
An Interactive 3D Network Music Space

Chad McKinney
University of Sussex, UK

C.Mckinney@sussex.ac.uk

Nick Collins
University of Sussex, UK
N.Collins@sussex.ac.uk

ABSTRACT
In this paper we present Shoggoth, a 3D graphics based
program for performing network music. In Shoggoth, users
utilize video game style controls to navigate and manipulate
a grid of malleable height maps. Sequences can be created
by defining paths through the maps which trigger and mod-
ulate audio playback. With respect to a context of computer
music performance, and specific problems in network mu-
sic, design goals and technical challenges are outlined. The
system is evaluated through established taxonomies for de-
scribing interfaces, followed by an enumeration of the mer-
its of 3D graphics in networked performance. In discussing
proposed improvements to Shoggoth, design suggestions for
other developers and network musicians are drawn out.

Keywords
3D, Generative, Network, Environment

1. INTRODUCTION
Shoggoth is a new network music program for real time
group performance with members distributed over poten-
tially global distances. As a reference to the strange proto-
plasmic beings described in H.P. Lovecraft’s At the Moun-
tains of Madness [16], Shoggoth allows users to reshape
polymorphic terrains to create generative music in collabo-
ration. The program is designed with a user interface that
is both functional and highly visual. The interface design
allows for an aesthetically pleasing presentation that serves
to both enhance communication in the ensemble as well as
offer a clear presentation for the audience. This is important
because performances with physically separated ensembles
present a unique stage presence where parts, and possibly
all, of the group can only be represented through digital
media. The separation in distributed ensembles amplifies
several issues in traditional computer music performance,
such as a lack of correlation between physical effort and
sonic results. Furthermore, distributed ensembles lose fun-
damental components of communication such as visual cues
and gestures.

These issues are not new [4, 36] and there is a growing
range of techniques and technologies which seek to mitigate
or embrace these features of electronic music. Controllers
and interfaces are a popular solution for computer musi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’13, May 27 – 30, 2013, KAIST, Daejeon, Korea.
Copyright remains with the author(s).

cians to reestablish or reimagine the performance charac-
teristics of traditional instrumentalists [25, 28, 38]. These
interfaces lose value in networked performances if members
are in different locations from each other or from an audi-
ence. Concerts in many forms, from experimental computer
music in smaller clubs to popular music stadium shows,
are now commonly performed with accompanying visuals
to augment stage presence [32, 5]. While there may be use-
ful benefits from adding the visual medium, if the presen-
tation isn’t communicative of the non-present performers,
their contributions will be deemphasized or lost entirely.
For this reason network performances are often realized us-
ing video and audio streaming between performance sites
[6, 31, 13]. Latency and quality of connectivity are ever
present concerns, and if performers aren’t using traditional
instruments or physical controllers then the same issues re-
garding computer music performance outlined earlier will
still be present.

This is where virtual spaces can serve a useful role. Net-
worked performances, distributed or not, that are performed
in virtual spaces communicate performers’ efforts while si-
multaneously increasing ensemble communication. Consid-
eration must be given to both usability and presentation
and a balance must be struck to facilitate a successful per-
formance space. Video games are a natural source of inspi-
ration, with their sprawling and detailed worlds, the largest
of which are developed utilizing multi-million dollar budgets
and over a period of several years. Music has been an im-
portant component of video games since the beginning and
game music has become ingrained in our culture. Despite
this, music has usually severed a secondary role, similar to
it’s usage in movies to set the tone of a scene or level. Game
music is commonly adaptive, not interactive, because there
is usually no direct connection between player actions and
changes in the music [8]. Sound effects are the actual in-
teractive components in a game, such as the triggering of a
jump sound based on a button press. There is often some
correlation between game state, such as the adjustment of
tempo according to a game boss’s life.

