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ABSTRACT
This paper presents a multi-modal approach to musical in-
strument pitch tracking combining audio and position sen-
sor data. Finger location on a violin fingerboard is measured
using resistive sensors, allowing rapid detection of approx-
imate pitch. The initial pitch estimate is then used to re-
strict the search space of an audio pitch tracking algorithm.
Most audio pitch tracking algorithms face a fundamental
tradeoff between accuracy and latency, with longer analysis
windows producing better pitch estimates at the cost of no-
ticeable lag in a live performance environment. Conversely,
sensor-only strategies struggle to achieve the fine pitch ac-
curacy a human listener would expect. While this paper is
violin centric, it demonstrates a more general concept for
augmented instruments that by combining the two differ-
ing approaches, high accuracy and low latency pitch can be
simultaneiously achieved.

Keywords
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violin, fingerboard

1. INTRODUCTION
Monophonic pitch tracking is sometimes considered a solved
problem in audio analysis, but existing approaches do not
always meet the stringent accuracy and timing demands of
live instrumental performance. Musicians can detect reac-
tion latencies of 20-30ms in musical instruments [17, 1], and
latency under 10ms is an accepted target for interactive au-
dio systems [9]. Expert live performance also demands an
extremely low detection error rate.

Most audio pitch tracking algorithms are based on win-
dowing the signal, whether the analysis is performed by
FFT or directly in the time domain (as in autocorrelation-
based approaches). But a commonly-used window size of
4096 samples at 44.1kHz requires 93ms to fill; even a 512-
sample window, short enough to degrade the performance of
most algorithms, lasts over 11ms. Where multiple consec-
utive frames are compared to improve robustness, this will
multiply the total latency. In many algorithms, minimum
window size is inversely related to the lowest frequency to be
detected, reflecting inherent tradeoffs of time and frequency
resolution in short-time spectral analysis.
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Sensors measuring the performer’s actions can instead be
used to detect pitch [12], but the mechanics of most instru-
ments makes these solutions incomplete. On string instru-
ments, finger position and string tuning (which can vary
during a performance) must be known; on winds, both fin-
gering and embouchure affect the pitch. Thus, regardless of
the accuracy of the sensors, audible pitch errors are likely.

We propose a hybrid approach which uses sensors to pro-
duce an initial pitch estimate. The estimate restricts the
search space of a low-latency audio analysis algorithm whose
accuracy would otherwise be unacceptably low. Because
audio and sensors tend to produce different types of errors
(harmonics being common in audio, slight mistuning with
sensors), the combination can be both fast and accurate.
This paper demonstrates the approach using position sens-
ing on a violin fingerboard, with sensor-assisted versions of
two commonly-used audio analysis algorithms.

2. PRIOR WORK
2.1 Augmented Violin
Augmented stringed instruments have a long history from
Max Mathews’ early electric violin [18] in the 1970s, to
Young’s“Hyper-Cello”[22] in the 1990s, to Overholt’s“Over-
tone Violin” [20] and “Overtone Fiddle” [21] and Jensenius’s
violin augmented with video motion tracking [13]. Poepel
[24] provides a review of work up to 2006.

While many augmented instruments aim to enable com-
pletely new performance techniques and gestures, this pa-
per focuses on measurement of traditional technique. Tra-
ditional technique analysis focuses in two areas: left-hand
finger placement (connected to pitch) and right-hand bow
tracking. Bow tracking has been well-explored [2, 26, 16,
27, 23], though it is by no means a solved problem.

Fingerboard tracking is in certain ways an easier problem
as physical contact location between the finger and the in-
strument can be measured. Freed has examined use of com-
mercial position and force sensors [8, 10] for finger position
tracking in a traditional context, while Grosshauser aug-
mented a traditional violin with both capactive and pres-
sure based position sensors [11, 12]. Ajay Kapur’s “E-Sitar”
[14] is a fretted instrument which uses a different finger-
board measurment method, linking the metalic frets with
resistors and measuring string-fret contact by electrifying
the strings. Although this is not a technique available to
fretless instruments the E-Sitar is notable for using audio
analysis to refine estimated pitch, as sitar pitch is deter-
mined by both the frets and the bending of the strings.

