
Sound Analyser: A Plug-In For Real-Time Audio Analysis
In Live Performances And Installations

Adam M. Stark
Independent
London, UK

hello@adamstark.co.uk

ABSTRACT
Real-time audio analysis has great potential for being used
to create musically responsive applications in live perfor-
mances. There have been many examples of such use, in-
cluding sound-responsive visualisations, adaptive audio ef-
fects and machine musicianship. However, at present, using
audio analysis algorithms in live performance requires either
some detailed knowledge about the algorithms themselves,
or programming – or both. Those wishing to use audio
analysis in live performances may not have either of these
as their strengths. Rather, they may instead wish to focus
upon systems that respond to audio analysis data, such as
visual projections or sound generators.

In response, this paper introduces the Sound Analyser –
an audio plug-in allowing users to a) select a custom set of
audio analyses to be performed in real-time and b) send that
information via OSC so that it can easily be used by other
systems to develop responsive applications for live perfor-
mances and installations. A description of the system archi-
tecture and audio analysis algorithms implemented in the
plug-in is presented before moving on to two case studies
where the plug-in has been used in the field with artists.

Keywords
audio analysis, live performance, VST, Audio Unit, plug-in

1. INTRODUCTION
The last 20 years have seen a large amount of interest in
the field of audio analysis. This has led to the development
of algorithms capable of onset detection [1], beat tracking
[8], pitch detection [7], downbeat detection [9], chord recog-
nition [6] and many other forms of musical audio analysis.

A large driver of research in audio analysis to date has
been offline Music Information Retrieval (MIR) tasks on
databases of music, such as in [2]. However, there are also
many applications for audio analysis in real-time contexts –
including in the live performance of music and sound based
installations. We can point to examples of audio analysis
being used to produce responsive visualisations [15], playing
a role in augmented instruments [11], the many examples
of machine musicianship [12] and audio effect parameters
augmented using audio analysis [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Figure 1: The Sound Analyser plug-in interface with
integrated plotting. The user can set the destina-
tion IP address and port number that audio analysis
data will be sent to.

1.1 Existing Software for Audio Analysis
There are several pieces of standalone software for perform-
ing audio analysis. An example is the excellent Sonic Vi-
sualiser [5] software. However, while this software is very
versatile, the algorithms are implemented in an offline fash-
ion (even if they are causal), and it is not possible to send
the data elsewhere in real-time for use in performance ap-
plications.

At present, those wishing to use audio analysis in a live
performance context are faced with two options. The first
is to write their own audio analysis software (e.g. in C++,
Java or Python) or to interface with an audio analysis li-
brary, such as LibXtract [4]. This may be an excellent choice
for the project in question, if the audio analysis is very spe-
cific to the application or if the desired end result is some
standalone software. However, it does require a degree of
literacy with the specifics of audio analysis algorithms (and
programming!) that may not be the interest or strength of
those wishing to incorporate real-time audio analysis into
their system.

Another option is to use one or more third party objects,
such as the Zsa.Descriptors presented in [10], within a pro-
gramming environment such as Max. Again, this may be a
wholly appropriate choice, but it still means programming a
new tool from scratch, requires some knowledge of Max and
assumes that the audio to be analysed was already going to
be received by Max, and not some other music software such

Proceedings of the International Conference on New Interfaces for Musical Expression

183



Figure 2: An overview of the operation of the Sound Analyser when it is loaded into a host application. The
audio remains unaffected and once the user has selected one or more audio analysis algorithms, the resulting
features are sent outside of the host via OSC to other applications.

as Ableton Live, or Logic Pro.

1.2 Sound Analyser
In order to allow non-experts to use real-time audio anal-
ysis, this paper introduces Sound Analyser - a plug-in for
using audio analysis in live performances. It allows a user
to select a custom set of real-time audio analysis algorithms
using the audio plug-in interface, and sends the result of the
processing via Open Sound Control (OSC) [16] to other soft-
ware. This approach is quick to set up for the user, flexible
in terms of the audio analysis algorithms performed and re-
quires minimal knowledge about audio analysis algorithms
and programming from the user.

The rest of this paper is structured as follows. We proceed
in Section 2 with an overview of the system, including an
overview of the forms of audio analysis that are presently
implemented in the Sound Analyser. In Section 3 we briefly
discuss the software implementation of the plug-in before
proceeding to a discussion of the advantages of using an
audio plug-in for audio analysis in Section 4. Finally, we
turn to two case studies of where the plug-in has been used
with artists in real-time contexts in Section 5.