There is a history of utilizing games or game like worlds
in music and sound art. A common approach has been to
appropriate or modify an existing game for use in a work.
Cory Arcangel’s Nintendo cartridge hacks, including his cel-
ebrated Super Mario Clouds, and Tom Bett’s glitch induc-
ing quake engine modification QQQ are two examples of
how an existing game can be appropriated to produce re-
sults never intended by their designers [8]. Both modify the
source code for a game, fundamentally altering it’s logic,
and creating something new. Not all game appropriations
are as subversive. Rob Hamilton’s work Maps and Legends
[15, 14] built using q3apd [26], a Quake III modification by
Julian Oliver and Steven Pickles, is a network composition
performed in virtual space. Player states such as position

�4�0�0



and view angle, and weapon selection, as well as certain
actions such as jumping and firing are mapped using OSC
to control a Pure Data patch [20]. These mappings allow
Hamilton to use the core logic of the Quake engine as the
framework for a networked virtual performance.

In Shoggoth, instead of using an existing game engine, a
new one was written specifically for the purpose of network
music performance. This allowed for the customization of
a system that attempts to find the right balance between
usability, musical control, and visual aesthetics; this paper
serves to document those efforts. In the following section
we detail the system design and philosophy, as well as some
technical aspects of the implementation. Next the system
is categorized using established frameworks with a subse-
quent examination of the role of virtual spaces in music
performance. In conclusion some initial findings are re-
ported along with useful information for other developers
and musicians.

Figure 1: One possible terrain shape in Shoggoth.

2. SYSTEM DESIGN AND DEVELOPMENT
Shoggoth is a network music program, but video games were
a large inspiration for the design. Previous forays into inter-
faces for network music demonstrated increasingly graphi-
cal interfaces, often accompanied by a separate visualization
program. This approach has worked well, although it also
meant that audiences were not presented with the same
visual information as the performers. With Shoggoth we
attempted to create an interface that is aesthetically rich
while functioning as the interface through which the musi-
cians collaborate.

2.1 The Interface
Shoggoth is written in C++ and uses the Cinder framework
[7] for the graphics implementation. On startup the view
comprises of a grid of flat black square islands suspended
in white space. Users can fly around the space by employ-
ing controls similar to a first person shooter (FPS) game,
but there is no gravity or physics. The flat grids are vertex
buffer objects (VBOs) [24] comprising of a triangle mesh
bound with important data such as color and id numbers.
The grids can be manipulated using a selection of number
keys that trigger a morphing animation into various shapes
dependent on one of several generative processes. These
processes are each based on a particular algorithmic model,
enumerated as as (0) Blank, (1) Diamond Square, (2) Cel-
lular Automata, (3) Strange Attractor, (4) L-System, and
(5) Flocking. Each process results in a height map and
a series of intermediate steps are constructed between the
existing mesh and the new version. Using a queued up-
date system the mesh is updated each frame, incrementing
through a thirty step animation list, until the final version

of the mesh is reached. Earlier versions of Shoggoth did not
have animations between meshes and for that reason mesh
transitions were jarring, which inspired the added feature.
Animations not only create smooth changes and striking vi-
sual effects, but also allow for the audio sequencing to follow
the interpolation as well.

A triangle can be selected, using 3D picking [34], from the
grid of a terrain mesh for sequence path creation or manip-
ulation. 3D picking is a technique that allows users to select
something in 3D space using 2D coordinates, usually via a
mouse controlled camera view. 3D picking was implemented
in Shoggoth using a graphics technique whereby the terrain
meshes are rendered at a lower resolution into a frame buffer
object (FBO) [33], which is never shown to the user, and
each triangle in each terrain mesh is colored according to
a global identification system. When a picked triangle is
requested, the color of the pixel in the exact center of the
FBO is selected and then only has to be translated from
an RGBA (reg, green, blue, alpha) value into an unsigned
integer, resulting in the selected triangle’s global identifica-
tion number. This proved to be invaluable as each terrain
contains over 10,000 triangles and previous attempts using
ray casting were unusably slow.

Figure 2: Wireframe render for an island terrain, demon-
strating the triangle mesh and high polygon count.

