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ABSTRACT

This paper presents a novel algorithm that has been specif-
ically designed for the recognition of multivariate tempo-
ral musical gestures. The algorithm is based on Dynamic
Time Warping and has been extended to classify any N-
dimensional signal, automatically compute a classification
threshold to reject any data that is not a valid gesture and
be quickly trained with a low number of training examples.
The algorithm is evaluated using a database of 10 temporal
gestures performed by 10 participants achieving an average
cross-validation result of 99%.
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1. INTRODUCTION

Musicians commonly use body movements such as hand,
arm and head gestures to communicate with other perform-
ers live on stage. This method of interaction is still diffi-
cult, however, between a musician and a computer despite
the accessibility of cheap sensor devices and flexible ma-
chine learning software that can be used to recognise such
gestures. Musical gestures can be difficult for a computer
to recognise because many gestures are not simply static
postures but consist of a cohesive sequence of movements
that occur over a variable time period. Further, these tem-
poral gestures commonly require multiple sensors to ade-
quately capture the movement and a computer must there-
fore construct a model that describes not only the relation-
ship between all the sensors at time ¢, but also how this
relationship changes over time. Training a computer to au-
tomatically recognise musical temporal gestures also creates
a number of interesting challenges that are not commonly
found in other areas of human-computer interaction (HCI).
This is because a musician will frequently want to use their
own sensor technology to capture gestures that are inher-
ently personal to that one performer; using the recognition
of these gestures to interact with a specific piece of real-
time audio performance software. The algorithms used to
recognise a performer’s gestures cannot therefore, in many
instances, be pre-trained prior to being distributed to a mu-
sician; but must instead be trained by the musician. A mu-
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sician therefore requires a recognition algorithm that can
be quickly trained with a few examples of the performer’s
gestures, captured by whatever sensor is most applicable
for that performer. The recognition algorithm employed to
classify such gestures should, therefore, not be constrained
to only recognise the gestures captured by one specific sen-
sor, such as an accelerometer or webcam, but should work
with any N-dimensional temporal signal. The key concept
about designing and evaluating such an algorithm for the
recognition of musical gestures is that, unlike many other
areas of machine learning, the goal of the algorithm should
be to achieve a low intra-personal generalisation error for
the one user that trained the algorithm as opposed to a low
inter-personal generalisation error. This paper presents an
algorithm that has been specifically designed for the recog-
nition of temporal musical gestures. The algorithm is based
on Dynamic Time Warping (DTW) and has been extended
to classify any N-dimensional, also known as multivariate,
signal, automatically compute a classification threshold to
reject any data that is not a valid gesture and be quickly
trained with a low number of training examples.

2. DYNAMIC TIME WARPING

Dynamic Time Warping is an algorithm that can compute
the similarity between two time-series, even if the lengths of
the time-series do not match. One of the main issues with
using a distance measure (such as Euclidean distance) to
measure the similarity between two time-series is that the
results can sometimes be very unintuitive. If for example,
two time-series are identical, but slightly out of phase with
each other, then a distance measure such as the Euclidean
distance will give a very poor similarity measure. Figure 1
illustrates this problem. DTW overcomes this limitation by
ignoring both local and global shifts in the time dimension
[13].

(a) Euclidean Distance (b) Dynamic Time Warping
Figure 1: Two identical time-series, slightly out of

phase with each other, matched using Euclidean dis-
tance and Dynamic Time Warping

2.1 Related Work

There has been much work over the last two decades in
applying DTW to such varying fields as database indexing
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[6] [1], handwriting recognition [17] and gesture recognition
[2] [4]. The vast majority of the recent work into DTW
has focused on making the algorithm more computation-
ally efficient [6] [7], with the time series in these works all
being uni-dimensional signals. Proposed improvements to
DTW included constraining the warping path [12] [5], lower-
bounding [8] [10], numerosity reduction [19] and recursive
resolution projection [13]. It has only been in recent years
that research has been conducted into extending DTW to
multiple dimensions, with the exception of the early work
by Stettiner [14] who proposed an extension of DTW to
multiple dimensions for the application of speech recogni-
tion. Vlachos et. al. [16] extended DTW to match two-
dimensional time series. In previous work by Holt et. al.
[15] and also separately by Ko et. al. [9], multi-dimensional
DTW was achieved by using a distance function such as the
absolute sum, Euclidean distance or cosine correlation co-
efficient to compute the distance over all the dimensions in
the test time series with a template time series for each sam-
ple in time. The result of this distance function was used
by the standard DTW algorithm to compute the warping
cost between the test time series and the template time se-
ries. Wollmer et. al. [18] proposed a different approach
to multi-dimensional DTW, using a three-dimensional dis-
tance matrix to compute the minimum distance between
the input time series and a reference time series. This work
used a bimodal input signal (speech data and gesture data
captured by a mouse) and would therefore be computation-
ally expensive to expand to an N-dimensional input stream
as a large dimensional space would need to be constructed
and navigated for each of the G gestures in the database.