2.2 Monophonic Pitch Tracking
In-depth reviews of monophonic pitch tracking are presented
in [3] and [6]. There are three primary means of pitch de-
tection: spectral methods, temporal methods, and combina-
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tions of the two. Spectrally-based methods work by short-
time Fourier analysis of the audio signal, looking for a domi-
nant frequency and its harmonics. The dominant frequency
can be identified in several ways, including autocorrelation
within the spectral domain [15], cepstral analysis [19], and
constant-Q methods [4].

Temporal methods are typically based on autocorrelation.
By cross-correlating a windowed signal with itself, peaks oc-
cur in the autocorrelation function at harmonics of the fun-
damental frequency within that window [25]. Ideally, the
largest peak is the target frequency; however, resonances
and variations in the signal result in non-trivial error rates.
Since basic autocorrelation weights results equally no mat-
ter the lag, it often leads to the frequency estimate being
too low. An alternative is to reduce the weight at greater
lags τ = FSR/FP , by effectively reducing the correlation
window using the equation:

rt(τ) =

t+W−τ∑
j=t+1

xjxj+τ (1)

While Equation 1 reduces the likelihood of underestimat-
ing the fundamental frequency, it does this at the cost of
increasing the likelihood of overestimating the fundamental
as shorter periods are weighted more heavily. This paper
uses the intentionally “biased” equation, Equation 1, as one
of the two test algorithms for pitch estimation.

dt(τ) =

W∑
j=1

(xj − x2j+τ ) (2)

A third variation of temporal-based autocorrelation is to
use a normalized difference function. With Kawahara and
Cheveigné’s Yin [7], using a difference function, Equation 2,
reduces the influence of amplitude changes on the autocorre-
lation function, Equation 1, to achieve a dramatic decrease
in errors. Yin has been proven highly robust and reliable
and has become the dominant means for pitch detection. It
is also the second test algorithm used.

3. LOW-LATENCY PITCH TRACKING
3.1 Capturing Finger Placement
We propose using high-speed position sensors to assist audio
pitch-tracking. Our fingerboard hardware is designed to im-
prove upon existing methodologies by being non-intrusive,
non-destructive, and retaining seamless fingerboard feel and
appearance.

Figure 1: Fingerboard sensor configuration. The
fingerboard is covered with a layer of resistive velo-
stat. Contact between a string and the fingerboard
produces an electrical connection.

A typical means for making a linear potentiometer strip
is to place a conductive layer over a resistive strip with an
air-gap separating the two. When pressed, the conductive
material contacts the resistive strips at the point of pres-
sure, forming a voltage divider. Commercial linear poten-
tiometers have a built-in air gap which requires minimal but

still noticeable height, and with that, noticeable edges. The
height and edges alter the feel of the instrument, making
the sensor non-ideal for use on traditional instruments.

We instead apply a bare resistive strip directly to the fin-
gerboard, making use of the conductivity of metal strings
and the normal air gap between the string and the finger-
board (Figure 1). A single thin layer of velostat (carbon-
infused polymer) is glued to the fingerboard with connec-
tions hidden under the bridge end of the fingerboard. Along
with its resistive properties, the velostat has a smooth finish
similar to the fingerboard. Each violin string is electrified by
running the ball end through an electrically connected sol-
der tab. We removed the fine tuner from the violin E-string
as it was made of non-conductive plastic. We successfully
used both generic inexpensive strings and high-end profes-
sional strings. With the exception of added wires from the
fingerboard, the feel of the violin is only minimally changed.

Figure 2: Circuit consists of a current mirror on one
end of the velostat, and a MOSFET on each string
which is used to switch between strings.

As shown in Figure 2, a current source (here, a current
mirror based on a BC212 PNP transistor) provides a con-
stant current to the variable fingerboard-string resistance,
producing an output voltage which is linearly related to re-
sistance: Vo = IRC . The resistor RC should be chosen to be
greater than the maximum resistance of the velostat strip
in order to detect across the full length of the strip. Our
strips had a typical resistance of around 80kΩ so we chose
RC = 100kΩ.

