
CollideFx: A Physics-Based Audio Effects Processor

Chet N. Gnegy
Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University
chet@ccrma.stanford.edu

ABSTRACT
CollideFx is a real-time audio effects processor that inte-
grates the physics of real objects into the parameter space
of the signal chain. Much like a traditional signal chain, the
user can choose a series of effects and offer realtime control
to their various parameters. In this work, we introduce a
means of creating tree-like signal graphs that dynamically
change their routing in response to changes in the location of
the unit generators in a virtual space. Signals are rerouted
using a crossfading scheme that avoids the harsh clicks and
pops associated with amplitude discontinuities. The unit
generators are easily controllable using a click and drag
interface that responds using familiar physics. CollideFx
brings the interactivity of a video game together with the
purpose of creating interesting and complex audio effects.
With little difficulty, users can craft custom effects, or alter-
natively, can fling a unit generator into a cluster of several
others to obtain more surprising results, letting the physics
engine do the decision making.

Keywords
digital signal processing, effects generator, dynamic routing,
physics

1. INTRODUCTION
From guitar stompboxes to the effects chains in digital au-
dio workstations, it is taken for granted that we can cascade
audio effects together and provide realtime control to some
subset of the effect parameters. A notable example of each
includes the wah-wah pedal and MIDI envelopes, the latter
of which can be either drawn into the software or controlled
via an external MIDI interface. Scrambling the order of the
effects in the signal chain on the fly, however, is a much less
conventional feature in an effects processor. The combina-
tions of nonlinear audio effects, such as chorusing, distor-
tion, or realtime granulation can produce interesting and
unexpected results when given this type of freedom. Addi-
tionally, we do not restrict our signal chains to a single path,
we allow tree-like graphs to be constructed, branching the
signal through an arbitrary number of paths. To encourage
exploration of this dynamic environment, we assign each
unit generator to a virtual object, a disc. These discs are
placed within a square world and given properties of real
objects; they move and rotate with realistic physics, collide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, 30 June–3 July 2014, London, England.
Copyright remains with the author(s).

with one another, and are subject to friction. The notion of
pairing a unit generator with an object and routing signals
based on proximity is also used in the popular reacTable [1],
which uses physical objects and computer vision to interact
with the audio system. Visual programming languages Pure
Data [2] and Max/MSP [3] also feature a convenient means
of rerouting effects, however, avoiding clicks and pops due
to discontinuities in the audio signal is the responsibility of
the user. In a later section, we discuss the rerouting scheme
for CollideFx, which uses crossfades to automatically elim-
inate these undesirable effects.

The graphical interface is shown in Figure 1. Here we see
a complex signal graph, and the connections between are
visualized by colored, partially transparent orbs that origi-
nate at source unit generators and flow through the graph
until they reach an output unit generator and vanish. Like
the discs, the orbs move with physics. Due to a combina-
tion of repulsive and attractive forces, similar to electrons
around a nucleus, the orbs form a cloud surrounding their
parent disc. Each type of source creates orbs of a unique
color scheme, allowing the path for any particular source to
be traced through the graph.

Figure 1: A screenshot of CollideFx. The Input,
Square, and Looper modules are connected to net-
work of effects. The connectivity of the signal flow
graph is shown in the upper right corner. The edges
in the graph are represented by a stream of contin-
uously flowing orbs that originate at sources and
travel along the path of the signal.

Proceedings of the International Conference on New Interfaces for Musical Expression

427

Figure 2: System Diagram

2. SYSTEM ARCHITECTURE
CollideFx is implemented entirely in C++ and utilizes the
OpenGL libraries for the graphical interface and user inter-
action. A basic block diagram is shown in Figure 2. This
interface allows users to click and drag to create, move, and
delete discs with very little effort. Discs first enter the world
when they are dragged from their corresponding menu icon
onto the world. At this point, discs containing source unit
generators create a cloud of orbs and begin interacting with
the other unit generators via the signal graph. The mouse
click information is relayed through the graphical interface
to the discs. A clicked disc calculates a spring force between
itself and the mouse location as it is moved. Collisions be-
tween discs and against the boundaries of the world are
also handled within the physics engine, which updates the
discs positions inside of the graphics thread. The menu,
which can be seen in the Appendix, is also used to change
audio parameters and delete discs. The main interaction
with the audio thread is through the discs and their unit
generators. It is important to note that a disc is always
paired with a unit generator. While it is usually clear to
use the terms “disc” and “unit generator” synonymously, we
will reserve the term“disc” for the discussion the physical or
graphic properties of the object, and “unit generator” when
discussing the audio properties of the object.

