
Graphics Processing Units (GPUs), which are a good fit for FD
methods. We demonstrate that it is possible to use this method
to create a usable real-time audio synthesizer.

Keywords
Finite Difference, GPU, CUDA, Synthesis

1. INTRODUCTION
Most affordable desktop and laptop systems now include
powerful Graphics Processing Units (GPUs). Recent GPUs
from companies such as Nvidia (http://www.nvidia.com) have
adopted more flexible architectures to support general purpose
computing. Software support for non-graphics computing on
GPUs has also improved significantly in the last few years,
with environments such as Nvidia's Compute Unified Device
Architecture (CUDA) [8] and OpenCL [9]. As a result, there
has been much development of general computing on GPUs. In
particular, we are interested in the use of GPUs for real-time
sound synthesis.
 In previous work, we have shown [12] that it was possible to
use the computationally expensive finite difference method to
generate sound in real-time. We have subsequently been
working to create a usable synthesizer package, Finite
Difference Synthesizer (FDS), based on the finite difference
method, to generate real-time sound.
 Our implementation uses a finite difference-based simulation
for a two-dimensional membrane [1, 7] which runs in real time
on the GPU; the architecture of the GPU is particularly well
suited for this type of algorithm. Finite difference methods are
well known as an effective approach for sound synthesis; see
for example [3, 7]. Such methods can be a framework for
constructing a number of complex software percussion
instruments; sound examples generated using the synthesis
package will be available at
http://userwww.sfsu.edu/~whsu/FDGPU. Finite difference-
based sound synthesis for large or fine-grained membranes and

plates is too expensive to run in real time on CPUs. Previous
studies on audio processing using earlier generation GPUs and
software have been mixed (see for example [14, 5]). Our earlier
results [12] show that it is feasible to implement such compute-
intensive real-time sound synthesis algorithms on GPUs. We
have since re-designed our software framework to improve the
system’s use in a real-time performance setting. This paper will
focus on software details of our real-time finite difference-
based synthesizer for percussion instruments.
 Our paper is organized as follows. Section 2 is an overview
of related work on high-performance audio computing. In
Section 3 we describe the finite difference synthesis algorithm
we worked with. In section 4 we discuss details of our software
implementation. We present experimental setup in section 5,
results and measurements in Section 6. Conclusions are drawn
in Section 7. Section 8 outlines possible future directions for
the FDS.

2. RELATED WORK
The website http://gpgpu.org is a major clearinghouse for
information on general purpose computing on GPUs. Relatively
few audio-related projects are documented on the site. [14]
implemented seven audio DSP algorithms on a GPU. [11]
studied waveguide-based room acoustics simulations using
GPUs.
 GPUs have been used in the real-time rendering of complex
auditory scenes with multiple sources. In [4], the GPU is used
primarily for computing particle collisions to drive audio
events. [16] uses the GPU for calculating modal synthesis-
based audio for large numbers of sounding objects. [13]
proposed a method for efficient filter implementation on GPUs,
and applied it to synthesis of large numbers of sound sources in
virtual environments.
 Faust [10] is a framework for parallelizing audio applications
and plug-ins; it does not currently support GPU computing.
 Bilbao has studied extensively the use of finite differencing
for sound synthesis; see for example [3]. Since large models
based on finite difference methods are too expensive for real-
time performance on CPUs, work has been done for example
on FPGA-based implementations [7]. Our approach leverages
GPUs that are already common on commodity systems, and
does not require custom hardware. Preliminary results and
measurements were reported in [12]; this paper focuses on
details of the current software implementation.

3. FINITE DIFFERENCE AGORITHM
We use the finite difference (FD) method of approximation of
the wave equation with dissipation to simulate a membrane in
two dimensions as derived by Adib [1]. A square membrane is
modeled with a horizontal x-y grid of points. The continuous
function u (x, y, t) is defined on the spatial x and y, and time t; u
is the vertical displacement at the point (x, y) at time t.
 The derivation of the approximation we used can be found in
[3, 6, 12] and is given as:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

264

ui, j
n+1 = 1+ !!t

2
"# $%

&1 " ui+1, j
n +ui&1, j

n +ui, j+1
n +ui, j&1

n & 4ui, j
n"# $%

+2ui, j
n & 1+ !!t

2
"# $%ui, j

n&1

'
(
)