Merrill et al. [11] successfully applied DTW to the recog-
nition of musical gestures. Using the custom-built FlexiGes-
ture (a two handed device that featured a number of sensors
including accelerometers, gyroscopes, along with squeezing,
bending and twisting sensors), a user could train the system
to recognise up to 10 temporal gestures by pressing a ‘trig-
ger’ button which started the data recording process, releas-
ing the button when the gesture was completed. The system
then asked the user to continually re-perform the gesture as
it trained a template model for that gesture. Tests showed
that the system was able to classify novel gestures into one
of 10 classes with up to 98% accuracy.

2.2 Onme-Dimensional DTW

The foundation algorithm for DTW is as follows. Given
two, one-dimensional, time-series, x = {x1,%2,..., x| }T
and y = {y1,¥y2,...,yjy|}T, with respective lengths |x| and
ly|, construct a warping path w = {wi,ws,...,Ww|}T S0
that |w|, the length of w is:

max{|x|, |y|} < |w| < [x|+|y] (1)
where the kth value of w is given by:

(2)

A number of constraints are placed on the warping path,
which are as follows:

Wi = (Xia yj)

e The warping path must start at: w1 = (1,1)
e The warping path must end at: ww| = (|x/, |y|)

e The warping path must be continuous, i.e. if wi =
(¢,7) then wgyi must equal either (¢,7), (¢ + 1,7),
(G, j+1)or (i +1,7+1)

e The warping path must exhibit monotonic behavior,
i.e. the warping path can not move backwards
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There are exponentially many warping paths that satisfy
the above conditions. However, we are only interested in
finding the warping path that minimizes the normalised to-
tal warping cost given by:

|w|

> DIST(wy,, wk,)

k=1

1

min
[w]

(3)
where DIST(wg,;, wy;) is the distance function (typically
Euclidean) between point 4 in time-series x and point j in
time-series y, given by wi. The minimum total warping
path can be found by using dynamic programming to fill a
two-dimensional (x| by |y|) cost matrix C. Each cell in the
cost matrix represents the accumulated minimum warping
cost so far in the warping between the time-series x and y
up to the position of that cell. The value in the cell at Cy; ;)
is therefore given by:

Ci,j) = DIST (i, j) + min{Ci_1,j), C(i,j-1), Ci-1,5-1) }
4

which is the distance between point i in the time-series x
and point j in the time-series y, plus the minimum accumu-
lated distance from the three previous cells that neighbor
the cell 4,7 (the cell above it, the cell to its left and the cell
at its diagonal). When the cost matrix has been filled, the
minimum possible warping path can easily be calculated by
navigating through the cost matrix in reverse order, start-
ing at C(jx|,|y|), until cell C(1,1) has been reached, as illus-
trated in Figure 2. At each step, the cells to the left, above
and diagonally of the current cell are searched to find the
minimum value. The cell with the minimum value is then
moved to and the previous three cell search is repeated until
C(1,1) has been reached. The warping path then gives the
minimum normalised total warping distance between x and
y:
|w]|

! > DIST(wy,, wr,)
k=1

DITW(x,y) = W

(5)

Here, ﬁ is used as a normalisation factor to allow the

comparison of warping paths of varying lengths.

Figure 2: Cost Matrix and the Minimum Warp Path
through it (indicated by the red line)

2.3 Numerosity Reduction

DTW is a useful tool for computing the distance between
two time-series. It is, however, a computational costly algo-
rithm to use for real-time recognition, as every value in the
cost matrix must be filled. Clearly this is unusable for real-
time recognition purposes, particularly if the unknown time-
series is being matched against a large database of gestures.
To speed up both the training of the gesture templates and
the real-time classification of an unknown N-dimensional
input time-series, we tested various methods of numerosity
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reduction. Perhaps one of the most rudimentary methods
for numerosity reduction is to downsample the time-series
by a factor of n. To avoid aliasing, the data is filtered using
a low-pass FIR filter with a rectangular window and a filter
order of n.

