
MobileFaust: a Set of Tools to Make Musical Mobile

Applications with the Faust Programming Language

Romain Michon
CCRMA, Stanford University

CA 84305-8180, USA
rmichon@ccrma.stanford.edu

Julius O. III. Smith
CCRMA, Stanford University

CA 84305-8180, USA
jos@ccrma.stanford.edu

Yann Orlarey
GRAME

Lyon, France
orlarey@grame.fr

ABSTRACT
This work presents a series of tools to turn Faust code into
various elements ranging from fully functional applications
to multi-platform libraries for real time audio signal pro-
cessing on iOS and Android. Technical details about their
use and function are provided along with audio latency and
performance comparisons, and examples of applications.

Author Keywords
Faust, iOS, Android, DSP

1. INTRODUCTION
Mobile platforms o↵er a great opportunity to the world of
open source audio to make sound synthesis and processing
accessible to a wider audience [7, 1]. The use of smartphones
and tablets as musical instruments is now accepted by a
large number of musicians. Not only are mobile devices
widespread and owned by many, they o↵er a higher level
user interface paradigm than computers, which often makes
them more stable and simpler to use. In particular, Android
devices, which are more open than iPhones and iPads (§3)
o↵er a good compromise between open-source, stability, and
ease of use.
Faust1 [6] is a functional programming language for real-

time digital signal processing (DSP) that generates highly
e�cient DSP code in a variety of languages (C, C++, LLVM,
asmjs, and more) that can be compiled into a variety of
forms using a system of wrappers. These wrappers, called
architecture files, describe how to adapt the DSP computa-
tion to the external world [3]. Therefore, it is easy to go
from Faust to standalone applications for di↵erent kinds of
platforms, Web applications, audio plug-ins, externals for
music programming languages, and so on.
This paper presents a series of tools that can turn Faust

code into various elements ranging from fully functional
applications to multi-platform libraries for real-time audio
signal processing on iOS and Android. Technical details
about their use and function are provided, along with au-
dio latency and performance comparisons, and examples of
applications.

2. FAUST2API
1http://faust.grame.fr

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.

Copyright remains with the author(s).

The main idea of faust2api is to provide iOS and Android
developers with a system that generates custom high-level
APIs for real-time audio signal processing. Even though
the APIs work quite di↵erently “under the hood” on iOS
than on Android, they are accessed similarly on the two
platforms.
The faust2api script operates as a command-line tool in

a shell. A Faust source file is provided as an argument,
along with the option -ios or -android specifying the de-
sired architecture, and one or more source files are created
as output (a single C++ header file for iOS, and a direc-
tory containing both Java and C++ source files for An-
droid). The library takes care of starting the audio engine
and instantiating the DSP code, as well as connecting them
together. At the API level, this is all done by the C++
method init(sr,bs) which takes the desired sampling-rate
and audio bu↵er-size as arguments. Computing of the au-
dio process is launched by a start() method. Finally, the
audio engine can be closed and the memory freed by simply
calling stop().2

On both iOS and Android, the audio process runs in
its own high-priority thread. The various parameters of
the Faust object can be accessed and written via get-

Param(path) and setParam(path) where the parameter path
is the parameter’s path in the user-interface tree defined in
the Faust code (as discussed further below in §3.3 on OSC
and MIDI support).
If the Faust object provided to faust2api has no inputs,

and has freq, gain, and gate parameters defined, it is au-
tomatically made polyphonic. The di↵erent voices (eight by
default, but this can be changed) can be triggered using a
keyOn() method that takes a MIDI note number and MIDI
velocity as an argument. This method is linked to the freq,
gain, and gate parameters (§3.1) and allocates a new voice
every time it is called. The keyOff() method sets the gate
parameter of the voice to zero and waits until the level of
the voice falls below -60 dB to deallocate it.