*)

+
,
)

-)
 (1)

where, from [6]:

! = v ! "t
"x

#

$
%

&

'
(
2
 (2)

such that v is velocity of the wave in the medium and η is the
viscosity coefficient. For our experiments, we treat η and ρ as
constants, and used known stable values from Land [6], but
allow these to be changed using Open Sound Control (OSC)
methods in the synthesis package.
 We implemented u as three 2-D matrices of single-precision
(4-byte) floating point numbers so as to maintain compatibility
with Nvidia devices of compute capability 1.2 or lower [8]. We
use the leap-frog algorithm to calculate the values at ui, j

n+1 given

the values of ui, j
n!1 and ui, j

n [1]. Boundary conditions are
maintained at each iteration by testing the values of i and j and
adjusting ui, j

n appropriately. A scalar gain value is used to
either clamp the edge (boundary gain = 0) or allow motion
dependent on the adjacent internal grid point times the
boundary gain (boundary gain < 1) [5]. Corners are given no
special consideration. To obtain different sounds, the values of
n (grid size), η, ρ, and boundary gain are manipulated. For
example, values of η=2x10-4, ρ=0.5, n = 6, and a boundary
gain of 0.75 produces a bell-like tone; values of η=2x10-4,
ρ=0.5, n = 16, and a boundary gain of 0 produces a drum like
tone. Further examples of this can be found at
http://userwww.sfsu.edu/~whsu/FDGPU.
 To obtain audio output, the membrane must be excited in
some fashion, roughly analogous to striking or plucking the
membrane. We use a simple Gaussian impulse to
initialize/excite the membrane. ui, j

n!1 is set to 0, and ui, j
n to a

Gaussian impulse, as suggested in [3, 6]. To obtain audio
output, a point on the membrane is chosen, and the value for
ui, j
n is sampled and scaled at each iteration. For the FDS, the

center point of the grid is chosen as the output point.
 We used Nvidia’s Compute Unified Device Architecture
(CUDA) extension to C to implement our parallel
implementation of the finite difference simulation for the GPU.
Nvidia’s GPU hardware is a SIMT (single instruction multiple
threads) architecture using scalable arrays of multithreaded
streaming multiprocessors [8]. CUDA divides system hardware
into host and device, where the host is the system (PC desktop
or laptop) in which the Nvidia device (or GPU) resides, and the
device is the Nvidia GPU on which the parallel program, or
kernel, executes. The host system first prepares the device and
then hands off execution of the kernels to the device. Each
kernel is executed on the device in a thread, and threads are
combined into one, two, or three dimensional thread blocks. In
a kernel, a thread can obtain its unique x, y, z position in the
thread block, which is what we use to determine the thread’s
position when calculating u. All threads in a thread block
execute simultaneously, but can be synchronized [8].
 Memory between the host and device can be independent or
integrated with system memory, but in either case are addressed
separately on the host and device. On some systems page-
locked host memory (called pinned memory) can be mapped to
the device [8]. Pinned memory simplifies and reduces the
overhead of asynchronously transferring results from the device
to the host.
 In our parallel implementation of the FD simulation, a single
thread is mapped to and calculates each FD grid point. A
thread determines its position in the grid by finding its 2-D
location in the thread block [8]. At each time-step, each thread

calculates one update of the ui, j
n+1 array. Each thread checks to

see if its grid-point is at a boundary; if so, it applies the
boundary condition to that point. The thread that corresponds
to the output grid-point also updates the output buffer with its
vertical displacement over multiple time steps. In order to
maintain coherence over time, the threads are synchronized at
critical points.
 To execute each kernel, the host hands off execution to the
GPU device. The simulation runs for several time-steps, and the
output buffer is filled with the computation results, after which
execution on the GPU device stops.

