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ABSTRACT
Hyper-instruments extend traditional acoustic instruments
with sensing technologies that capture digitally subtle and
sophisticated aspects of human performance. They leverage
the long training and skills of performers while simultane-
ously providing rich possibilities for digital control. Many
existing hyper-instruments suffer from being one of a kind
instruments that require invasive modifications to the un-
derlying acoustic instrument. In this paper we focus on the
pitched percussion family and describe a non-invasive sens-
ing approach for extending them to hyper-instruments. Our
primary concern is to retain the technical integrity of the
acoustic instrument and sound production methods while
being able to intuitively interface the computer. This is ac-
complished by utilizing the Kinect sensor to track the posi-
tion of the mallets without any modification to the instru-
ment which enables easy and cheap replication of the pro-
posed hyper-instrument extensions. In addition we describe
two approaches to higher-level gesture control that remove
the need for additional control devices such as foot pedals
and fader boxes that are frequently used in electro-acoustic
performance. This gesture control integrates more organi-
cally with the natural flow of playing the instrument provid-
ing user selectable control over filter parameters, synthesis,
sampling, sequencing, and improvisation using a commer-
cially available low-cost sensing apparatus.

1. INTRODUCTION
Hyperinstruments are augmented acoustic instruments with
added electronic sensors used as gesture acquisition devices.
Designed for interfacing a computer in a more intuitively
musical nature than conventional means, they leverage the
performer’s expertise [8]. The pitched percussion family
is problematic when included in electro-acoustic contexts
because it is difficult to acquire a direct signal for sound
reinforcement, signal processing or generating control data.
While typically used for audio reinforcement, dynamic and
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condenser microphones are prone to feedback, don’t fully
capture the signal and pick up unwanted environmental ar-
tifacts. These are poor conditions in which to generate con-
trol data from. It is also desirable to avoid directly adding
electronics and sensors to the instrument. A common ap-
proach to providing digital control without modifying the
instrument is the use of an external interface such as a
fader/knob box or a set of foot pedals. However, this is
problematic as the performer has to stop playing in order
to interface the computer. Foot pedals are a little bit better
but they can still be distracting.

To address these concerns we have developed a set of
tools that take advantage of dynamic gestural parameters
that are intrinsic to pitched percussion performance. Our
tools are designed for capturing these gestures in musically
meaningful, non-invasive ways in order to control the com-
puter in performance. They are based on a combination
of non-invasive sensing using the Kinect and high-level ges-
ture control detection. The goal is to develop novel tools
that any performer can easily adapt and use without sub-
stantial technical installation requirements or musical re-
straints. Our system also addresses cost issues which often
make music technology practice prohibitive. We have ap-
plied these ideas in the vibraphone, the Gyil (an african
xylophone from Ghana), and the Likembe a lamellophone
from central africa. In this paper the vibraphone is used as
a canonical example.

2. PREVIOUS WORK
This paper builds on previous work in the field of percussion
based gesture sensing, machine learning, and machine musi-
cianship. Work by Overholt [3] and Kapur [1] have greatly
influenced the development of the interface solutions pre-
sented. We also look at Machine Musicianship in which a
computer systems can analyze and perform musical events
autonomously [7] and have also been influenced by Shimon,
a robotic marimba [9].

Commercial mallet-percussion based MIDI control solu-
tions are limited. The Simmons Silicon Mallet and Mal-
letKat both incorporate rubber pads with internal FSR’s
laid out in a chromatic keyboard fashion and vary in oc-
tave range. This Simmons offered very little configurability
as it was basically an autonomous instrument and had a
3 octave mallet keyboard controller played with either vi-
braphone mallets or drum sticks. The Malletkat offers the
same typical internal MIDI configurability as high-end pi-



ano style keyboard controllers and can connect to any MIDI
sound module. K&K Sound1 produced a (nowadays discon-
tinued) piece of hardware that extracts control data from
a vibraphone using an array of sensors. The Xylosynth, by
Wernick2, is a digital instrument that aims at providing the
same haptic response of a wooden xylophone while yield-
ing MIDI instead of acoustic data. The Marimba Lumina
is another mallet style controller, and is able to gather ve-
locity, position and contact. Additionally, it allows one to
relate different controls to be triggered when playing differ-
ent bars. These instruments are, in general, technologically
robust, but unable to offer the same haptic feedback as an
acoustic instrument and typically require the instrumental-
ist to modify playing technique in order to achieve successful
results. They are also costly.