2.4 Constraining the Warping Path

Another method commonly adopted for improving the effi-
ciency of DTW is to constrain the warping path so that the
maximum warping path allowed cannot drift too far from
the diagonal. Controlling the size of this warping window
will greatly affect the speed of the DTW computation. If
the warping window is small, a large proportion of the cost
matrix does not need to be searched or even constructed.
The size of the warping window can be controlled by vary-
ing the parameter 7, given as the percentage of the length
of the template time-series. The warping window is then
set as the distance, r, from the diagonal to directly above
and to the right of the diagonal. This type of global con-
straint is referred to as the Sakoe-Chiba band [12]. Itakura
has also proposed another global constrained based on a
parallelogram [5].

3. ND-DTW

Section 2.1 describes the standard implementation of DTW
for two, uni-dimensional time-series. It is common, how-
ever, in computational fields such as gesture recognition to
have time-series that feature multiple-dimensions, such as
data captured by a 3-axis accelerometer. It is in this in-
stance that we require an implementation of DTW that
can compute the distance between two N-dimensional time-
series. We will use the common approach used by [15][9]
to compute the distance between two IN-dimensional time-
series. This takes the summation of distance errors between
each dimension of an N-dimensional template and the new
N-dimensional time-series. The total distance across all
N dimensions is then used to construct the warping ma-
trix C. We will use the Euclidean distance as a distance
measure across the IV dimensions of the template and new
time-series.

DIST(i,j) =

The following section describes our N-Dimensional Dy-
namic Time Warping (ND-DTW) algorithm. In the train-
ing stage, an N-dimensional template (¢4) and threshold
value (74) for each of the G gestures is computed. In the
real-time prediction stage a new N-dimensional time-series
is classified against the template that gives the minimum
normalised total warping distance between the N-dimensional
template and the unknown N-dimensional time-series. We
will now discuss each element of the algorithm in detail.

Time Series  Pre Processing Classification

Class ID
L=Tk
ND-DTW Distance

Null Rejection

Figure 3: The ND-DTW classification chain

3.1 Training the ND-DTW Algorithm

In order for ND-DTW to be used as a real-time recognition
algorithm, a template must first be created for each gesture
that needs to be classified. A template can be computed by
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recording M, training examples for each of the G gestures
that are required to be recognised. After the training data
has been recorded, each of the G templates can be found
by computing the distance between each of the M, training
examples for the gth gesture and searching for the training
example that provides the minimum normalised total warp-
ing distance when matched against the other M,-1 training
examples in that class. The gth template (¢4) is therefore
given by:

My

1 > 1{ND-DTW(X;, X;)}
g
J

—1

¢g = arg min
i

1<i<M, (7)

where the 1{-} that surrounds the ND-DTW function is the
indicator bracket, giving 1 when ¢ # j or 0 otherwise and X;
and X; are the ¢th and jth N-dimensional training exam-
ples for the gth gesture in the form of X = {x1,x2,...,xn}
and x = {x1,%2,...,2x/}T. The ND-DTW function in (7)
is simply the extension of the standard DTW algorithm to
N-dimensions:

|w]

1

ND-DTW(X,Y) = min WZDIST(WIWWI%)
k=1
DIST(i, ) =

3.2 Multi-Threaded Training

One major advantage of using the DTW algorithm is that
each template (i.e. each gesture) can be computed inde-
pendently from the other templates. This is of particular
use on new machines that feature multiple processors as a
multi-threaded training approach can be adopted in which
each template’s training routine is launched in a separate
thread. This training approach greatly speeds up the over-
all training time for a DTW classification system as one
template does not need to wait for the previous template to
be trained before it can start its own training routine.

The DTW algorithm also has one other advantage in that,
if a new gesture is added to an existing trained model or an
existing gesture is removed, the entire model does not need
to be retrained. Instead, a new template and threshold
value only needs to be trained for the new gesture, thus
greatly reducing the training time. If an existing gesture
is removed from the model then no re-training is required
as the DTW classification system simply removes this tem-
plate and threshold value from its ‘database’. This is not
the case for other machine learning algorithms, such as an
Artificial Neural Network, as the entire system would need
to be retrained from scratch any time a new gesture is added
or removed.