4. IMPLEMENTATION
Our software implementation of the finite difference membrane
simulation is written in C++ using Nvidia CUDA (The package
will be available for download at
http://userwww.sfsu.edu/~whsu/FDGPU). The FDS system
uses PortAudio (http://www.portaudio.com) (PA) for real-time
audio I/O, liblo (http://liblo.sourceforge.net) for the Open
Sound Control (OSC) interface.
 In order to minimize data transfer latency, both the simulation
data as well as the buffered audio data are stored in GPU
memory. Four grids are kept in GPU memory: FD simulation
grids for the current and two past time steps, as well as a
Gaussian impulse that is used to excite the membrane. When an
excitation command is received, a separate kernel positions,
scales and copies the Gaussian impulse grid into the FD
simulation grids.
 Overall, an FDS-based system acts as an OSC server, waiting
for OSC packets to be received, and reacting appropriately to
controller input.

4.1 Multithreading
During execution, there are three simultaneous threads running
on the host system (Figure 1): a primary foreground thread
handling control, a Port Audio callback thread [2] for system
audio output, and a thread performing the finite difference
simulation producing audio data. Communication between the
audio data producer (FD Engine) and consumer (PA Callback)
is achieved using the PA thread-safe ring buffer.

4.1.1 Primary foreground thread
In addition to initializing and shutting down the system, the
primary foreground thread handles OSC signals and sends user
interface commands to the other threads through appropriate
semaphores.

4.1.2 Finite Difference Thread
The finite difference simulation is contained in its own thread,
and communication with the GPU occurs exclusively in this
thread. As mentioned above, control of the simulator such as
excitation of the membrane is triggered from the primary
thread. After initialization, the finite difference simulation runs
continuously, filling the ring buffer with data as space permits.
To generate sound, the FD membrane must be excited
(perturbed) in some fashion. An arbitrary point on the
simulation membrane is used to generate audio output; for the
current version of FDS, this is the center of the grid. The value
of the vertical displacement of this point at each time step is
placed in the audio buffer. The FD kernel (Figure 2) updates
the vertical displacement of the grid for a fixed number of
timesteps. The displacement of the center point at each timestep
is stored into a temporary buffer in GPU memory. The
temporary GPU buffer is then copied to the ring buffer in
system memory.
 Initially all points on the membrane are stationary and have
zero vertical displacement. Upon receipt of an excitation
command via OSC (e.g. a hit), the primary foreground thread

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

265

Figure 1. Thread configuration during execution.

sends a command to the FD thread to excite the membrane. In
the FD thread, upon receipt of this command an excitation
kernel is called (Figure 2). The excitation kernel copies the
Gaussian curve stored in GPU memory to the FD membrane
history buffer; this impulse induces vibration in the FD
membrane. The excitation kernel can reposition the center of
the Gaussian curve to approximate striking (plucking) the
membrane at different locations on the surface. The Gaussian
curve can also be scaled to simulate harder or softer strikes.

4.1.3 PA Callback Thread
The PA callback thread is a standard audio callback. The
callback reads available data in the ring buffer and copies the
necessary samples to the Portaudio audio output buffer.

Figure 2. Main FD Thread Loop

4.2 OSC Methods
OSC methods [15] for exciting the membrane using fixed and
variable positions, as well as varying amplitude, are available.
In addition, FD simulation parameters can be changed using
OSC methods, to simulate membranes with different material
properties
 As discussed in Section 3, for the FD simulation to generate
different sounds, the values of n (grid size), η, ρ, and boundary
gain are manipulated. For real-time performance, only some of
these can be changed in real-time.
 For the current implementation of the FDS, after
initialization, grid size (n) remains constant. Allocation of both
system and GPU memory takes too long to enable
reconfiguration in real-time. Once the grid size has been set for
a particular sound, it cannot be changed in real-time. The FD
simulation parameters η, ρ, and boundary gain (see above) can
be changed in real-time; OSC methods are provided for each of
these parameters.

 An OSC controller for the iPhone was developed for use in
testing (Figure 3) using TouchOSC (http://hexler.net/).
Touching the X-Y pad results in an excitation to the
corresponding location on the FD membrane, while the Amp
slider linearly scales this Gaussian excitation impulse. Pulse

Figure 3. OSC controller interface used in testing.

and Damp are momentary pushbuttons; Pulse sends a full-
amplitude Gaussian impulse to the center of the FD membrane,
and Damp stops all FD membrane vibration. Eta, Rho and
Boundary sliders modulate the parameters described in Section
3.