Expected pitch based on finger position is determined
by considering the ratio of change between the open string
length (lOS) land the new string length measured from the
bridge(lBF ):

fplayed = fstring
lOS
lBF

(3)

To determine the new string length we subtract the dis-
tance of the finger to the nut (lFN ) from the overall string
length. We find the finger position from the measured volt-
age output. As Vo must be normalized against the full velo-
stat length (lV ) along the fingerboard, with VMS as the
maximum measured voltage, the equation for determining
finger position from the nut becomes:

lBF = lOS − lFN (4)

lFN = lV (1 − Vo
VMS

) (5)
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Further this gives an overall function for voltage to pitch of:

fplayed =
fstring × lOS

lOS − lV (1 −
Vo

VMS
)

) (6)

An Atmel AVR32UC3C board is used to sample the volt-
age at each string and calculate a normalized position for
the finger closest to the bridge. A sample rate of 300kHz is
possible with each sample being the average of 4 ADC mea-
surements. Position accuracy using non-conductive mate-
rial to press the string was found to be roughly 3mm. Due
to the high resistance of the velostat, the conductive proper-
ties of the human hand introduces significant noise, halving
accuracy with single string contact to around 6mm. Us-
ing a lower-resistance material would reduce the noise from
human interaction substantially, but as we have quite high
noise tolerance for left hand input, the velostat is accept-
able. For simplicity, in this paper, we assume single string
contact only since we are restricting ourselves to mono-
phonic tracking.

Obviously, with accuracy only within 6mm, finger po-
sition alone can not be used to determine the exact pitch.
This accuracy is sufficient to estimate the target pitch within
a whole tone. For the lower octave on each string, the dis-
tance between semitones is between 10-17mm. Even if it
were perfectly accurate in determining finger position, there
would still be issues of string tuning and slight differences
between the point of pressure and the effective vibrating
end of the string. In order to find the actual pitch being
performed, we proceed to the audio domain.

3.2 Assisted Pitch Tracking
Audio pitch tracking, though fairly accurate especially at
long window sizes, suffers two related problems in real-time
low-latency scenarios. The first is harmonic errors, the ten-
dency of many algorithms to identify the harmonic of a
frequency rather than the fundamental. The second is the
fundamental limitation of needing one or more periods of a
wave to fit in the window, placing a lower bound on window
size (and hence latency).

For instance, the low G on a violin (192Hz) takes 5.2ms
for a complete wavelength, and on a cello, the low C (65Hz)
takes 15.3ms for a complete wavelength. But with sensor-
assisted pitch tracking, we begin with a rough estimate of
pitch based on finger position. This allows us to use even
the most basic algorithm with shorter window settings to
achieve a more accurate result.

Finger placement nearly eliminates harmonic errors. More-
over, where the sensors indicate a fundamental frequency
below what could be detected with a given window size, we
can instead search for a harmonic of that frequency using a
shorter window, allowing us to estimate the fundamental in
shorter than one period.

3.2.1 Biased Search Restricted Autocorrelation
We used two audio methods for sensor-assisted pitch es-
timation: biased autocorrelation with quadratic interpola-
tion, and a variation on Yin [7]. Biased autocorrelation is
based on Equation 1. This equation is commonly used in
signal processing, as it weights events with less lag more
than higher-lag events, creating a decay envelope that can
be seen in the top of Figure 3. Typically, estimated pitch
period is determined by picking the highest peak in the au-
tocorrelation function. However, this method is prone to
error, especially at smaller window lengths when there are
fewer accumulated wavelengths or notes below the mini-
mum detection frequency. For instance, testing against a
sample violin recording, using basic biased autocorrelation

with a window size of W = 2048 samples had a 4.8% error
rate1, but a 2048- sample window incurs an unacceptably
high 46ms latency. Reducing the window to 512 samples,
the error rate rose to 21.1%. At 256 samples, corresponding
to an inherent latency of 5.8ms at a 44.1 kHz sample rate,
the error rate grew to 41.1