2. SYSTEM DESCRIPTION
The Sound Analyser plug-in is intended to be used with
host software that supports either the VST or Audio Unit
frameworks. Whilst being an audio plug-in, it has the added
functionality of being able to send audio analysis data over
a network to other software. In this section we give a brief
overview of the system and the audio analysis algorithms
implemented in the current version.

2.1 Basic Operation
Once loaded, the plug-in operates as follows:

1. The user selects one or more forms of audio analysis to
be performed in real-time, as well as the destination
port and IP address for OSC messages.

2. The selected audio analysis algorithms are performed
on the audio provided by the host application, sending
the computed analysis data over a network via OSC.
This approach is outlined in Figure 2.

2.2 Modular Selection of Audio Analysis Al-
gorithms

Each instance of the plug-in allows the user to select a cus-
tom set of audio analyses that run in parallel. As different
audio analysis algorithms can be added to or removed from
the plug-in as the user requires, selecting features for a given
live performance application can be done in an on the fly
‘browsing’ manner.

For algorithms that require the calculation of the Fourier
transform, this is computed only once and shared between
all analysis algorithms to reduce the computation overload.

2.3 Audio Analysis ‘Audition’ through Inte-
grated Plotting

The plug-in has an integrated real-time plotting system (see
Figure 1), allowing users to ‘audition’ different forms of au-
dio analysis before choosing the right one for the applica-
tion in question. The plotting system can display both one-
dimensional time domain signals and vector signals, where
N samples are presented per frame, as with the FFT magni-
tude spectrum. For each audio analysis algorithm selected
by the user, options are presented to send information via
OSC, or to plot. If neither is selected for a given audio
analysis algorithm, the processing for that algorithm is not
performed to reduce unnecessary computation.

2.4 Audio Analysis Algorithms
We now present an overview of the audio analysis algorithms
implemented in the Sound Analyser at the time of writing.

2.4.1 Common Time Domain Features
The plug-in includes a number of time domain features,
including Root Mean Square (RMS), Peak Energy and the
Zero Crossing Rate.

2.4.2 Common Frequency Domain Features
The frequency domain features implemented in the plug-in
include the Spectral Centroid, Spectral Flatness and Spec-
tral Crest.

2.4.3 Onset Detection Functions
A number of onset detection functions (see [1] for expla-
nations) are available including Energy Difference, Spec-

Proceedings of the International Conference on New Interfaces for Musical Expression

184



tral Flux, High Frequency Content Detection Function and
Complex Spectral Difference.

2.4.4 Pitch Detection
The pitch detection algorithm implemented in the plug-in
is based on the YIN pitch detector found in [7].

2.4.5 Spectra
The plug-in can compute a number of spectra and these can
also be sent via OSC. Presently, the user is able to calculate
the FFT Magnitude Spectrum, Mel-frequency representa-
tions and the Constant-Q Transform [3].

2.4.6 Chord Recognition
The plug-in includes an implementation of the chord recog-
nition algorithm presented in [14]. This allows both chords
and the chromagram features used to detect them to be sent
over OSC.

3. SOFTWARE IMPLEMENTATION
The Sound Analyser plug-in is implemented in C++, using
the JUCE framework, and is available in both VST and
Audio Unit formats. The code for the plug-in is open source,
available under a GPL license1.

4. DISCUSSION
We have presented a real-time audio analysis plug-in capa-
ble of sending analysis data via OSC. We will now discuss
some of the advantages of approaching real-time audio anal-
ysis in this way.

4.1 Potential for Use in Multiple Hosts
A key advantage of the Sound Analyser plug-in is that it can
easily be used in any software that can host VST or Audio
Unit plug-ins, including major software sequencers such as
Ableton Live and Logic Pro as well as programming envi-
ronments like Max. This allows the extraction of multiple
real-time audio features without implementing entirely new
systems.

4.2 Audio Analysis Without Programming
It is also important to highlight the ‘no programming’ ap-
proach to performing audio analysis – the GUI allows the
user to select the required algorithms and so can do in min-
utes what may take at least several hours when writing cus-
tom software. Of course, some programming may be needed
on the application side of whatever the audio analysis is in-
tended to be used for, but the lack of any need to program
the audio analysis stage both saves time and allows non-
experts to use audio analysis in applications.