5. EXPERIMENTAL SETUP
5.1 System Configurations
We tested our system on a MacBook Pro with a 2.66 GHz Intel
Core i7, 4 GB 1067 MHz DDR3 RAM, and a GeForce GT
330M GPU running OS 10.6.6.
 Timings were taken for two setups. For setup I we held
constant a grid size of 21x21 points, and used kernel output
buffer sizes of 8, 512, and 4096 entries. For setup II we held
the kernel output buffer constant at 4096 entries, and used FD
grid sizes of 15x15, 18x18, and 21x21. These values were
chosen to correspond to previous tests performed in [12]. In all
cases, the ring buffer was guaranteed to have enough space to
accept the full contents of the kernel output buffer.

5.2 Testing
For each timing measurement (i.e. each buffer size in setup I
and each grid size in setup II), we repeated the following
sequence 500 times: run the excitation kernel, check ring buffer
space, perform the FD simulation, and copy the FD simulation
output to the ring buffer. Timing measurements were averaged
over these 500 runs. The built-in CUDA timer routines were
used to time memory transfer, excitation, and FD membrane
kernel execution times.
 A separate test was run with each of the above buffer and grid
configurations to ensure that the audio quality was adequate.
For this test, the membrane was excited and allowed to play for
one second. This was repeated five times. Any audio output
buffer underruns were counted; buffer underruns would
indicate poor audio quality.
 Qualitative testing of the FDS was performed using the OSC
controller in Figure 3, changing parameters in real-time.

6. EXPERIMENTAL RESULTS
The results for the timing tests are summarized in Table 1 and
Table 2. Total time is the sum of excitation time, finite
difference time, and memory transfer time. Buffer sizes of 8,

Open Sound
Control

Port Audio
Callback

Finite Difference
Engine

Ring Buffer

Callback Thread FD Thread

audio
data

audio
data

Foreground Thread

controlcontrol

Execute
FD Simulation

Copy to
Ring Buffer

Buffer
Available?

Hit
Received?

Calculate
Hit Point

Copy to
FD Membrane

Yes

Yes

No

No

Excitation Kernel

FD Kernel

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

266

512, and 4096 samples correspond to audio output of durations
0.181 ms, 11.6 ms and 92.8 ms at a sampling rate of 44,100 Hz.
 For the audio quality test, all kernel output buffer and grid
configurations produced no audio output buffer underruns.
 Satisfactory percussive sounds were produced using the OSC
controller interface in qualitative testing. It was found that the
FDS’s output was sensitive to changes in the FD parameters,
especially η and ρ. Recording of some of these tests will be
available at http://userwww.sfsu.edu/~whsu/FDGPU.

7. CONCLUSIONS
We have successfully implemented a usable real-time audio
synthesizer based on computationally expensive FD
simulations. The results of the audio quality tests show that
with carefully chosen parameters the FD membrane scheme can
generate audio data sufficiently fast to support real-time
synthesis. As expected, the majority of the processing time is
spent performing the finite difference simulation.

Table 1. Setup I: Results for fixed 21 x 21 grid and varying
output buffer size. Timings are averaged over 500 runs.

Buffer
Size

(samples)

Excitation
Time
(ms)

Finite
Difference

Time
(ms)

Memory
Transfer

Time
(ms)

Total
Time
(ms)

8 0.04 0.56 0.02 0.62
512 0.03 6.78 0.01 6.82

4096 0.03 34.31 0.03 34.37

 Table 1 shows that as the buffer size increases, the efficiency
increases. Time to calculate one sample (time per sample,
where 1 sample = 0.026 ms of audio at a sampling rate of
44,100 Hz) for an 8 sample buffer is 0.078 ms, but for a 512
sample buffer it is 0.013 ms, and for a 4096 sample buffer it is

Table 2. Setup II: Results for a fixed buffer size of 4096
samples, and varying grid size. Timings are averaged over

500 runs.