We use the sensor-based pitch estimate (Equation 6) to
restrict the range on which we search for the maximum of
Equation 1. For autocorrelation-based pitch detection, er-
rors tend to occur at harmonics of the correct pitch. While
octave errors are most common, fifths are sometimes also
found. With this in mind, we started by restricting the
autocorrelation search space to be within a just-intonation
major third (±25%) of the touch sensor estimate. Sub-
sequent trials found that for small windows, where pitch
estimates were less robust, it was useful to use a whole-tone
search window (±12.5%), as in all cases, the hardware pitch
estimate was typically within 8% of the correct pitch. How-
ever, for window sizes above 512 samples, at least two full
periods fit within the window for all notes within the vio-
lin’s frequency range. The increased robustness of the pitch
estimate allowed relaxing reliance on the hardware sensors
enabling an increased search range of a fourth (±33%).

If there is no position estimate from the fingerboard, we
assume the audio must be produced by an open string and
restrict our search to a set of narrow frequencies around
each string.

If the window length W is too short to effectively evalu-
ate a low frequency, rather than search for the fundamental
frequency, we search the area around the expected second
harmonic as demonstrated in the second example of Figure
3. The second harmonic will sometimes be a minimum in-
stead of a maximum of the autocorrelation function, since
the lag corresponding to the second harmonic also repre-
sents a 1800 phase shift of the fundamental. We thus search
for either a minimum or maximum in this case, choosing the
stronger of the two responses.

Lastly, the autocorrelation function can only be evaluated
at integer multiples τ of the sample interval, even though
the actual period of the signal may lie between those multi-
ples. In an effort to estimate the theoretical maxima, we use
parabolic interpolation based on the peak value and the two
surrounding points [7]. If the optimal lag τ is on the edge of
the window and the correlation function is monotonic, we
do not perform interpolation.

3.2.2 Restricted Search Yin
We have also implemented a frequency restricted search ver-
sion of Yin, as Yin typically yields much better results than
biased autocorrelation. Yin improves on simple autocorrela-
tion in five stages. The first is the use of the Equation 2 from
Section 2.2, a modified autocorrelation based on difference
in signals rather than the raw signal. This method increases
resistance to errors due to amplitude change. Second, Yin
uses a cumulative mean normalized difference function to
reduce “too high errors”, by weighting a result on its differ-
ence from a running cumulative average.

We incorporate the sensor data restriction in the third
stage of Yin. Since Yin starts from a difference-based au-
tocorrelation variation, it looks for a minimum instead of a
maximum and defines an arbitrary threshold which any re-
sult must be below. Yin selects the minimum from the first
contiguous set of values under the chosen threshold, or the
overall minimum if nothing is below the target threshold.

Rather than using an arbitrary (though effective) thresh-
old, we replace the threshold search by the same frequency
restriction technique used in biased autocorrelation, restrict-
ing the search for the minimum to be within a given range

Proceedings of the International Conference on New Interfaces for Musical Expression

56



of the estimate from the fingerboard sensor. The Yin search
uses the same search intervals as the assisted auto-correlation-
a just whole tone for W < 512 and a just fourth otherwise.
Similarly, we apply the same concept of looking for second
harmonics when the expected period is otherwise too long
for reliable estimation, and we finish with parabolic interpo-
lation. When the sample window is small and the frequency
is too low for even a second harmonic Yin estimate, we use
the raw sensor pitch estimate.

3.2.3 Implementation
Finger position estimates are received by USB and for-
warded by OSC to a VST audio plugin which performs the
pitch tracking. The plugin was implemented using JUCE1

and hosted in the REAPER environment. Block size for
audio analysis is selectable, and four pitch estimation tech-
niques can be chosen: biased autocorrelation and Yin, with
or without sensor data.

3.2.4 Example

Figure 3: Examples of biased autocorrelation (top)
and Yin difference function with cumulative mean
(bottom). Both examples, taken at different points
in time, use W = 256 and FSR of 44.1kHz.

