
SoundCraft: Transducing StarCraft 2

Mark Cerqueira
Smule, Inc.

577 College Avenue
Palo Alto, California
mark@smule.com

Spencer Salazar
Center for Computer

Research in Music and
Acoustics (CCRMA)
Stanford University

spencer@ccrma.stanford.edu

Ge Wang
Center for Computer

Research in Music and
Acoustics (CCRMA)
Stanford University

ge@ccrma.stanford.edu

Figure 1: A SoundCraft performance in progress.

ABSTRACT
SoundCraft is a framework that enables real-time data gath-
ering from a StarCraft 2 game to external software appli-
cations, allowing for musical interpretation of the game’s
internal structure and strategies in novel ways. While play-
ers battle each other for victory within the game world, a
custom StarCraft 2 map collects and writes out data about
players’ decision-making, performance, and current focus on
the map. This data is parsed and transmitted over Open
Sound Control (OSC) [9] in real-time, becoming the source
for the soundscape that accompanies the player’s game. Us-
ing SoundCraft, we have composed a musical work for two
StarCraft 2 players, entitled GG Music. This paper details
the technical and aesthetic development of SoundCraft, in-
cluding data collection and sonic mapping.

Keywords
interactive sonification, interactive game music, StarCraft 2

1. INTRODUCTION
Games are a medium of expression. They are inherently
interactive, social, and expressive. They can also be com-
petitive and nuanced. Take those layers of nuance and put

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

sound to them, and one perceives the game in a different
way.

The world has become more interconnected via technol-
ogy, and video games have become more social as well. Mas-
sive communities have built themselves in and around video
games fostering cooperation, collaboration, exploration, ex-
pression, and many times competition among its members.
In its conception, SoundCraft seeks to unravel the layers
of nuance present in a widely popular game that centers
around conflict between players and reinterpret those layers
in real-time to build an accompanying musical experience.

In its realization, SoundCraft seeks to open up a complex
game engine to create opportunities for creative and novel
interpretations of the game.

2. BACKGROUND
SoundCraft centers around the widely popular RTS or ”real-
time strategy” video game series StarCraft 2 by Blizzard
Entertainment. In StarCraft 2, players control one of three
races: the Terran, humans who were exiled from Earth long
ago; the Zerg, an insect-like alien species mindlessly bent
on overrunning and assimilating other species; and the Pro-
toss, a humanoid species with highly advanced technology
and great psionic abilities seeking to annihilate the Zerg 1.
The game includes a story-driven campaign mode, featuring
cinematic story-telling, that explores the struggles of each
of the races in the universe. Aside from the campaign, play-
ers can play custom maps designed by community members
or battle against other players over the Internet.

A competitive scene has even built itself around Star-
Craft with leagues and tournaments taking place all over

1http://us.battle.net/sc2/en/game/race/

�2�4�3



the world drawing crowds of spectators to cheer for their
favorite professional gamer or team. Fans watch the game
as a spectator sport from the perspective of an all-seeing
director/observer who decides what action is shown, and
commentary is normally provided by casters who have deep
knowledge of the game and strategies.

During a game, players see the action from a top-down
perspective and only have vision of the map where they have
units or buildings present. Players switch between building
up their economy by constructing workers that collect re-
sources and building an army to do damage to their enemy.
A player who is able to build a strong economy and the
proper composition of units that counter their opponent’s
units is in an advantageous position. The game ends when
a player destroys the other player’s structures, or the other
player surrenders.

3. RELATED WORK
SoundCraft’s use of a video game as an interface for produc-
ing music is directly influenced by many other works and
research in the computer music community.

In the 2008 paper Composing for Laptop Orchestras, found-
ing members of the Princeton Laptop Orchestra (PLOrk)
discuss the possibilities of using games in computer music
environments as well as some of the game-centered pieces
they have developed. One early and relevant piece to Sound-
Craft is Scott Smallwood’s The Future of Fun (1983), which
has each performer playing a different game from the Mul-
tiple Arcade Machine Emulator (MAME). Performers pick
a game from MAME, which features games from the early
1980s arcade-game era, such as Pac-Man, Defender, and
Donkey Kong, and play the game for a specified amount of
time. The sounds each game produces become the piece,
which while different from game to game, contributes to a
soundscape of low-resolution synthetic sounds common to
that era [6].