Grid
Size

(points)

Excitation
Time
(ms)

Finite
Difference

Time
(ms)

Memory
Transfer

Time
(ms)

Total
Time
(ms)

15x15 0.03 30.26 0.03 30.32
18x18 0.03 31.81 0.03 31.87
21x21 0.03 34.73 0.03 34.37

0.008 ms. This decreasing execution time makes sense as the
overhead of starting and stopping the simulation and
transferring the data is leveraged over a larger buffer size. But
this also shows that buffer parameters must be carefully tuned
in order to assure adequate real-time performance.
 Table 2 shows that with an increasing grid size, the
simulation efficiency increases. The time to calculate each grid
point is 0.13 ms for a 15x15 grid, 0.10 ms for an 18x18 grid,
and 0.08 ms for a 21x21 grid.

8. FUTURE WORK
As the majority of execution time is spent in the FD simulation,
improvements to this kernel would result in improvements to
the overall system.
 Other computationally expensive simulations may provide
interesting audio results. These simulations would be
particularly suited to this synthesis package if the simulation
can be efficiently calculated in parallel using GPUs.

 To leverage multiple processor environments, current plans
include porting the GPU code to the industry-standard OpenCL
language [9] and testing it across heterogeneous compute
platforms

9. REFERENCES
[1] Adib, A. Study Notes on Numerical Solutions of the

Wave Equation with the Finite Difference Method.
arXiv:physics/0009068v2 [physics.comp-ph]. 4 October
2000. Downloaded from
http://arxiv.org/abs/physics/0009068v2 on April 15, 2010.

[2] Bencina, R., and Burk, P. PortAudio – an Open Source
Cross Platform Audio API. Proceedings of the ICMC,
2001.

[3] Bilbao, S. A finite difference scheme for plate synthesis.
Proceedings of the International Computer Music
Conference, pp. 119-122, 2005.

[4] van den Doel, K., Knott, D., and Pai, D. Interactive
Simulation of Complex Audio-Visual Scenes. Presence:
Teleoperators and Virtual Environments, Vol. 13, No. 1,
pp. 99-111, 2004.

[5] Gallo, E., and Tsingos, N. Efficient 3D Audio Processing
on the GPU. In Proceedings of the ACM Workshop on
General Purpose Computing on Graphics Processors,
August 2004.

[6] Land, B. Finite difference drum/chime. From
http://instruct1.cit.cornell.edu/courses/ece576/LABS/f200
9/lab4.html, 4/15/2010.

[7] Motuk, E., Woods, R., Bilbao, S., and McAllister, J.
Design Methodology for Real-Time FPGA-Based Sound
Synthesis. IEEE Transactions on Signal Processing, Vol.
55, No. 12, pp. 5833 – 5845, 2007.

[8] Nvidia CUDA Programming Guide, version 2.3.1.
8/26/2009. Downloaded 4/21/2010 from
http://developer.download.nvidia.com/compute/cuda/2_3/t
oolkit/docs/Nvidia_CUDA_Programming_Guide_2.3.pdf.

[9] Nvidia OpenCL Programming Guide, version 2.3.
8/27/2009. Downloaded 4/21/2010 from
http://www.nvidia.com/content/cudazone/download/Open
CL/Nvidia_OpenCL_ProgrammingGuide.pdf

[10] Orlarey, Y., Fober, D., and Letz, S. Parallelization of
Audio Applications with Faust. In Proceedings of the
SMC 2009 - 6th Sound and Music Computing Conference,
pp. 23-25, 2009.

[11] N. Rober, N., Kaminski, U., and Masuch, M. Ray
Acoustics using Computer Graphics Technology. In
Proceedings of DAFx, 2007.

[12] Sosnick, M., and Hsu, W. Efficient Finite Difference-
Based Sound Synthesis Using GPUs. In Proceedings of
SMC Conference 2010, Barcelona.

[13] Trebien, F., and Oliveira, M. Realistic real-time sound re-
synthesis and processing for interactive virtual worlds.
The Visual Computer, Vol. 25, No. 5-7, 2009.

[14] Whalen, S. Audio and the Graphics Processing Unit.
Technical Report, Downloaded 4/21/2010 from
http://www.node99.org/papers/gpuaudio.pdf.

[15] Wright, M. The Open Sound Control 1.0 Specification
Version 1.0, March 26 2002. From
http://opensoundcontrol.org/spec-1_0

[16] Zhang, Q., and Ye, L. Physically-Based Sound Synthesis
on GPUs. In Entertainment Computing - ICEC 2005,
Lecture Notes in Computer Science, Vol. 3711/2005.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

267

