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ABSTRACT
We present a set of probabilistic models that support the
design of movement and sound relationships in interactive
sonic systems. We focus on a mapping–by–demonstration
approach in which the relationships between motion and
sound are defined by a machine learning model that learns
from a set of user examples. We describe four probabilis-
tic models with complementary characteristics in terms of
multimodality and temporality. We illustrate the practical
use of each of the four models with a prototype application
for sound control built using our Max implementation.
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1. INTRODUCTION
Designing the relationships between movement and sound
is one of the crucial issues in interactive systems, especially
to develop musical expressivity. As reviewed by Caramiaux
et al. the methods for creating movement–sound mappings
have evolved with the advent of practical and interactive
tools based on machine learning techniques [5]. Indeed, de-
sign practices are shifting from an analytical view of the
links between parameters to interaction–driven approaches.

In this paper we detail a set of methods that follow the
general approach called Mapping–by–Demonstration [9],
that aims to learn the relationships between movement and
sound from examples created by the user. In these meth-
ods, a probabilistic model is trained with examples of move-
ments and sounds during a phase called training. In perfor-
mance phase, the trained model generates a mapping be-
tween movement and sound processing parameters in real-
time.

The aim of this paper is to present four probabilistic mod-
els that represent complementary aspects of the motion-
sounds relationships. Each model is supported by a spe-
cific Max external – available to the community though the
MuBu library, – that enables the creation of applications in
motion-based sonic interactions for music and sound design.
We also present four different use cases that further illus-
trate possible implementations of these probabilistic mod-
els.
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The paper is structured as follows. First, we review the
similar works in term of methodology or model implementa-
tion (Section 2). Second, we describe the general workflow
of our approach (Section 3) and the four different models
(Section 4). Third, we describe the implementation of these
models (Section 5) and prototype applications (Section 6).

2. RELATED WORK
Many approaches take advantage of machine learning as a
design support tool in music interaction. In this section we
review this body of work, with a distinction between com-
putational models that focus on movement only and meth-
ods that directly learn the mapping by jointly representing
movement and sound.1

Several methods have implemented movement models with
a focus on gesture recognition, using Dynamic Time Warp-
ing [1], Hidden Markov Models (HMMs) [14] or Support
Vector machines [13, 8]. Often, These methods target dis-
crete interaction paradigms where recognition is used for
triggering or selecting sounds. Recently, interests in com-
putational models of movement shifted towards a better
integration of expressivity. Bevilacqua et al. proposed a
particular implementation of HMMs for continuous gesture
recognition able to ‘follow’ the performance of a gesture
in real-time [3]. Two extensions of this method were re-
spectively proposed by Caramiaux et al. [4] who integrated
the estimation of other attributes of movement (scaling,
rotation, etc.), and by Françoise et al. whose hierarchical
model integrates a representation of higher level temporal
sequences [10].

Multimodal approaches propose a joint representation of
movement and sound. Fels [6] use Neural Networks to learn
a regression between movement and sound parameters. This
approach was recently extended using deep learning models
that integrate multilevel representations and intrinsic fea-
ture extraction [12]. Françoise proposed a multimodal tem-
poral model able to learn dynamic movement–sound map-
pings using a multimodal extension of Hidden Markov Mod-
els [11].

Several works formalize the process of designing interac-
tions with the support of machine learning. Drawing from
knowledge in Interactive Machine Learning, Fiebrink em-
phasizes the role of the user in machine learning-based sys-
tems [8]: for example the ‘Wekinator’ allows a playalong
definition of the training examples, in which movements
parameters are recorded while listening to a predefined se-
quence of sound parameters [7]. In this paper we adopt
the broader framework of mapping–by–demonstration pro-
posed by Françoise [9], that does not necessarily assume the

1A broad overview of machine learning goes beyond the
scope of this paper, and we refer the reader to [5] for a
tutorial on machine learning for musical gestures.
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synchronous performance. We extend this framework by
formalizing different strategies based on either movement
models or multimodal mapping models.

3. WORKFLOW AND DEFINITIONS
This paper focuses on supervised machine learning tech-
niques implemented in an interactive workflow: the user
defines movement–sound mappings through examples. In
this section, we present the general workflow from the user’s
point of view. This workflow is supported by models and
tools we describe in Sections 4 and 5, respectively.