Figure 3 demonstrates the advantages and mechanisms
of sensor assistance. While the algorithms would normally
search across the whole function, the fingerboard sensor in-
forms us that the pitch must lie in the non-shaded area. In
the autocorrelation example (top), the hand labeled target
pitch is 246.94Hz, as marked by the red line. The g-string
gives us a normalized voltage reading of 0.778 which, using
Equation 6, provides a hardware pitch estimate of 243.12Hz.
The major third either side of the hardware estimate de-
fines the autocorrelation search area of 194Hz-304Hz, cor-
responding to a τ between 145 to 227. The algorithm then
searches that tau range to find the maxima, resulting in a
pitch estimate of 247.23Hz.

In the Yin example (Figure 3 bottom), the hand labeled
target pitch is 293.66Hz. This frequency is actually below
Yin’s range when using a 256 sample window at 44.1kHz.
However, the finger sensor input tells us the expected fre-
quency is 296.61Hz so we define a minima search around
the second harmonic, 593.22Hz, or τ = 74.34. We find the
minima at τ = 75 which then undergoes quadratic interpo-
lation and is doubled to provide a pitch final pitch estimate
of 294.99Hz. Both examples in Figure 3 are instances where

1http://www.juce.com

the pitch estimate would be incorrect without the assistance
of fingerboard hardware.

4. TESTING AND RESULTS
4.1 Test Setup
Tests of low latency pitch detection were done by recording
a performance and the corresponding data feed. In order
to directly explore differences in performance for variable
window size, results were collected post-performance using
the original audio and data for repeat processing. The au-
dio and data samples were synchronized by recording a low
sample rate version of the audio as part of the sensor feed
and then matching onsets in the low sample rate audio with
the regular 44.1kHz sample rate audio. The session was then
played back with live analysis of the audio informed by the
sensor data measured at the corresponding time when orig-
inally recording. The method is equally suited to real-time
use in live performance, though latency from gathering the
sensor data over USB should be considered and the audio
delayed to compensate if needed.

Three sessions of 2-3 minutes made up of 40, 137, 202 and
notes were evaluated. Two of the segments were recorded
at 44.1kHz, and one at 48kHz. The segments consisted of
scales and arpeggios spanning all notes in G major in first
position range of the violin (G3-B5). There was a weighting
towards lower notes on the D and G string (under 440Hz).
As the performance was to be hand labeled using stan-
dard pitches, the violinist was asked to avoid vibrato and
to try to minimize holding multiple fingers down on differ-
ent strings since the current system only presently supports
monophonic performance. They were otherwise free to play
normally.

Pitch estimates were collected for window sizes of 128,
256, 512, 1024, and 2048 samples. In each case, the hop
size was set to one quarter of the window, with the excep-
tion of the 2048 sample window which, for on-line compu-
tational reasons, had a hop size of one half the window. For
W < 512, the algorithm used a search window of a (just
intonation) whole-tone around the fingered expected pitch
and a semitone around expected open strings. Otherwise,
the search region was within a perfect fourth. Results were
filtered to exclude periods of silence (defined as < -48db)
and the result from each hop compared against two sets of
labels. The first were hand labels of the expected pitch, and
the second set was from a 2048 sample window, 64 sample
hop-size, Yin-FFT analysis using the Aubio pitch detection
plugin by Bossier and Cannam in Sonic Visualiser [5].

The reason for the two comparison sets is that the audio
is a human performance on a violin. Hand labels matched
intended pitch which may differ from actual pitch. This
may be because of performer error or instrument tuning.
For instance, in one session, the entire violin was out of
tune by 40 cents. As performer pitch error would influence
scoring of pitch estimates, a Yin estimate at a high window
size was also used as Yin is widely accepted as a solution
to (high-latency) monophonic pitch tracking. The Yin esti-
mate will itself have errors as Yin is not 100% accurate– for
instance, note changes typically result in momentary loss
of valid estimate – however, when stable, the Yin label is
expected to be more accurate than the hand label.

Comparisions were made within 5 (0.28%), 10 (0.57%),
30 (1.75%), 50 (2.93%), and 100 (5.95%) cents of the cen-
tral pitch. Some of these are quite tight tolerances but were
chosen based on psycho-acoustic tolerances. Pitch differ-
ences within 5 cents are largely indistinguishable, 10 cents
is tolerable, an estimate within 50 cents should round to the
correct MIDI pitch, while 100 cents is the nearest equally
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tempered semitone.