4.3 Multi-track Audio Analysis
It is possible to run multiple instances of the plug-in on dif-
ferent ‘tracks’, allowing multi-track audio analysis. Further-
more, each instance can use a different set of audio analysis
algorithms to process the audio on that track. This would
allow, for example, audio analysis of a live band where sev-
eral different audio streams were available for the different
instruments.

In order to distinguish the same form of audio analysis
produced by different instances of the Sound Analyser on
different tracks, each analyser has an instance ID that can
be changed, and this is prepended to the OSC message to
allow each track to be uniquely identified. This can be seen
in Figure 1 where the ID has been set to ‘viola’. This would
render the RMS address pattern as /viola/rms.

1http://www.adamstark.co.uk/sound-analyser

Figure 3: Odile Auboin performs Ligeti’s Sonata
for Solo Viola in 2012 with accompanying visuals
informed by audio analysis from the Sound Analyser
plug-in

4.4 Audio Pre-processing
In some hosts, users can load other plug-ins before the
Sound Analyser, allowing them to pre-process the audio sig-
nal (e.g. by using an equaliser to remove some frequency
components) so that the parts of the audio signal that are
of interest can be emphasised.

4.5 Potential for Distributed Processing
The plug-in combined with OSC output allows the audio
analysis to be computed on one computer, with the use
of that data to occur on another computer. This may be
desirable as some audio analysis algorithms can be compu-
tationally expensive.

4.6 Storage of Audio Analysis Parameters With
the Host Application

Audio plug-in host applications automatically store plug-
in parameters and this allows the choice of audio analysis
algorithms and the parameters associated with each to be
automatically stored with the host application and recalled
when the host is reloaded.

5. CASE STUDIES
5.1 Case Study 1: Live Visuals for a Classical

Music Concert
The Sound Analyser plug-in originates from an audio-visual
project to develop responsive visualisations to classical mu-
sic performances, led by artists Davide Quayola and the
duo Abstract Birds (Natan Sinigaglia and Pedro Mari). In
2012, the author worked with these artists to develop a sys-
tem for responsive visuals during a performance of György
Ligeti’s Sonata for Solo Viola by Odile Auboin of the En-
semble Intercontemporain. The piece was performed during
the Nemo Festival in Paris, in December 2012.

The artists had prepared a number of visual themes us-
ing the programming environment vvvv. Using a prototype
of the Sound Analyser plug-in, the author helped the vi-
sual artists to map a number of audio analysis parameters
to control aspects of visual output. These included RMS
energy, pitch detection, the FFT magnitude spectrum and
onset detection functions.

Each visual theme required a different set of audio anal-
yses, and we experimented with either presenting all audio
analysis data at once, or switching between different sets of
audio analysis algorithms by switching analyses on and off

Proceedings of the International Conference on New Interfaces for Musical Expression

185



Figure 4: Musician Imogen Heap during the filming
of the Me The Machine music video. In the photo,
information from her musical data gloves was used
to draw shapes with their magnitude determined by
audio features from the Sound Analyser plug-in

using the plug-in. A still from the performance can be seen
in Figure 3.

5.2 Case Study 2: Sound Responsive Visuals
for a Music Video

In December 2013, the author worked with a team of artists,
directors, engineers and others on the production of musi-
cian Imogen Heap’s music video for the song Me The Ma-
chine. The song itself had been written and recorded using
musical data gloves, and so the intention was for the gloves
to feature significantly in the video. This involved the infor-
mation from the data gloves being used to augment visual
projections created by a number of artists.

During the development of the video, it became clear that
it would aid the overall effect of the visual projections if
they were able to respond to the music directly also. Ahead
of the filming, the author worked with visual artist Ro-
man Miletitch to make his visual elements, implemented
using the library Cinder, responsive to musical aspects of
the song.

Using the Sound Analyser plug-in, the author and the
visual artist were able to quickly audition different forms
of audio analysis, inspecting the effect they produced on
the visualisations. In the end, it was found that very sim-
ple relationships between signal energy information and the
magnitude of shapes was the most effective mapping – but
the process of discovery was simple and allowed the audition
of several other forms of analysis including several onset de-
tection functions and the spectral centroid. A still from the
video can be seen in Figure 4.