As depicted in Figure 1, the mapping–by–demonstration
approach involves an interaction loop that consists of two
phases: a training phase that allows the user to define
mappings and a performance phase in which the user con-
trols sound synthesis through the previously defined map-
pings [9]. These two phases can be repeated and seamlessly
integrated. Our library is indeed designed to make this
interaction loop transparent to the user without requiring
expert knowledge of machine learning algorithms and meth-
ods.

performance
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examples
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examples
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input 
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Figure 1: Workflow of a Mapping–by–
Demonstration System

During training, the user demonstrates examples of move-
ments. The sound may be taken from pre-recorded material,
or captured synchronously to the movement (e.g. vocal-
izations). Each recorded phrase is represented by features
describing the movement and – optionally – the associated
sound.2 A training set is constituted by a set of phrases
labeled by the user to define classes.3 A training algorithm
is used to estimate the optimal parameters of the model
for each class. This way, the user can integrate multiple
movement–sound relationships within a model.

In the performance phase, the trained system is used to
control sound processing in real-time driven by movement
features.4 In our implementation, each model outputs a
set of parameters for every frame of the incoming stream
of motion features. This guarantees continuous sound con-
trol with a fine time grain. Depending on the used model,
the system simultaneously reports recognition scores, i.e.
likelihoods, and estimates control parameters, which can be

2While movement are usually represented by a time series
of movement features extracted from motion capture data,
sound sequences can be either represented by a stream of
audio features or sound synthesis parameters.
3In the case that each class is defined by a single example,
the labeling might be implicit.
4The same movement features are used in training and per-
formance phase.

instantaneous sound synthesis parameters or temporal pro-
files.

4. MODELS
We present four supervised5 probabilistic models, corre-
sponding to four movement–sound relationship paradigms:
Gaussian Mixture Models (GMM), Gaussian Mixture Re-
gression (GMR), Hierarchical Hidden Markov Models
(HHMM), and Multimodal Hierarchical Hidden Markov
Models (MHMM).

In this section, we briefly introduce these models with a
practical perspective, aiming at giving insights into for their
specific advantages for interaction design.6 The models can
be organized regarding two criteria, multimodality and tem-
porality. The former criterion is concerned with whether the
model is limited to movement features, or whether it pro-
vides a joint (i.e. multimodal) representation of movement
and sound. The latter considers whether and how the mod-
els take into account the temporal evolution of movement
and sound.

4.1 Two Criteria
Multimodality
We make a distinction between movement models and mul-
timodal models. Many approaches to sound control in-
volving gesture recognition are based on movement models
that are not intrinsically related to sound modeling (Fig-
ure 2(a)). In this case, the user defines the mapping be-
tween the recognized gesture classes and the sound classes
after the learning the phase. Such mappings could con-
sist, for example, in triggering a particular sound segment
each time a particular gesture is recognized. More advanced
mappings may allow for aligning the playback of a sound
segment to the performance of a gesture [2].

Alternatively, multimodal models are trained with
sequences of joint movement–sound representations and
therefore enables to learn movement–sound relationships
(Figure 2(b)). Consequently, these probabilistic models al-
low for generating sound features – or synthesis parameters
– from motion features input into a trained system.

Temporality
We differentiate instantaneous models from temporal mod-
els. Instantaneous models learn and perform static instan-
taneous movement–sound relationships without taking into
account any temporal modeling. Practically, this means
that the recognition or generation performed by the model
at any given instant is independent of previous input. On
the contrary, temporal models take into account time series.
In this case, the recognition or generation performed by the
model depends on the history of the input.

4.2 Four Models
The implemented models are summarized in Table 1. Each
of the four model addresses a different combination of the
multimodal and temporal aspects. We implemented two in-
stantaneous models based on Gaussian Mixture Models and
two temporal models with a hierarchical structure, based

5We argue that supervised learning strongly support a con-
trolled design of the mapping in most cases, by letting the
user associate movements and sounds. However, some of
the implemented models can be used in an unsupervised
manner (for example: GMMs).
6The technical description of the models goes beyond the
scope of this paper. We refer the reader to specialized pub-
lications for more detailed descriptions of the implemented
machine learning techniques.
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Figure 2: Probabilistic sound control strategies based on movement models and multimodal models.

on an extension of the basic Hidden Markov Model (HMM)
formalism.

MultimodalMovement

Instantaneous
Gaussian Mixture Regression

(GMR)
Gaussian Mixture Model

(GMM)

Temporal
Multimodal Hierarchical 
Hidden Markov Model

(MHMM)

Hierarchical 
Hidden Markov Model

(HHMM)

Table 1: Summary of the probabilistic models.