Our work has been influenced by several new music in-
strument ideas beyond the pitched percussion family. The
Theremin is unique and relevant in that it is played without
physical contact controlled by 3D hand gestures. The mod-
ern Moog Ethervox, while functionally still a theremin, can
also be used as a MIDI controller, and as such allows the
artist to control any synthesizer with it. With the develop-
ment of new gaming interfaces based on motion controls, it
became easier to generate musical interfaces controlled by
movements. That allows one to use natural motion, which,
as observed by [2], is an inherent part of the performance
of a pitched-percussion player. Motion-based game con-
trollers were used as musical tools in [4], taking as basis
the WiiMote device. In [10], the idea of using the Kinect
as a controller to musical expression is discussed. In that
work, the Kinect was used as a low cost way to obtain posi-
tion data in order to enhance the soundscape manipulation
capabilities of a performer.

3. NON-INVASIVE SENSING
In our previous work involving non-invasive sensing [5], the
Kinect and it’s associated software libraries were used to
perform human skeleton tracking. This tracking is used to
produce estimated positions of the performers limbs, which
can then be mapped to musical parameters. Each cartesian
axis of motion was maped to filter parameters that mod-
ify live and sampled audio from the vibraphone, creating a
control volume accessed through the mallets in the space
over the keys. A new extension of this work introduces a
form of augmented reality to our hyper-vibraphone. Using
the Kinect webcamera and computer vision libraries, we
are able to detect the position of the percussionist’s mallet
tips. This tracking is used to augment each bar of the vi-
braphone with the functionality of a fader. Using this tech-
nique on a 37 bar vibraphone, it is possible to provide the
functionality of 37 virtual faders that may be used as tradi-
tional controllers. This augmentation, illustrated in Figure
1, provides an intuitive platform that allows the performer
to control a large number of sliders without turning away
from the instrument.

Currently we are tracking mallet tips based on their color.
In order to detect the positions of the mallet tips, the color
image from the video camera is transformed into Hue, Sat-
uration, and intensity Values (HSV). Each of these signals
is thresholded to filter out unwanted colors. The resulting
signals are combined, and a contour detection algorithm
is executed. This process yields bounding rectangles that
identify the mallet tips. The centroid of the bounding rect-
angle is assumed to be the position of the mallets in the
virtual representation.

1http://www.kksound.com/vibraphone.html
2http://www.wernick.net/

Figure 1: Virtual Vibraphone Faders

Determining the position of the mallet tips in terms of
the vibraphone bars requires the creation of a virtual rep-
resentation of the instrument. This representation was cre-
ated using explicit measurements of the vibraphone’s bars.
These measurements were used to create a model consist-
ing of the set of bars, each with a corresponding placement,
size, pitch, and an associated control value. The algorithm
supplies the mallet positions relative to the camera, but we
actually want our position data in the virtual space. Effec-
tively mapping the tracked mallets involved several trans-
formations, and requires a calibration phase in which the
position of the vibraphone with respect to the camera is
also recorded. Once we have obtained the position of the
mallets in the same space as the vibraphone, the system
yields information on what bar is currently covered by the
mallet, and a fader value associated with that bar. A delay-
based activation time was added to the algorithm, so that
the performer must pause on each bar for a pre-defined time
before the sliders will start to change.

The 640x480 resolution used in our prototype is sufficient
to perform accurate detection of the mallet positions. The
main resolution restriction is that the camera should point
at the vibraphone from a distance that makes each bar to be
present in a reasonable number of pixels. While this may
suggest using a higher resolution, it is important to note
that the algorithms must be executed in real-time, therefore
less data is desirable. Future work will involve fusing the
video camera data with IR sensors data, as well as using
motion tracking algorithms in combination with our current
contour detection algorithms. This fusion will improve the
robustness of the tracking system, and address the current
sensitivity to changes in ambient lighting.