3.3 Classification Using ND-DTW

After the ND-DTW algorithm has been trained, an un-
known N-dimensional time-series X can be classified by
computing the normalised total warping distance between
X and each of the G templates in the model. ¢, the classi-
fication index representing the gth gesture is then given by
finding the corresponding template that gave the minimum
normalised total warping distance:

c=argmin ND-DTW(¢4,X) 1<g<G (9

g
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3.4 Determining the Classification Threshold

Using equation (9) X, an unknown N-dimensional time-
series, can be classified by calculating the distance between
it and all the templates in the model. The unknown time-
series X can then be classified against the template that re-
sults in the lowest normalised total warping distance. This
method will, however, give false positives if the N-dimensional
input time-series X is in-fact not made up of any of the ges-
tures in the model. This false classification problem can be
mitigated by determining a classification threshold for each
template gesture during the training phase. In the pre-
diction phase, a gesture will only be classified against the
template that results in the lowest normalised total warp-
ing distance, if this distance is less than or equal to the
gesture’s classification threshold. If the distance is above
the classification threshold, then the algorithm will classify
the gesture against a null class, indicating that no match
was found:

if(d < 1y)

e=1{° , (10)
0 otherwise

where c is given by equation (9), d is the total normalised
warping distance between ¢, and X and 7, is the classifica-
tion threshold for the gth template.

The classification threshold for each template can be set
as the average total normalised warping distance between
¢4 and the other My — 1 training examples for that gesture,
plus v standard deviations:

Ty = pg + (0g7) (11)
where
1
Mo = ST g 1{ND-DTW(¢y, X:)}  (12)
1 O
oy = M. — 2 Z 1{(ND‘DTW(¢97XZ') - /-’LQ)Q} (13)
g

i=1

where the 1{-} that surrounds the ND-DTW function is
the indicator bracket, giving 1 when ¢ # the index of the
training example that gave the minimum normalised to-
tal warping distance when matched against the other Mg-1
training examples in that class (i.e. the template) or 0 oth-
erwise and X; is the ith training example for the gth class.
7 can be initially set to a number of standard deviations
(e.g. 2) during the training phase and later adjusted by
the user in the real-time predication phase until a suitable
classification/rejection level has been achieved.

It is critical when calculating the classification threshold
for each of the g gestures to perform any preprocessing such
as scaling or downsampling in the same order as it would
be performed during the real-time classification stage. If
this is not completed in the same order then the optimal
classification threshold will not be found. We will now dis-
cuss the various preprocessing options that can be used for
ND-DTW.

3.5 Preprocessing for ND-DTW

Pre-processing is necessary for ND-DTW if either (a) any
of the N-dimensional data originate from a different source
range or (b) if invariance to spatial variability and variabil-
ity of signal magnitude is desired. We now discuss both of
these points and give appropriate preprocessing solutions
for each.

340

3.5.1 Varying Input Source Ranges

It is important for each of the N-dimensional data in the
time-series X to originate from a common source range. If
this is not the case then one or more of the dimensions may
heavily weight the results of the DTW. If each of the N-
dimensional data do not originate from a common source
range then each channel should be scaled using min-max
normalisation prior to both the training of the templates
and real-time prediction.

3.5.2 Invariance to Amplitude & Spatial Variability

Spatial variance and variability in the signal amplitude can
be mitigated by first z-normalising both the input time-
series and also the recognition templates. Z-normalisation
will give both the input and template time-series zero mean
and unit variance, therefore removing any affect that spatial
variation or variability in the signal amplitude may have
had. Keogh et. al. [7] also proposed using the derivative
of the input signals to account for similar spatial problems.
This method was also used successfully by Holt et. al. [15].

3.6 Real-time Implementation

The ND-DTW algorithm has been fully integrated into the
SEC!, a machine learning toolbox that has been specifi-
cally developed for musician-computer interaction [3]. The
SEC is a third party toolbox consisting of a large number
of machine learning algorithms that have been added to
EyesWeb?, a free open software platform that was estab-
lished to support the development of real-time multimodal
distributed interactive applications.

4. DTW EXPERIMENTS

Three experiments were run to validate the classification
abilities of the ND-DTW algorithm. To test the algorithm
10 participants were recruited and asked to perform 25 rep-
etitions of 10 gestures. The 10 gestures consisted of ‘air
drawing’ several numbers and shapes with the right hand,
including the numbers 1 -5, a square, a circle, a triangle,
a horizontal line similar to a downbeat conducting gesture
and a vertical line similar to a sidebeat conducting gesture.
Each participant wore a Polhemus magnetic tracking sensor
mounted on their right wrist which was sampled at 120Hz.
The data collected from all 10 participants will be referred
to as the numbers-shapes dataset. Because the ND-DTW
algorithm has been specifically designed for the recognition
of musical gestures, with the objective of creating an algo-
rithm that can be quickly trained to accurately classify the
musical gestures of the one performer that trained it, each
experiment will validate the intra-personal generalisation
abilities of the algorithm as opposed to the inter-personal
generalisation.