The RtAudio/RtMIDI [4] framework is at the heart of the
audio system. Using RtAudio/RtMIDI callback functions,
MIDI events and buffers of audio input are sent to the sig-
nal graph. All audio and MIDI data are then passed to the
audio or MIDI source unit generators, if any currently exist.
The signal graph uses the positions of the discs and their
respective unit generators to build a graph of connections.
This graph passes these buffers between the unit genera-
tors for every audio buffer and sends the result to RtAudio.
Furthermore, if the connections of the graph have changed
since the previous buffer, the graph performs a crossfade be-
tween the previous graph topology and the current one. To
prevent multiple graph crossfades from occurring at once,
only one graph change is allowed per audio buffer. An audio
buffer size of 512 samples therefore produces a short cross-
fade of the same length. On a regular interval, any orbs that
are currently floating around a disc are passed downstream
to another disc.

2.1 Audio Processing and Dynamic Routing
2.1.1 Unit Generators

CollideFx features a diverse variety of unit generators, sub-
divided into two categories: source and effects. The source
unit generators include the Input, taken from the micro-
phone or line in, and several classic waveforms that respond

to MIDI events, namely the Sine, Square, Tri, and Saw-

tooth waves. All classic waveforms (with the exception of
the sine wave) are generated using the first 15 terms of
their Fourier series representations. This is done to avoid
the harsh sound caused by sharp discontinuities in ampli-
tude of their first derivative that are present in the ideal
waveforms.

The effect unit generators featured are the BitCrusher,
Chorus, Delay, Distortion, Filter, Granulator, Looper,
Ring Modulator, Reverb, and Tremolo. The Looper unit
generator that is routed like an effect while in Off/Recording
mode, but acts like a source once it is in Playback mode.

All unit generators have a state, which can be saved and
recalled at a later point in time. The state objects contain
every piece of information necessary to uniquely describe a
unit generator at a given point in time. Depending on the
type of unit generator, this can involve storing anywhere
from a couple of variables to an entire buffer of audio data.
For example, the Delay module must store a whole buffer,
but the Ring Modulator must only recall the phase and fre-
quency of the modulating signal. As mentioned in the pre-
vious section, we avoid sharp discontinuities by crossfading
between graphs as the routing changes. It is for this reason
that we must store and recall states; the crossfades require
a buffer of audio from two different graphs, the previous
and the current graph, for the same set of samples.

2.1.2 Signal Graph
The signal graph is constructed based on the locations of
the discs to one another. A minimal spanning tree connect-
ing the discs is computed using a modified version of Prim’s
Algorithm [5], an algorithm for creating a fully connected
graph with minimal edge lengths. This provides an intu-
itive looking graph, (i.e., the discs closest to each other are
connected). It also prevents the formation of cycles, which
would cause the system to possibly become unstable. The
algorithm is modified in three ways. First, we prevent two
source discs from being connected to each other. Next, we
do not allow edges to be created if the distance between
two discs, λ, exceeds some maximum distance, Lmax. This
may result in a disjoint graph. Because Prim’s algorithm
doesn’t terminate until the graph is no longer disjoint, we
include a final modification to allow the algorithm to termi-
nate if the only remaining possible connections are greater
in length than Lmax. An additional complication involving
the Looper unit generator is that it switches from an effect
to a source once it is in Record mode; this causes the graph
to be rerouted. The sound that the Looper recorded will
then be repeated as its output.