Gaussian Mixture Models (GMMs) are instanta-
neous movement models. The input data associated
to a class defined by the training sets is abstracted
by a mixture (i.e. a weighted sum) of Gaussian distri-
butions. This representation allows recognition in the
performance phase: for each input frame the model
calculates the likelihood of each class (Figure 3(a)).

Gaussian Mixture Regression (GMR) [18] are a
straightforward extension of Gaussian Mixture Mod-
els used for regression. Trained with multimodal data,
GMR allows to predict the features of one modality
(e.g. sound) from the features of another (e.g. move-
ment) through non-linear regression between both fea-
ture sets (Figure 3(b)).

Hierarchical HMM (HHMM) [10] integrates a high-
level structure that governs the transitions between
classical HMM structures representing the temporal
evolution of – low-level – movement segments. In
the performance phase of the system, the hierarchi-
cal model estimates the likeliest gesture according to
the transitions defined by the user. The system con-
tinuously estimates the likelihood for each model, as
well as the time progression within the original train-
ing phrases (Figure 3(c)).

Multimodal Hierarchical HMM (MHMM) [11] al-
lows for predicting a stream of sound parameters from
a stream of movement features. It simultaneously
takes into account the temporal evolution of move-
ment and sound as well as their dynamic relation-
ship according to the given example phrases. In this
way, it guarantees the temporal consistency of the

generated sound, while realizing the trained tempo-
ral movement-sound mappings (Figure 3(d)).

5. IMPLEMENTATIONS
We developed a software library implementing the general
framework presented in Section 3 as well as of the four mod-
els introduced in Section 4. The library is built upon a set of
C++ classes representing phrases, training sets, and mod-
els.

5.1 Architecture
Our implementation follows the workflow presented in Sec-
tion 3 with a particular attention to the interactive training
procedure, and to the respect of the real-time constraints
of the performance mode. The library is built upon four
components representing phrases, training sets, models and
model groups, as represented on Figure 4. A phrase is a
multimodal data container used to store training examples.
A training set is used to aggregate phrases associated with
labels. It provides a set of function for interactive record-
ing, editing and annotation of the phrases. Each instance of
a model is connected to a training set that provides access
to the training phrases. Performance functions are designed
for real-time usage, updating the internal state of the model
and the results for each new observation of a new movement.
The library is portable and cross-platform. It defines a spe-
cific format for exchanging trained models, and provides
Python bindings for scripting purpose or offline processing.

5.2 Max Implementation
Max is a visual programming environment dedicated to mu-
sic and interactive media. We provide an implementation
of our library as a set of Max externals and abstractions ar-
ticulated around the MuBu collection of objects developed
at Ircam [16]7.

Training sets are built using MuBu, a generic container
designed to store and process multimodal data such as au-
dio, motion tracking data, sound descriptors, markers, etc.
Each training phrase is stored in a buffer of the container,
and movement and sound parameters are recorded into sep-
arate tracks of each buffer. Markers can be used to specify
regions of interest within the recorded examples. Phrases
are labeled using the markers or as an attribute of the buffer.
This structures allows to quickly record, modify, and an-

7http://forumnet.ircam.fr/product/mubu/
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Figure 3: Schematic representation of the characteristics of the 4 models.
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Figure 4: Architecture of the implementation.

notate the training examples. Training sets are thus au-
tonomous and can be used to train several models.

Each model can be instantiated as a max object refer-

ring to a MuBu container that defines its training set. For
training, the model connects to the container and trans-
fers the training examples to its internal representation of
phrases. The parameters of the model can be set manually
as attributes of the object, such as the number of Gaus-
sian components in the case of a GMM, or the number of
states in the case of a HMM. The training is performed in
background.

For performance, each object processes an input stream
of movement features and updates the results with the same
rate. For movement models, the object output the list of
likelihoods, complemented with the parameters estimated
for each class, such as the time progression in the case of a
temporal model, or the weight of each Gaussian component
in the case of a GMM. For multimodal models, the object
also outputs the most probable sound parameters estimated
by the model, that can be directly used to drive the sound
synthesis.

6. PROTOTYPE APPLICATIONS
In this section, we illustrate the usage of our library through
a set of prototype applications that emphasize the different
characteristics of the four models. We illustrate the gen-
erality of our implementation with different types of sound
synthesis and movement tracking systems. The four ap-
plications are illustrated in Figure 5, and a demonstration
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video as well as further examples can be found on the web-
page: http://ismm.ircam.fr/nime2014_mbd/.