4.0.1 Experiment A

This experiment tests the ND-DTW algorithm’s ability to
correctly classify the pre-segmented data from the numbers-
shapes dataset. For each participant, a ND-DTW model
was trained using 10-fold cross-validation, with the aver-
age cross-validation ratio (ACVR) taken over all 10 par-
ticipants being used to evaluate the algorithm. This ex-
periment was run with four conditions (C1) scaling off,
z-normalisation off; (C2) scaling on, z-normalisation off;
(C3) scaling off, z-normalisation on and (C4) scaling on z-
normalisation on. v was set to 2 and a downsample factor
of 5 was used for all conditions. Condition C2 achieved the

"http://www.somasa.qub.ac.uk/ ngillian/SEC.html
http://musart.dist.unige.it /EywMain.html
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maximum ACVR of 99.37%, however the other conditions
also achieved excellent classification results of 98.85% for
Cl1, 98.95% for C3 and 99.37% for C4. This test shows
that the ND-DTW algorithm provides excellent classifica-
tion results on pre-segmented data. The ND-DTW algo-
rithm achieved a perfect recognition result of 100% for sev-
eral participants, with the algorithm achieving a classifica-
tion result of over 99% for all but 1 participant. Figure 4
shows the cross-validation results for each of the 10 partic-
ipants.

97

8

8 8 ®

Cross Validation Classification Percentage
®

91+

Participant

Figure 4: The cross-validation classification results
for each of the 10 participants in condition C2. The
ACVR is illustrated by the dotted horizontal line

4.0.2 Experiment B

This experiment tests the classification abilities of the ND-
DTW algorithm with respect to a minimal amount of train-
ing data. This is an important test for music as, if a model
can achieve as good a classification result with 2 training ex-
amples as it can with 20 training examples, then a performer
can save time in both collecting the training data and also
in training the model. For each participant, a ND-DTW
model was trained using 7 randomly selected training ex-
amples from each of the 10 gestures and tested with the re-
maining data. n ranged from 3 - 20, starting at 3 as opposed
to 1 because at least 3 training examples are required to es-
timate the threshold value for each template and stopping
at 20 to allow at least 5 test examples per trial. To ensure
that the results of this test were not weighted by a ‘lucky’
random selection of the best template from the 25 training
samples of each gesture, each test for n was repeated 10
times and the average correct classification ratio (ACCR)
was recorded and used for validation of the algorithm. -~
was set to 2 for this experiment and a downsample factor of
5 was used. Figure 5 shows the ACCR for each iteration of
n. This test shows that the number of training examples sig-
nificantly effects the classification abilities of the ND-DTW
algorithm. The ND-DTW algorithm achieved a moderate
ACCR value of 74.74% with just 3 training examples. With
20 training examples it was able to achieve an ACCR value
of 92.19%. It should be noted that the standard deviation
over each iteration of 1 and across all 10 participants was
very high. This shows that the classification abilities of the
ND-DTW algorithm is heavily dependent on getting ‘the
best’ training examples. Several participants, for example,
achieved an ACCR value of > 90% with just 3 training ex-
amples. The same participants, however, also achieved an
ACCR value of < 70% with the same number of training ex-
amples, showing that the ‘quality’ of the training examples
heavily influences the results of the classification algorithm.
The results of this test suggest that at least 11 training ex-
amples are required per-gesture if the user wants to achieve
a robust classification result of > 90%.

4.0.3 Experiment C

This experiment tests the ND-DTW algorithm’s ability to
correctly classify data from the numbers-shapes dataset in
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Figure 5: The ACCR values averaged across all 10
participants for each iteration of . The horizontal
blue line indicates the minimal training examples

required to achieve a classification result of > 90%

a continuous stream of data that also contains a number
of null gestures. This evaluates two important aspects of
the ND-DTW algorithm for the recognition of multivariate
temporal gestures. Namely the algorithm’s ability to cor-
rectly classify a set of temporal gestures from a continuous
stream of data and also the algorithm’s ability to reject any
null gesture that is not contained in the model’s database.