Rob Hamilton of Stanford University’s Center for Com-
puter Music Research and Acoustics (CCRMA) developed
a modified version of the popular first-person shooter (FPS)
Quake 3 to enable bi-directional communication between a
game and external audio servers via OSC. Dubbed q3osc,
the modified game allowed players to connect with each
other over a local area network or internet and control an
avatar that could fire projectiles. The data for these projec-
tiles is shared via OSC and in one of the mapping schemes
Hamilton explores, the collisions of projectiles and environ-
ment surfaces triggered impulses through a resonant filter
in a ChucK program [3].

Hamilton continued his work with game engines, modify-
ing the Unreal Developer’s Kit (UDK) to add OSC function-
ality, creating the UDKOSC framework [4]. This framework
was used by Charles Verron and George Drettakis to explore
plausible and efficient implementations of sound synthesis
for rain, fire, and wind that could be used for video games.
Verron and Dettakis created different, fundamental sound
atom units that could be combined to form these sounds.
To test their implementation they created an interactive
scene using the UDK game engine for graphics rendering,
an external Max library for sound rendering, and the UD-
KOSC library to communicate between them. The scene
also supported spatial distribution of sound sources for lo-
calized sources (fire) and diffuse sounds (rain and wind) [7].

4. WHY STARCRAFT 2?
Of fundamental importance to the sonification of a com-
puter game is the gameplay itself. In terms of gameplay,
a run-and-gun first-person shooter (FPS) game emphasizes

the perspective of a single actor within the game and his
or her direct interactions with the game world and other
players. As seen in Hamilton’s work, such gameplay is read-
ily sonified with sound sources distributed throughout the
game world, spatialized from the perspective of the player.
Specific in-game actions, such as flipping a switch or shoot-
ing a projectile, are mapped directly to a sonic result. Real-
time strategy games differ significantly in terms of game-
play, in that the perspective is an overview of the current
game state and interactions with the game world are in-
direct. The player gives orders to large groups of worker
and soldier units in the game, which carry out those orders
based on simple artificial intelligence algorithms.

Consider moving a unit or group of units from point A to
point B. In a FPS game, a player has control over a single
character and simply moves that character from A to B. In
StarCraft 2, a player issues the move command to a select
group of units and chooses the destination. A pathfinding
algorithm takes over and handles getting units from A to B
in the shortest time possible. While Blizzard has not pub-
licly discussed its pathfinding technique, many community
members inferred that StarCraft 2 uses techniques based
on sophisticated flocking AI 2, which attempts to mimic
the movements of a flock of birds or a school of fish. Craig
Reynolds explored and implemented one of the earlier mod-
els for flock simulation for Boids, a generic flocking creature.
Flocking consists of a combination of steering behaviors -
the most fundamental behaviors that allow a character to
navigate their surroundings in a lifelike manner [5]. Such
artificial intelligence behaviors have been employed for mu-
sical purposes in Hongchan Choi’s Lush, an ”organic” mu-
sical sequencer program in which groups of boid creatures,
controlled by flocking behavior, activate musical patterns as
they flit about the screen [2]. SoundCraft, by harnessing ar-
tificial intelligence behaviors already present in StarCraft 2,
presents similar opportunities to orchestrate musical works.

Figure 2: Harvesters mining minerals and vespene
gas, which triggers musical events.

In addition to the complex algorithms used for unit move-
ment, units themselves automatically behave in ways that
can be musically interesting. Consider a harvester unit that
mines resources, like a mineral node, and returns it to the
foundational structure where it then becomes available for
use by the player (Figure 2). There is a complex set of rules
that govern this entire process, which the player may be un-
aware of, as it is all done automatically. The entire process
begins with a harvester unit accelerating to full speed as
it moves towards the node, decelerating to a stop as it ap-
proaches the node. Once stopped at the node, the harvester
mines the node for exactly 2.768 seconds, then pauses for

2http://www.teamliquid.net/forum/viewmessage.php?
topic id=132171

�2�4�4



Figure 3: Flow of data among players and between the game space and auditory space.

0.5 seconds, before it accelerates to full speed away from
the resource node towards the foundational structure. As
it approaches the structure to deposit the collected miner-
als, it decelerates to a stop 3. While monitoring one worker
harvesting one node may seem only marginally interesting,
when you scale up to the eight mineral nodes a typical
base will have, with the optimal three workers per node,
and then include vespene gas gathering which operates on
a slightly different timing mechanism, a far more interest-
ing scenario is created. These workers become members
of an autonomous multi-agent system, which has been ex-
plored for music composition in the past. Researchers from
Zurich University of the Art’s Institute for Computer Mu-
sic and Sound Technology developed the Interactive Swarm
Orchestra (ISO) that supported the creation of multi-agent
systems consisting of point-like members possessing simple
behaviors [1].