Any unit generator at the end of a branch is implicitly
declared to be a sink and therefore sends its output to
RtAudio, as seen in Figure 2. Once the edges of the graph
have been established we must establish their directional-
ity, which is done iteratively. We start by ensuring that any
discs labeled as sources are on the “from” end of the edge.
The discs on the “to” end of these edges must naturally be
upstream from any connected non-source discs. We itera-
tively change the directionality of edges from the beginning
to the ends of the chain to make sure that paths are leading
away from the sources.

Once the graph is computed, each disc stores its current
input and output connections in a data structure. In order
to obtain the audio output for the entire graph, we poll the
unit generators of the discs that have been designated to be
sinks for their audio buffer. We recursively work our way
from the sinks back to the sources and then apply each effect
on the return journey through the tree. At each step, we
use each disc and its inputs (which can be sources or other

Proceedings of the International Conference on New Interfaces for Musical Expression

428

Figure 3: The wet/dry mix is computed based on
the proximity between two discs. The distance λ1

cannot exceed Lmax or the connection will not be
made. The Square Wave unit generator is shown
with a thick outline because it is a source.

effects) to determine the wet/dry mix using Equations 1
and 2. Two touching discs have a mix level of 100%. As
we increase the distance, λ, between two discs to Lmax, we
reduce the mix level to 0%, at which point orbs no longer
flow between the two discs. For each of the inputs to any
particular unit generator, we create two N -sample buffers,
a wet and a dry buffer. We use buffer lengths of N = 512.
The summation of only the wet buffers is processed by the
unit generator and then recombined with the summation
of the dry buffers. Equation 3 generalizes the calculation of
the output for some effect, f(~x[n]), for M inputs, ~xi[n]. Ad-
ditionally, to maintain the perceived volume of the system
when the graph has many branches, we scale down input
contributions by a factor of 1/

√
k, where k is the fanout of

the previous unit generator in the path.

Gwet(λ) =

(
1− λ

Lmax

)
(1)

Gdry(λ) =
λ

Lmax
(2)

~y[n] = f

(M∑
i

Gwet(λi)~xi[n]

)
+

M∑
i

Gdry(λi)~xi[n] (3)

For example, consider the system in Figure 3. The Square
Wave unit generator produces a signal ~S[n], which is passed
to a Chorus effect. The discs are a distance λ1 apart. We
use Equations 1 and 2 to decompose the buffer into wet and
dry components, ~Swet[n] and ~Sdry[n] respectively. Only the
wet mix is processed by the Chorus, c(~x[n]). The output of

the Chorus is then c(~Swet[n]) + ~Sdry[n]; this is the simple
result of using Equation 3 for a single input. We introduce
an Input in Figure 4 to detail how a single effect can have
multiple sources.

We then check to see if the connections of the graph have
changed since the last iteration. For the case where no
changes have occurred, we ask each sink disc to compute
its audio buffer and sum them together, as previously de-
tailed. When a change has been made, however, a crossfade
is necessary and the graph must be processed twice. Before
doing this, we store the state of each unit generator. As
the graph is processed the first time, we store the incoming
audio buffer for each unit generator. These stored buffers
will be used in the second processing step. Following this
operation, we recall the states of all of the unit generators
and proceed to reprocess the graph using the new, changed
set of edges. This time, we perform a crossfade using the
stored audio buffer from the first pass and the new incom-
ing audio buffer prior to applying an effect. Computing the
crossfade on the incoming buffer keeps the internal effect
buffers (in the case of the Looper, Granulator, etc.) free of
discontinuities.

Figure 4: An example of an audio input and a
Square Wave being fed into a Chorus effect. Each
input has its own mix level. The wet buffers are
summed together and processed by effect c(~x[n]).
The processed output is summed with the dry
buffers as described by Equation 3. If there is not
another node in the graph, the output is sent to
RtAudio.

Figure 5: When the moving Chorus disc causes the
signal graph to change, we crossfade buffers to pre-
vent discontinuities. Buffers colors are associated
with the discs that provided their audio data. (1)
First, all unit generators store their current state
and a copy of their incoming buffer. The delay is not
driven by anything and only contributes an empty
buffer (not shown for simplicity). (2) Then, the
states are recalled and the buffers are recomputed
using the new signal graph. (3) Prior to applying
an effect, we crossfade between the old incoming
buffer and the new one. The diagonal line through
the buffer symbolizes a crossfade.