4.2 Results
Results for window size, W , of 128, 256, and 512 are given
in Table 1. These window sizes convert to window lengths
of 2.9 ms, 5.8 ms, 11.6 ms at 44.1kHz, and 2.7 ms, 5.3 ms,
10.7 ms at 48kHz respectively. Window lengths of 1024
and 2048 samples, 23.2 ms and 46.4 ms, were calculated for
reference and discussion, but are not considered fast enough
for low-latency use.

128 Sample Window
Hand Labeled Yin Labeled- 2048 buffer

Accuracy within # cents Accuracy within # cents
Alg. 10 30 50 100 10 30 50 100

AC .145 .227 .234 .236 .089 .202 .231 .233
AC+S .268 .483 .559 .668 .197 .462 .556 .664
Yin .103 .171 .178 .180 .066 .159 .181 .185

Yin+S .095 .227 .317 .527 .073 .204 .304 .541

256 Sample Window
Hand Labeled Yin Labeled- 2048 buffer

Accuracy within # cents Accuracy within # cents
Alg. 10 30 50 100 10 30 50 100

AC .502 .505 .511 .511 .242 .463 .490 .495
AC+S .537 .769 .801 .819 .458 .744 .783 .803
Yin .344 .528 .552 .558 .263 .502 .534 .543

Yin+S .336 .552 .611 .687 .270 .534 .598 .677

512 Sample Window
Hand Labeled Yin Labeled- 2048 buffer

Accuracy within # cents Accuracy within# cents
Alg. 10 30 50 100 10 30 50 100

AC .507 .720 .736 .741 .441 .711 .736 .39
AC+S .660 .930 .954 .962 .618 .914 .941 .946
Yin .656 .930 .952 .959 .632 .920 .948 .952

Yin+S .649 .923 .949 .957 .629 .908 .937 .940

Table 1: Pitch detection accuracy for 3 window sizes
of 128, 256, and 512 samples. Comparisons use both
hand-labeled performance data and a 2048 sample
Yin-FFT pitch detection analysis.

It is clear that for shorter windows under 512 samples,
sensor-assisted pitch estimates outperform traditional “bi-
ased” autocorrelation and Yin. Within 100 cents using a
128 sample window, assisted autocorrelation and assisted
Yin triple the accuracy of traditional methods. With a 256
sample window, assisted pitch detection still significantly
out performs existing means– assisted Yin offering a 25%
improvement, and assisted autocorrelation offering a 48%
improvement over standard Yin (100-cent accuracy, Yin la-
bels). Increasing the window size to 512 samples, the advan-
tage of sensor assistance is reduced and accuracy differences
become insignificant.

At window sizes above 512 samples, assisted pitch-tracking
tends to slightly out-perform Yin when evaluated using hand
labels: .956 (AC+S) vs .941 (Yin) accuracy at 50 cents, and
.952 (AC+S) vs. .928 (Yin) accuracy at 50 cents with a
2048 sample window. This also hold true using Yin-FFT
annotations: .939 (AC+S) vs. .931 (Yin) within 50 cents
with a 1024 window, and .926 (AC+S) vs .901 (Yin) within
50 cents with a 2048 sample window. It is possible that
comparing against Yin annotations will give Yin results an
artificial advantage, since both the algorithm under test and
the annotations may produce the same errors.

An additional advantage of sensor assisted pitch detec-
tion for some contexts is that the error range is much more
limited. As visible in Figure 4, for fingered notes, error with
assisted autocorrelation is limited to within a minor third
with the only large error occuring during an open g-string.
In contrast, the raw Yin estimate fluxuates dramatically
across more frequencies.