In StarCraft 2 a player is able to give different units dif-
ferent orders. This allows for parallelization, which is not
available in games where a single player controls a single
character by giving it a set of instructions that are pro-
cessed in a serial fashion. Not only can different actions be
issued as fast as a player can input them, a player can also
queue up orders, creating a complex set of actions to exe-
cute automatically. For example, a group of units can be
told in one string of commands to board a dropship that will
then transport the units across the map, drop those units
off, and then have the units move to another point before
attacking potential enemies. While the units are executing
those orders, another set of units can be instructed to move
to potential enemy bases, attacking any enemies found along
the way. The game itself can be extremely high-action at
times, even though the player at that precise moment may
not even be watching as his units simply execute on orders
given several moments before.

These dimensions of StarCraft 2 ’s gameplay can be fur-
ther expanded by customizing the maps on which players
do battle. Blizzard provides a tool just for this purpose, the
Galaxy Map Editor. The design of a map greatly influences
which strategies will be successful and the general flow of
the game. With the Galaxy Map Editor, a map creator can
decide what types of terrain features players must overcome
to fight their enemy, what additional territory is available
to harvest economic resources from, and many other map
design aspects. This diversity of potential gameplay trans-

3wiki.teamliquid.net/starcraft2/Mining Minerals

lates into a variety of player actions, providing a rich field
for sonification.

The three different races of the StarCraft universe offer
another interesting opportunity for musical expression. Not
only does each race have a different look and feel as well as
a set of different units with distinct abilities and proper-
ties, but the strategies employed by each race vary as well.
For example, all Zerg units come from the same pool of re-
sources: larva. Since a strong economy is key to winning
games, a Zerg player will want to spend as much larva as
they can on building workers that collect resources. Only
when a threat is incoming will a Zerg player want to spend
larva on the necessary fighting units. The other two races,
Terran and Protoss, do not share this constraint of sharing
economy-building and army-building. Thus, even if a sim-
plistic mapping were created where all worker units and all
fighting units were sonified equivalently across all races, the
audible result would vary from one race to another as when
these units are built varies.

5. SYSTEM OVERVIEW
SoundCraft consists of a set of utilities that work in tandem
to get data from a StarCraft game to OSC clients that can
creatively express that data. A diagram of the system is
shown in Figure 3. The main components include a custom
StarCraft 2 map developed with Blizzard’s publicly avail-
able map-making tool, and a game data output parser and
OSC dispatcher developed in Ruby.

5.1 Creating the Custom Map
An existing StarCraft 2 map, Bel’Shir Beach, shown in Fig-
ure 4, created by community member LSPrime 4 , was mod-
ified to collect various data in real-time during a game using
triggers. Triggers can be thought of as instructions that ex-
ecute after an event occurs. Events that cause triggers to
run can be occurrences in the game (e.g. a unit is produced)
or can be fired off periodically (e.g. every 2 seconds) 5. For
example, one particular trigger used extensively in Sound-
Craft collects game state and writes it to a set of XML
files. The map created while developing SoundCraft is for
two players battling against each other, but the triggers can
be shared to any other map with any number of players or

4http://wiki.teamliquid.net/starcraft2/Bel’Shir Beach
5http://us.battle.net/sc2/en/game/maps-and-mods/
tutorials/trigger/

�2�4�5



Figure 4: Bel’shir Beach, with points of interest
highlighted.

custom games that feature custom objectives and story el-
ements.

Data collected during the game focuses on events as small
as an ability being used by a single unit to more macroscopic
events such as the economic status of a player.

Tracked data includes:

• The player’s race (i.e. Terran, Protoss, or Zerg)

• Coordinates where a player is currently focused on the
map

• Composition of the player’s standing army

• Units and structures being produced by the player and
their current build progress

• The player’s effective actions per minute (eAPM)

• Various metrics about a player’s economic health in-
cluding mineral and vespene gas collection rate as well
as harvesters built and lost

• Abilities used by units (e.g. Chrono Boost, Spawn
Larva, Calldown MULE)

• Total number of enemy units destroyed and enemy
structures razed

• A notification when a player surrenders or leaves the
game

• Any messages a user types in the in-game chat

• A notification when a player begins adding production
buildings with periodic updates on building progress