This process is illustrated in Figure 5. As we see in
this example, the Chorus unit generator stores its incom-
ing buffer (from the Square Wave, shown in red). On the
second pass, it receives a buffer from the Delay (shown in
blue). Prior to processing the its effect, it crossfades be-
tween the old and new buffers (shown as a red buffer that
tapers off into the blue buffer). The Delay was not driven by
anything initially, so upon receiving the new Square Wave
input, it simply fades in to the buffer from the Square Wave
(shown as an empty, white buffer fading to the red buffer).

2.2 Physics
The translational and rotation motion of the discs is com-
puted using numerical integration and is updated 20 times
for every refresh of the graphics (which is nominally 50fps).
20 iterations per frame was determined experimentally as
a compromise between choppy looking movement and ex-
cessive amounts of computation. We consider all exter-
nal forces and torques from the individual discs and orbs.
This includes the spring force due to mouse dragging, the
forces that keep the orbs hovering around the discs, air drag,
and the damping torque that opposes the angular velocity
of discs. The instantaneous acceleration is obtained using
Newton’s second law. We update the translational veloci-
ties and positions of each object according to the formulae
~v(t + ∆t) = ~v(t) + ~a(t)∆t and ~s(t + ∆t) = ~s(t) + ~v(t)∆t,

Proceedings of the International Conference on New Interfaces for Musical Expression

429

respectively. Likewise, we recalculate the angular compo-

nents, ~ω(t + ∆t) = ~ω(t) + ~α(t)∆t and ~θ(t + ∆t) = ~θ(t) +
~ω(t)∆t.
Whenever the discs come close to the wall, or close to

another disc, a completely elastic collision occurs. In this
case, the velocity component normal to the collision changes
sign. Without going into the vector arithmetic, we use this
change in velocity to find the impulse of the collision. This
impulse, along with the component of the velocity tangen-
tial to the collision, is used to slow the disc down and to
cause it to rotate. This occurs because of friction between
the two colliding objects. In future versions, disc rotation
may be mapped to an audio parameter, but it is currently
only a feature of the physics engine.

3. CONCLUSIONS
CollideFx offers a simple and intuitive means of building
complex effects chains. Furthermore, it allows the user to
change order of the unit generators in real time without the
introduction of amplitude discontinuities. It is convenient
to build effects using multiple input sources and arbitrary
numbers of branches that would normally require more com-
plex routing and the use of bus channels. This type of flex-
ibility is not typically offered in effects processors and can
create very interesting and unexpected results.

4. LINKS
The CollideFx homepage (with video demo):
http://www.chetgnegy.com/design/CollideFx.html

5. ACKNOWLEDGMENTS
Thanks to Julius Smith and Ge Wang for advice and sup-
port.

6. REFERENCES
[1] S. Jorda, M. Kaltenbrunner, G. Geiger, and

R. Bencina, “The reacTable*,” in In Proceedings of the
International Computer Music Conference (ICMC
2005, pp. 579–582, 2005.

[2] M. Puckette, “Pure data: Another integrated computer
music environment.,” in Proceedings, Second
Intercollege Computer Music Concerts, Tachikawa,
Japan, pp. 37–41, 1996.

[3] M. Puckette, “Combining event and signal processing
in the max graphical programming environment,”
Computer Music Journal, vol. 15 (3), pp. 67–77, 1991.

[4] G. Scavone, “RtAudio and RtMIDI.”
http://www.music.mcgill.ca/~gary/, 2013. Accessed:
2014-01-17.

[5] R. C. Prim, “Shortest connection networks and some
generalizations,” Bell System Technical Journal,
vol. 36, pp. 1389–1401, 1957.

APPENDIX

Two disjoint graphs, the leftmost being driven by the Looper, and the upper right graph being driven by
the Sine, Input, and Tri (triangle wave) unit generators. The Tri unit generator is currently selected. This
allows users to edit the Tri parameters using the lower half of the menu.

Proceedings of the International Conference on New Interfaces for Musical Expression

430