6. CONCLUSION
This paper has presented Sound Analyser, an audio plug-in
for performing audio analysis in real-time and sending the
result via OSC to other applications. We have argued that
this approach to real-time audio analysis is a simple way
for non-audio analysis experts to use such information to
create audio-responsive applications in live performances.

In future work, the audio plug-in will be expanded to be
capable of many other forms of audio analysis including beat
tracking, downbeat detection, key detection and multi-pitch
detection.

7. ACKNOWLEDGEMENTS
The author would like to thank Davide Quayola, Natan Sini-
gaglia, Imogen Heap and Roman Miletitch for their time,
feedback and advice which has been a huge contribution to
the research.

8. REFERENCES
[1] Juan P. Bello, Laurent Daudet, Samer Abdallah,

Chris Duxbury, Mike Davies, and Mark B. Sandler. A
tutorial on onset detection in music signals. IEEE
Trans. on Audio, Speech and Language Processing,
13(5):1035–1047, September 2005.

[2] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez,
Sankalp Gulati, Perfecto Herrera, Oscar Mayor,
Gerard Roma, Justin Salamon, José Zapata, and
Xavier Serra. Essentia: An audio analysis library for
music information retrieval. In Proc. ISMIR, pages
493–498, 2013.

[3] Judith C. Brown. Calculation of a constant-Q spectral
transform. Journal of the Acoustical Society of
America, 89:425–434, January 1991.

[4] Jamie Bullock. LibXtract: A lightweight library for
audio feature extraction. In Proc. of International
Computer Music Conference, 2007.

[5] Chris Cannam, Christian Landone, Mark Sandler,
and Juan Pablo Bello. The sonic visualiser: A
visualisation platform for semantic descriptors from
musical signals. In Proc. ISMIR, 2006.

[6] Taemin Cho, Ron J. Weiss, and Juan P. Bello.
Exploring common variations in state of the art chord
recognition systems. In Proc. of Sound and Music
Computing Conference, 2010.

[7] Alain de Cheveigne and Hideki Kawahara. YIN, a
fundamental frequency estimator for speech and
music. Journal of the Acoustical Society of America,
111(4):1917 – 1930, April 2002.

[8] Norberto Degara, Enrique Argones Rúa, Antonio
Pena, Soledad Torres-Guijarro, Matthew E.P. Davies,
and Mark D. Plumbley. Reliability-informed beat
tracking of musical audio signals. IEEE Trans. on
Audio, Speech and Language Processing, 2012.

[9] Jason A. Hockman, Matthew E.P. Davies, and Ichiro
Fujinaga. One in the jungle: Downbeat detection in
hardcore, jungle and drum and bass. In Proc. of 13th
International Society for Music Information Retrieval
Conference (ISMIR 2012), pages 169–174, 2012.

[10] Mikhail Malt and Emmanuel Jourdan.
Zsa.descriptors: a library for real-time descriptors
analysis. In Proc. of Sound and Music Computing
Conference, 2008.

[11] Löıc Reboursière, Christian Frisson, Otso Lähdeoja,
John Anderson Mills III, Cécile Picard, and Todor
Todoroff. Multimodal guitar: A toolbox for
augmented guitar performances. In Proc. New
Interfaces for Musical Expression (NIME 2010),
pages 415–418, Syndey, Australia, 2010.

[12] Robert Rowe. Machine Musicianship. MIT Press,
2001.

[13] Adam M. Stark, Matthew E.P. Davies, and Mark D.
Plumbley. Real-time beat-synchronous audio effects.
In Proc. New Interfaces for Musical Expression, 2007.

[14] Adam M. Stark and Mark D. Plumbley. Real-time
chord recognition for live performance. In Proc. of
International Computer Music Conference, 2009.

[15] Robyn Taylor, Pierre Boulanger, and Daniel Torres.
Real-time music visualization using responsive
imagery. In Proc. of the 8th International Conference
on Virtual Reality, pages 62–69, April 26-30 2006.

[16] Matthew Wright, Adrian Freed, and Ali Momeni.
OpenSound Control: State of the art 2003. In Proc.
New Interfaces for Musical Expression, pages
153–159, 2003.

Proceedings of the International Conference on New Interfaces for Musical Expression

186