• The player’s general score that combines many game-
related measurements to produce a single number that
is normally a good indicator of performance (this is
typically only shown after a match has ended)

5.2 Aesthetics of Map Design
While developing SoundCraft, we chose to use an existing
map so as to focus on building and testing the framework,
but map design plays an integral role in providing the visual
setting for the aesthetic of a piece. While users of Sound-
Craft may opt to develop their own systems for visually in-

terpreting the data being generated, we feel the game itself
provides an interesting domain for visual experimentation.
Tilesets are fundamental in creating maps and encompass
the background elements and terrain available for use. Star-
Craft 2 features twenty tilesets (named after planets in the
StarCraft universe) that encompass different and varied en-
vironments, including volcanic, jungle, and desert worlds;
destroyed cities; and even indoor industrial environments 6.
Bel’Shir Beach, shown in (Figure 4), uses the Jungle tileset.

Tilesets provide the background for a plethora of cus-
tomization options for a map in the map-editing software.
Terrain itself can be modified to include cliffs, valleys, canyons,
bodies of water (or toxic waste if that fits better), roads, and
various types of foliage that complement the tileset being
used (e.g. trees in the Ice tileset will be frozen or have snow
on them, while trees in the Jungle tileset will be in bloom
and filled with leaves) 7. In addition to modifying the envi-
ronment, many other elements can be added to the map. To
list a few: buildings of various types, fences, fossils, birds,
fish, rocks, trains, and even non-playable characters that
players can interact with can be added to a map. Even the
weather can be manipulated to include rain, snow, light-
ning, sporadic volcanic flares, and clouds. If the editor does
not offer something you are looking for, you can construct
it yourself, but it is more likely that a member of the active
map-making and modding community has already built it!

With this flexibility in building a map, a unique envi-
ronment tailored to the particular story one wants to tell
can be constructed. Perhaps instead of designing a map for
two players to battle against each other, you could design a
map featuring cinematic storytelling that has a player con-
trolling a single unit as it traverses diverse environments
questing for some mythological item, meeting allies and en-
emies along the way. Users of SoundCraft should certainly
take this powerful point of customization into consideration
when designing a piece.

5.3 Parsing and Sending Game Data
A Ruby script monitors the directories that contain these
XML files using a file system monitor, guard/listen 8. When
the files in the monitored directory are updated, the data is
parsed out of the XML files using Nokogiri 9 and that data is
sent to any listening OSC clients on designated IP and port
addresses. Via IP address designation, this data can be kept
local to the player who is producing the data or it can be
shared with all other players. Unfortunately, this is the only
legitimate way to get data out of StarCraft 2 as the game is
a closed system that does not allow customization outside of
the functionality allowed by Blizzard. We found the latency
between a trigger firing and an OSC client receiving the
relevant message to be acceptable given we had fine control
over how often our script polls the file system for XML file
updates. With operating system-specific file system polling
adapters, the overhead of writing to a file, catching that
event, and parsing the data produced low latency (i.e. on
the order of 50 milliseconds) and acceptable CPU usage.

6. SONIFICATION OF GAME DATA
Note that the aim of SoundCraft is not to define how this
game data should be mapped, but to open communication

6http://starcraft.wikia.com/wiki/Tileset
7http://us.battle.net/sc2/en/game/maps-and-mods/
tutorials/terrain/
8https://github.com/guard/listen
9http://http://nokogiri.org/

�2�4�6



between the game and any external modules that will re-
spond to actions and events in the game. Our interpretation
of the data should certainly not be viewed as the only way
to interpret the data, but merely as a single instance of how
data can be interpreted.

The gameplay of StarCraft 2 is divided into two primary
activities, developing the economy of a player’s base, and
producing offensive units to disrupt and destroy the op-
ponent’s own offense and base. Secondary activities include
constructing additional production facilities, allowing offen-
sive units to be trained faster, and researching technology
upgrades, which improves the destructive effectiveness of all
the player’s offensive units.

Given this framework, we have chosen to sonify StarCraft
2 gameplay as follows, in the context of a musical work titled
GG Music. As a harmonic foundation, mineral and vespene
gas mining (both economic activities) are realized aurally
as FM plops. Each time a worker unit returns a mined
resource to the foundation structure, a plop sounds. As a
player builds his or her economy, more and more workers
are trained and assigned to mining, gradually increasing the
density of plops. In typical StarCraft 2 strategies, vespene
gas mining does not being until 1-2 minutes into the game;
these events are sonified in a higher register than mineral
mining, lending to a sense of musical progression.