For each participant, a ND-DTW model was trained us-
ing 12 randomly selected training examples from each of
the 10 gestures. After each model had been trained it was
tested using a continuous stream of data. The continuous
stream of data originated from the data-collection phase of
the numbers-gestures database and contains all of the par-
ticipant’s trial recordings. The continuous stream therefore
contains not only all of the 25 gestures the participant per-
formed (12 of which were used to train the model) but also,
importantly, the participant’s movements in between each
trial along with the periods of rest.

The continuous stream was tested by running a sliding
window of size w over the data stream in increments of 10.
The window size, w, was individually calculated for each
participant by taking the average length of the 10 ND-DTW
templates for that participant. For the majority of the par-
ticipants, w was 304, with the shortest window length of 248
and the longest window length of 368. At each increment,
the data within the window was given to the ND- DTW
model for classification. Each sample of data had been la-
belled with an ID tag (0 for a null-gesture or the gth class
ID for an actual gesture). This ID tag was used to evaluate
if the ND-DTW model had made the correct classification
for each window of data. As some windows covered a sec-
tion of data that contained half a gesture and noise, the
classification results of a window were only counted if the
maximum ID count within the window was greater than
80% of the length of the window. This test was evaluated
using the average correct classification ratio (ACCR) given
by the total number of counted correctly classified windows
over the total number of counted windows. The average
precision ratio (APR), average recall ratio (ARR) and av-
erage null recall ratio (ANRR) were also computed. These
provided an indication of the exactness of the classifier for
each gesture across all the participants ignoring the null
gestures (APR), an indication of the performance of the
classifier over a specific gesture across all participants ig-
noring the null gestures (ARR) and an indication of the
performance of the classifier at correctly rejecting the null
gestures (ANRR). v was set to 5 and a downsample factor
of 5 was used for this experiment.

This test was run with the same four conditions found
in experiment A. The ACCR values for each of the four
conditions were 83.31%, 84.18%, 74.15% and 74.15% re-
spectively. Condition C2 with scaling on - z-normalisation
off achieved the highest ACCR value of 84.18%. The max-
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Gl | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10
APR | 091 | 0.89 | 0.80 | 0.79 | 0.92 | 0.95 | 0.83 | 0.96 | 0.95 | 0.96
ARR | 093 | 0.78 | 0.85 | 0.81 | 0.82 | 0.66 | 0.94 | 0.93 | 0.92 | 0.90

Table 1: The average precision ratio (APR) and average recall ratio (ARR) for each gesture in condition C2

imum individual correct classification result of 95.23% was
achieved by the algorithm for participant 1, while the algo-
rithm achieved the minimum individual correct classifica-
tion result of 64.09% for participant 8. Table 1 shows the
APR and ARR results for condition C2, averaged over all
10 participants. The APR and ARR results show that the
majority of classification errors were made by in the recall of
the algorithm, as opposed to the precision of the algorithm.
This shows that the ND-DTW algorithm made the majority
of classification errors by misclassifying gesture 7 as a null
gesture, rather than misclassifying gesture ¢ as gesture j.
The ANRR value of 0.88 indicates that the algorithm was
successful at distinguishing a null-gesture from a gesture in
the database 88% of the time.

These results suggest that the ND-DTW algorithm per-
formed well at rejecting null gestures and also performed
well at not misclassifying gesture i as gesture j. The main
error that the ND-DTW algorithm made was in misclassi-
fying gesture 7 as a null gesture. Increasing ¢ would have
increased the threshold value for each gesture and therefore
less gestures may have been misclassified as a null gesture.
However, increasing this threshold value would have also
increased the number of false-positive classifications (were
a null gesture was falsely classified as gesture ¢). This prob-
lem illustrates the compromise that a user must make about
the sensitivity of their classification system. Increasing the
thresholding value will increase the likelihood that a gesture
will be classified but it will also unfortunately increase the
likelihood of false-positive misclassifications. It is for this
specific reason that we have initially set the algorithm to cal-
culate the threshold value as the mean plus two standard
deviations of the error between the template and the re-
maining training examples for each gesture. The performer
is then able to manually adjust this threshold value during
the real-time ‘live’ prediction phase until the algorithm has
reached a satisfactory recognition rate.

5. CONCLUSION

This paper has presented the ND-DTW algorithm which
has been specifically designed for the recognition of multi-
variate temporal musical gestures. Three experiments have
validated the algorithms ability to correctly classify a set
of multivariate temporal gestures with a limited number of
training examples and from a continuous stream of data
that also contains null-gestures.
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