6.1 Resonant Scratching
This application aims at sonifying touching movements us-
ing a set of resonant models.8 The application is depicted in
Figure 5(a), and a screenshot of the Max patch is reported
in Figure 6.

Motion capture is performed using a contact microphone
placed on the control surface. Our goal is to classify dif-
ferent touching modes from the audio signal in order to
select the separate resonant model. This classification only
requires the instantaneous description of the timbre of the
scratching sound. Therefore, we do not consider the tem-
poral dynamics in this case, which justifies the use of an
instantaneous movement model. We use a GMM to classify
touch using Mel-Frequency Cepstral Coefficients (MFCCs),
that we consider here as movement features since they di-
rectly relate to touch qualities.

During Training, we demonstrate several examples of 3
classes of touch: for instance rub, scratch and tap, by record-
ing and analyzing the sound of each touching mode. Each
class is represented by a GMM with 3 Gaussian compo-
nents, and is associated with a resonant model. During Per-
formance, the sound from the contact microphone is then
directly filtered using the resonant model. The amount of
each filter is determined by the likelihood of each class.

Figure 6: Screenshot of the Max patch of the
Scratching application.

6.2 Physical Sound Design
In this application, we map in-air movement to physical
modeling sound synthesis, as shown in Figure 5(b)). Using
a LeapmotionTMhand tracking system, hand speed and ori-
entation are directly available as movement features. The
goal here is to learn the mapping between these movement
features and the control parameters of physical models.
Therefore, this application requires an instantaneous mul-
timodal model, namely GMR.

For Training, we start by designing sounds using a graph-
ical editor that allows to draw time profiles of the physical
models’ input parameters. After recording several examples
of movements with each preset, one model is trained for
each physical model using movement and sound parameters
sequences. During Performance, the GMR generates the

8This application draws from previous research from the
Interlude project (see: http://interlude.ircam.fr/) [15]

control parameters of each physical models, and estimates
the likelihoods, that are used to mix the sound output of
each synthesizer.

6.3 Gesture-based Sound Mixing
This use case illustrates the use of the continuous estimation
of the likelihoods in gesture recognition (Figure 5(c)). The
goal is to continuously control the mixing of a set of recorded
sounds, from a set of dynamic gestures captured using the
Leapmotion. As dynamic gesture recognition is required
here, we use a temporal movement model, namely a HHMM.

After defining the gesture vocabulary, we record several
examples of each gesture to recognize, taking care of vary-
ing particular aspects such as the speed and breadth of each
movement to ensure generalization and robustness of the
recognition method. The movement models are learned us-
ing a HHMM in which each sub-model represents a par-
ticular class of gesture. As shown in Figure 5(c), during
performance the HHMM is used to evaluate the likelihood
of each gesture, that is used to drive the playback level of
the associated recorded sound.

6.4 Interactive Vocalization
This prototype focuses on sonic interaction design based on
movements and non-verbal vocal sketches (Figure 5(d)).
The application allows for performing interactive vocaliza-
tions where the relationships between motion and sounds
are learned from direct demonstration of movements and
vocalizations performed synchronously during the training
phase. Movements are captured using MO interfaces [15],
that integrate 3D accelerometers and gyroscopes. In or-
der to guarantee a consistent reconstruction of the vocal
sketches, this application requires the use of a temporal
model. Therefore, we use the MHMM model to learn this
multimodal and temporal mapping.

Each training phrase associates a sequence of motion
features with a sequence of MFCCs computed from the
audio. From this multimodal data, a hierarchical model
(MHMM) is learned, in which each sub-model represents
a multimodal primitive linking movement and voice. Dur-
ing performance, the model recognizes the movement and
estimates the MFCCs accordingly. We use a corpus-based
granular synthesis engine. The estimated stream of MFCCs
is used to re-synthesize the vocalizations by concatenating
the grains that match the sound description using a KNN
search [17]. As before, the likelihoods are used to control
the level of each class of vocalization.

7. CONCLUSION AND FUTURE DEVEL-
OPMENTS

We presented four different probabilistic models and their
implementation for the design of movement-sound interac-
tion by demonstration. These four models offers a con-
sistent approach to use interactive machine learning tech-
niques, considering different cases: movement models and
multimodal models, instantaneous and temporal models.

These models have been implemented in the Max envi-
ronment and are distributed in the MuBu library. We be-
lieve that the NIME community will benefit of these tools.
Further examples will also be available that should foster
discussion in the emerging use of machine learning in inter-
active systems.
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