The production facilities in which offensive units are trained
are musically manifested as a low bass drone. As a player’s
economy grows, more production facilities can be built, en-
abling a larger and larger offensive force. Additional pro-
duction facilities result in the bass drone inharmonically ris-
ing in frequency, increasing the musical tension as the two
players build up their armies. Near the end of any given
game of StarCraft 2, each player may have a dozen or more
production buildings; at this point the bass drone is high
enough to be more of a treble drone, which is musically
much more uncomfortable.

Offensive units are represented musically as arpeggios of
enveloped sawtooth oscillators. The number of notes, range
of registers, and melodic contour of the arpeggio are aug-
mented as the size of a player’s army increases. Moreover,
distinctive unit types are represented by different arpeggio
patterns. For example, a standard Terran army often com-
prises Marines and Marauders. This army would be aural-
ized in our system by two distinct arpeggio patterns. The
more unit types compose a player’s army, the greater the
complexity of the resulting set of arpeggios.

Lastly, technology upgrades, which augment an army’s
offensive power, are not directly represented musically, but
rather influence the parameters of other sonifications in the
system. There are dozens of possible upgrades; however
some upgrades cannot be researched until other upgrades
have been unlocked or specific upgrade facilities have been
constructed, creating a ”technology tree” within StarCraft
2’s gameplay. As a player accumulates different upgrades,
the character of the bass drone and army arpeggios are
tweaked. The modulation index of the FM bass drone is
bumped for every upgrade; initially, this merely augments
the presence of the drone. In the end game, however, the
over-modulated bass drone fits uncomfortably in the mix,
heightening the tension musically as a player maximizes his
or her upgrades. Similarly, upgrades lengthen the envelope
of the arpeggios, raising it from a short chirp to an elongated
tone.

7. CONCLUSION
The sonic mappings explored here are but one of many.
Through its unique, varied gameplay and large-scale simu-

lation of artificially intelligent units, StarCraft 2 offers inter-
esting opportunities for developing complex computer mu-
sic works. SoundCraft, via a custom map, a Ruby parser,
and a ChucK-based [8] auralization, has enabled us to re-
alize one such work: GG Music. SoundCraft furthermore
seeks to provide a rich platform for diversity and expression
through StarCraft 2. To facilitate this, the source code for
SoundCraft as well as documentation and archived media
is maintained on GitHub 10.

8. ACKNOWLEDGMENTS
Many thanks to the StarCraft 2 mapmakers, modders, and
enthusiasts at SC2Mapster for their support in building our
custom map with special thanks to members: Ryan Schut-
ter, deathtorn, Ahli634, zeldarules28, and willuwontu. We
would also like to thank Tasteless and Artosis for fanning
our love for the One True Game, Alyce Tzue for figure de-
sign, and Charles Pence for LATEX support.

9. REFERENCES
[1] D. Bisig, M. Neukom, and J. Flury. Interactive Swarm

Orchestra A Generic Programming Environment for
Swarm Based Computer Music. Proceedings of the
International Computer Music Association Conference,
2008.

[2] H. Choi and G. Wang. LUSH: An organic eco+ music
system. In Proceedings of the 2010 Conference on New
Interfaces for Musical Expression (NIME 2010), 2010.

[3] R. Hamilton. q3osc: or How I Learned to Stop
Worrying and Love the Game. Proceedings of the
International Computer Music Association Conference,
2008.

[4] R. Hamilton. UDKOSC: An immersive musical
environment. In Proceedings of the International
Computer Music Conference, 2011.

[5] C. Reynolds. Steering Behaviors for Autonomous
Characters. Proceedings of Game Developers
Conference, pages 763–782, Spring 1999.

[6] S. Smallwood, D. Trueman, P. R. Cook, and G. Wang.
Composing for Laptop Orchestra. Computer Music
Journal, 32(1):9–25, Spring 2008.

[7] C. Verron and G. Drettakis. Procedural audio
modeling for particle-based environmental effects.
Proceedings of the 133rd AES Convention, 2012.

[8] G. Wang. The ChucK Audio Programming Language:
An Strongly-timed and On-the-fly Environ/mentality.
PhD thesis, Princeton University, 2008.

[9] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers. In
Proceedings of the 1997 International Computer Music
Conference, pages 101–104. International Computer
Music Association San Francisco, 1997.

10https://github.com/markcerqueira/soundCraft

�2�4�7