A path can be created from a sequence of triangle picks,
and once outlined, a read head immediately follows on the
path, triggering and modulating monophonic synth instances.
A triangle in the mesh of an island has two possible states:
black (inactive) or white (active). If the triangle is active
when a read head passes over it, then a coordinating synth
is triggered, resulting in an opening of the envelope gate
and an update to the parameters of the synth according to
the triangle’s height and location in the grid. Triangles are
activated or deactivated according to a similar set of gener-
ative processes as the height map, and are triggered using
the same number keys, but with the shift key pressed as
well.

Player representation and communication are important
in network music performance and Shoggoth has some sim-
ple, but effective, designs to facilitate them. Players are rep-
resented using minimalist tetrahedron models, which aren’t
complicated, but align well with the triangle based theme
of the islands. Position and rotation information is mapped
allowing performers to see not only where each other are,
but what they’re looking at, and the immediate results of
their actions. This is an upgrade from the authors’ pre-
vious systems where either no representation was made or
only position data was represented. A chat system has been
created to allow for communication, both with the other
performers and the audience, and uses a multi-player game
style 2D overlay.

�4�0�1



Figure 3: Multiple terrains with sequences.

2.2 Sound Design
Sound in Shoggoth is implemented using the SuperCollider
[37] libscsynth library in conjunction with libsc++ [22] to
create an internal several built natively into the C++ ap-
plication. Because the server is built internally, no external
messaging are necessary, and all communication with the
scsynth server and Shoggoth occur through native function
calls. Shoggoth will fail completely without any hanging
servers in the event of a crash, where as if the server were
running on the local machine this would not be the case.
Maintaining independence of the sound server, language,
and now the IDE is a favorable characteristic of SuperCol-
lider as an audio language. That level of independence is not
favorable when distributing a program to users who may not
be knowledgeable about the subtleties involved with multi-
ple processes.

Synth design in Shoggoth is focused on the usage of wave
terrain synthesis [29]. Each synth definition utilizes at least
one wave terrain oscillator that reads a buffer filled with
the same 2D height map that defines the shape of the ter-
rain that the synth’s sequence resides on. This is a essential
feature because it allows the terrains to effect not just the
sequential triggering of synth instances or the modulation
of synth parameters, but also to define the most funda-
mental components of the synths’ timbre. Each generative
process, such as the cellular automata, have a character-
istic harmonic palette that forges a strong connection be-
tween the visuals and the sound. Furthermore, when the
island meshes morph into new forms, the animation effects
not only the visuals display, but also updates any running
synths as well, creating a dramatic timbral shift.

Synths definitions must be written and edited in Super-
Collider which does create dependancy for development,
as the version of SuperCollider that the synth definitions
are compiled in must be the same that Shoggoth has been

built against. This might change given development in the
libsc++ library that could allow for native or scripted syn-
thdef compilation. Even given this dependancy, SuperCol-
lider is an excellent choice for sound design because it has
an established code base with years of active development
and supplies a well defined and terse interface for synthesis.
Shoggoth can be used to create a wide range of sonic out-
put, but given the looping sequential infrastructure and the
often aggressive waveforms produced by the wave terrain
synthesis, rhythmic noise is the most natural end result.
While this style of music may not appeal to all, generative
and networked music audiences are often interested in more
experimental music.

2.3 Networking
Open Sound Control [39] messaging is the back bone for
the networking in Shoggoth. The core networking interface
is implemented using OSCpack [27] to create and receive
OSC packets. Additionally, Shoggoth uses the OSCthulhu
[23] server and client framework because direct peer to peer
networking can cause a multitude of issues stemming from
packet loss. OSCthulhu uses a multi-player video game style
synchronization scheme which is ideal for a program such as
Shoggoth that defines networking not as a sequence of mes-
sages, but instead as a collection of states that are updated
across the network. To implement networking using OS-
Cthulhu, sync objects are created on the server, each with
any number of sync arguments. When an object needs to be
updated a message is sent from the local client to the OSC-
thulhu server, which updates itself and immediately updates
all the other clients in the network. Additionally the server
has a regular update cycle that updates all of the clients to
the current world state. Because of this server based syn-
chronization lost packets are quickly recovered from and the
network is continuously realigned.

�4�0�2