5. DISCUSSION
While the 66.8% hit rate using a 128 sample window is too
low for practical use, using assisted autocorrelation with a
256 sample window is promising. The advantage the sensor
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Figure 4: Pitch estimates derived using Yin and
Assisted autocorrelation with a 256 sample window
and major third search area at 44.1kHz for an audio
segment consisting of scales. The sensor assisted
results have significantly less variation in error.

information gives the algorithm over an uninformed esti-
mate can be made clear by considering Figure 4. First,
the search limits provided by the sensors help screen out
noise during a pitch change so that the new pitch is typi-
cally found faster. As visible in Figure 4, the loss of pitch
estimate during transitions is easily visible with Yin, but
far less so with assisted autocorrelation. This additional
improvement in accuracy when finding a new pitch directly
enhances the low-latency performance.

Next, a 256 sample window at 44.1kHz corresponds to
a 5.8 ms window so that no frequency under 172 Hz will
complete a wavelength within the window. Additionally
performance will improve with multiple wavelengths. Yin
has a minimum detection period of 1

2
τmax where τmax is

limited to the length of the window. Hence, with a 5.8ms
window, Yin will fail to detect frequencies under 344Hz,
a result clearly illustrated in Figure 4. However, sensor
assisted autocorrelation is able to reasonably estimate the
correct pitch, is never further off than a minor third, and
rarely significantly underestimates the frequency.

One issue with the present sensor arrangement is that
on the violin, the finger can stop the string without being
pressed firmly into the fingerboard, so a fingered note will
not always produce an electrical connection. This is partic-
ularly problematic on the thin E-string, which can make a
groove in the finger and not contact the fingerboard. An
example of failed electrical contact affecting pitch estimates
can be seen on the right side of Figure 4, around 170 sec-
onds. Identifying and removing instances where the string
unexpectedly lost electrical contact with the fingerboard im-
proves estimation accuracy roughly 1.5-5.0% over present
accuracy for both modes of assisted prediction. This im-
provement is enough that if the contact error can be elim-
inated, assisted pitch detection is expected to outperform
Yin for all window sizes.

Beyond refining sensing arrangements, a major opportu-
nity for improving results is to fully calibrate the hardware
sensor for correct pitch. At low window sizes, accurate pitch
estimate turned out to be heavily reliant on hardware esti-
mate accuracy, but we did not fully exploit hardware sensor
accuracy and stability. For this paper, we used open string
voltage as VMS and did not diligently tune the hardware
beyond ensuring that fingering near the nut would be min-
imally detectable. Of the three test sets analyzed, only one
had an average hardware pitch estimate error within 100
cents of labeled pitch, thus enabling us to experiment with
a semi-tone search window. With a 256 window size and the
semi-tone search window, this set was 91% accurate within
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100 cents using assisted autocorrelation and 89% accurate
using assisted Yin. 3-4% of the error was due to contact er-
ror with much of the remaining error occuring during open
g-strings. Presumably, if we had calibrated hardware esti-
mates to be closer to expected pitch, we would see higher
accuracy at low-latencies.

An additional hardware challenge is that velostat is tem-
perature sensitive so its resistance is not stable. This was
dealt with in the short term by adding a potentiometer to
control the current supply so we could vary the drive cur-
rent and more intentionally calibrate the fingerboard sensor.
We also found that charge appeared to build in the velostat
when left on for a long time. This further altered conductiv-
ity but could be countered by turning off power for a while.
Both these issues could use more robust solutions.

6. CONCLUSIONS
Combining audio analysis with sensor input allows us to sig-
nificantly improve pitch-tracking results. In isolation, the
audio pitch tracking algorithm and the sensor data both ex-
hibit significant amounts of error, especially at small audio
window sizes. However, because the errors are of different
types, combining the two produces improvements over the
current state-of-the-art in pitch tracking, allowing accurate
detection at low latencies.

Improved low-latency pitch-tracking has applications to
a wide variety of live electroacoustic performance situa-
tions, such as corrective learning strategies fixing pitch,
live synchrony with performance derived visuals, and en-
able non-predictive score following or auto accompaniment.
Although the sensor methods presented in this paper are
both violin and pitch specific, the utilization of both hard-
ware sensor and audio analysis need not be. As evidenced
by the already well utilized “E-Sitar” [14], a similiar strat-
egy of sensor and audio analysis could be employed for a
multitude of augmented instruments.
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