4. FORECASTING OF POSITION DATA
We describe a method that is capable of forecasting the con-
tinuation of a given data array x[n], where x[n] is the value
of the n-th reading of a certain sensor. The forecasting al-
gorithm does not require any previous training on previous
templates, which means that the musician has freedom to
improvise and generate creative soundscapes and define the
appropriate gestures while performing. The key idea is that
the gesture is identified by being repeated without requir-
ing a preset looping duration. When forecasting, the system
provides data which aims to be equivalent to the sensor data
that would be yielded if the musician continued the previous
gesture. This allows the performer to continue playing while
still getting the soundscape variations derived from sensor
data. The forecasting method is based on evaluating what
time lag, in samples, is most likely to be the fundamental
period of the received data. This means that although the
motion may be freely composed and improvised only repet-
itive motions can be predicted by the system. The method
begins by estimating the autocorrelation of the last N input



samples, which is defined as:

rx[k] =

N
2
−1∑

n=0

x[n]x[n− k]. (1)

An autocorrelation signal presents peaks at positions k
that correspond to the time lags to which x[n] is mostly
self-similar. However, there are some other peaks, especially
at the zero time lag k = 0 that must be filtered out. In
order to do that, a signal r′x[k] is calculated by upsampling
rx[k] by a factor of two and subtracting it from the original
signal. The value j = arg max r′x[k] is obtained by a simple
linear search. The forecasting, then, proceeds by yielding an
estimate x̂[N+1] = x[N−j+1]. The quality of the estimate
may be evaluated by the ratio rx[j]/rx[0], which will present
values closer to 1 when the signal is significantly periodic
and values. The forecasting system works in three different
modes: learning, predicting and bypass. The learning mode
should be triggered when a new gesture is to be acquired.
While in this mode, the internal buffer is updated and the
forecasting algorithm is executed at each new sample. Since
learning mode assumes that the gesture is not yet learned,
the system yields bypassed data instead of predicted data.

When the prediction mode is triggered, the system starts
yielding forecasts, adding them to the internal buffer as if
they were received as inputs. While in this mode, the sys-
tem does not recalculate the forecasting algorithm, sticking
with a single value for j during the whole process. The
operation of bypass mode is to simply bypass input data
to the output, while ignoring any operations regarding pro-
cessing. Hence, if the prediction mode is triggered while
the system is in bypass mode, the system will recall the last
learned pattern. When operating in the bypass mode, the
system preserves the last learned gesture, hence it may be
used again by triggering the prediction mode.

The internal operation of the system is visualized in Fig-
ure 2, which shows the input (bypassed) data from a one-
dimensional sensor and the predicted data. The figure was
generated while acquiring manually-driven data from a one-
dimensional sensor. In the first five seconds, the system is
in bypass mode, and the prediction system has received any
samples yet. When the learning mode is triggered, the pre-
dicted data quickly synchronizes with the repetitive sensor
data received as input. When the prediction mode is trig-
gered, the forecasting system continues the learned gesture
and ignores the sensor data.
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Figure 2: Visualization of different modes of opera-
tion for the sample forecasting system.

5. RECOGNITION OF DRUM PATTERNS
Another approach to gesture control is to recognize percus-
sive patterns from a user defined set of patterns in order to
initiate computer-controlled musical events. The proposed
system aims at providing the performer the possibility of

influencing the computer ensemble using musical cues with-
out having to alter the playing technique, which represents
a significant improvement over conventional external tactile
controls. Our approach is based on calculating the similar-
ity between an input drum pattern, played at a certain point
during the execution of a piece, and a previously recorded
pattern. The similarity is a continuous value that is greater
when the pattern played is closer to the recorded pattern. If
the similarity value exceeds a certain user-defined threshold,
the system triggers an associated action.

Two equal length sequences of numerical data can be
compared in terms of a single value between one and zero.
A value of one indicates the two sequences are identical,
whereas zero indicates a drastic lack of similarity between
the two data sets. This similarity computation is known
as correlation. Equation 2 computes a value that describes
similarity between two sequences.

Similarity =

∑N−1
n=0 x[n]y[n]∑N−1

n=0 x[n]2 ×
∑N−1
n=0 y[n]2

(2)

To account for slight variation, sequences can be con-
volved with a Gaussian function with standard deviation σ
and mean µ, as shown in Equation 3, before being com-
pared. This process results in a smearing of the sequence’s
values to adjacent locations, as seen in Figure 3.

f(x) = 1

σ
√
2π
e

(x−µ)2

2σ2 . (3)

Figure 3: Convolution with Gaussian function.

To assemble such sequences in real time, the proposed
system assumes that the player will perform to a specific
tempo. For each time interval in the measure, if an onset is
detected, it is notated in the sequence using a value of one.
Otherwise a value of zero is used indicating a rest. The onset
algorithm used calculates the power of the input signal and
triggers onsets when a threshold has been surpassed [6].

From the methods described, similarity between musi-
cal patterns can be calculated. To do so, the system must
have two modes of operation: recording a template pattern
and comparing incoming patterns to the template pattern.
When comparing incoming patterns the similar value of the
input pattern to a set of stored templates is calculated and
if it exceeds a user defined threshold an event is triggered.

In order to gain perspective on the effectiveness of the sys-
tem in a real performance situation, the pattern recognition
system was tested with a human percussionist performing
on a traditional West African pitched percussion instrument
known as the Gyil. The instrument provided audio input to
the software through the use of contact microphones that
were mounted to each bar of the instrument. The pattern
recognition system was used to recognize patterns played on



a single bar. Of the two types of tests done, the first pro-
vided similarity values when a pattern was played during a
performance. In this first test, the sampled bar was only
played when the user wished to trigger the software using a
pattern. Otherwise, the bar was avoided as the performer
played the instrument. In the second test, the entire instru-
ment was utilized by the performer; the sampled bar was
used for both triggering patterns and for playing.

The first test used five unique, one measure long rhythms
that were tested ten times each at two different tempos.
The two tempos used to test varied by one-hundred beats
per minute. For all one-hundred measurements in the first
test, an average similarity of 0.731 was calculated. The
measured similarity values were affected most drastically
by two factors: the human inaccuracies when recording the
template pattern and the human inaccuracies when repeat-
ing the pattern in order to trigger some action. The second
test used a fixed threshold of 0.731 at 172 beats per minute
(BPM) in order to test how often the system incorrectly
triggered an action during a sixteen bar solo. During each
solo performance, the user played rhythms on the sampled
instrument bar every second measure. The number of times
an action was not triggered when the player intended to do
so was also documented. Of the ten tests for these sixteen
bar solos, the system incorrectly identified a player’s pat-
tern as being the template pattern only twice, or 0.025%
of the measures in which the bar was played. Of these two
incorrectly identified patterns, there was stark similarity to
the template pattern, and it was unsurprising that the sys-
tem gave a false positive result. When the player intended
on triggering an action by performing the template pattern,
these tests gave no negative results.

6. DISCUSSION
All systems described in this paper were implemented with
the aim of being used in a computer music environments
such as Max/MSP3 and Ableton Live4. The computer vi-
sion system uses the openCV 5 and openFrameworks 6 li-
braries. It is compiled as a standalone program that yields
Open Sound Control (OSC) messages. The gesture repeti-
tion algorithm described in Section 4 was implemented as
a patch for Max/MSP. This allows the user to design the
exact means by which each mode will be triggered – the
user may require a specific button to trigger each mode,
or simply a button that cycles through all modes, or even
some other interface that makes more sense in an specific
context. The patch also offers as feedback the current value
for the maximum autocorrelation coefficient and the index
of that value – when both remain more or less constant for
some time, it means that the system has acquired a certain
gesture. Last, the drum pattern detection algorithm de-
scribed in Section 5 was implemented using the Max4Live7

framework.
This paper has presented different ways of augmenting

pithed percussion instruments such as the vibraphone with
digital control capabilities. Using our approach they can
be turned into hyper-instruments without requiring inva-
sive additions to the instrument. One of the authors is
a skilled vibraphone instrumentalist with a background in
computer music. From the perspective of a skilled vibra-
phone performer, this toolset works as it should and offers
a level of interaction with the computer previously unavail-

3http://cycling74.com/
4http://www.ableton.com/
5http://opencv.willowgarage.com/
6http://www.openframeworks.cc/
7http://www.ableton.com/maxforlive

able without interrupting native performance techniques
(setting the mallets down to interface tactile controllers,
etc). The virtual faders are responsive and accurate to the
point that using the mallets tips on the surface of the bar
proves a sufficient and intuitive fader style interface. The
technique required is similar to the pitch bend extended
technique. The system could be improved by adding verti-
cal detection of the mallet tip to engage/disengage rather
than only a time based approach. This would solve the
problem of accidental activation when playing on a single
bar long enough to engage it’s respective fader. The two
methods of gesture control based on repetition and rhyth-
mic patterns offer effective ways to transmit control data
while holding the mallets. Issues with calibration and map-
pings could be assisted with a more comprehensive GUI.
While the system can stand to be improved, it is ready,
as is, to be used within its known limitations on stage in
performance. In future work, further improvements on the
usability and effectiveness of the proposed algorithms will
be implemented. Media files related to this work can be
found at http://opihi.cs.uvic.ca/nime2012gesture. All
the associated software is available upon request. We hope
that this will facilitate wider adoption of non-invasive sens-
ing approaches and expand our user base.
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