2.1 iOS
The command “faust2api -ios faustCode.dsp” will gen-
erate a single C++ header file that can be included in any
iOS app project. The API relies on the AVAudioSession3

framework to connect to the audio engine.
“Touch to sound” and “round-trip” latency measurements

for iOS audio applications generated by faust2api were

2Detailed documentation of the API can be found here:
https://ccrma.stanford.edu/~rmichon/mobileFaust/
#ref.
3https://developer.apple.com/library/ios/-
documentation/AVFoundation/Reference/-
AVAudioSession_ClassReference/index.html#//-
apple_ref/occ/cl/AVAudioSession

396

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



carried out on an iPad2 and an iPhone5 (Fig. 1).

Device Touch to Sound Round-Trip
iPhone5 36 ms 13 ms
iPad2 45 ms 15 ms

Figure 1: Audio Latency for Di!erent iOS Devices
Using the Faust Library.

ÒRound-tripÓ latency was measured by creating a simple
app that just plays back any sound that comes to its audio
input (in our case, the audio input jack) and by comparing
how long it takes for the iOS device to play back an impulse
sent to this app.

ÒTouch to soundÓlatency was measured by creating a sim-
ple test app where a button on the screen is used to trig-
ger an impulse. The audio output jack of the iOS device
was connected to an ADC4 in order to be able to record
the impulse on a computer. A microphone connected to
the same ADC on a di!erent channel was placed at the
top of the screen of the device. The latency measurements
were carried out by measuring the time di!erence between
the ÒacousticÓ impulse detected by the microphone and the
synthesized one (Fig. 2).

iPad

ADC Time Difference

Audio Jack Out

Figure 2: Touch to Sound Audio Latency Measure-
ment Set-Up.

2.2 Android
faust2api is slightly more complex to use on Android than
iOS. Indeed, Android apps are primarily programmed in
Java. However, this language is not very well suited for real
time DSP so most of the library generated by faust2api is
written in C++ with a Java interface.

The audio engine is accessed, controlled and connected to
the DSP code generated byFaust on the ÒnativeÓ side of
the library where everything is computed in a high-priority
thread, which allows it to be fully independent from the
Java side of the app.

The native portion of the library is compiled as a shared
library using the Android NDK 5 and can be controlled in
Java using a JNI6 interface generated by SWIG.7 More de-
tails about the way this system works can be found in [4].

In practice, faust2api will generate the Android API by
using the -android option instead of -ios (cf. previous sec-
tion) and will provide a set of Java and C++ Þles to be
copied in the Android app project. 8

4Analog to Digital Converter
5Native Development Toolkit:
https://developer.android.com/tools/sdk/ndk/
6Java Native Interface
7Simplified Wrapper and Interface Generator:
http://www.swig.org/
8A tutorial on how to do this can be found here:
https://ccrma.stanford.edu/~rmichon/mobileFaust/
#f2apAndroid

Latency measurements using the same techniques pre-
sented in the previous section were carried out on a Samsung
Galaxy S5, a Google Nexus 5, and a Google Nexus 7 that
were all running on Android 5.0 (Lollipop). It is di"cult to
make a complete comparison here in the same way as for iOS
because latency varies greatly between devices and manu-
facturers. The main observation that can be made though
is that audio latency is much larger on Android than iOS.

Device Touch to Sound Round-Trip
Samsung Galaxy S5 72 ms 78 ms
Google Nexus 5 90 ms 92 ms
Google Nexus 7 130 ms 130 ms

Figure 3: Audio Latency of Di!erent Android De-
vices Using the Faust Library.

Faust Program C++ DSP CodeFaust Compilation

OpenSL ES

Faust Poly

Custom Audio Library

Android Architecture 
(C++ Wrapper)

Core Audio

Faust Poly

Custom Audio Library

iOS Architecture 
(C++ Wrapper)

IOS C++ Library

Shared Library

Wrapping (iOS)

JAVA Interface to
The Shared Library

Wrapping (Android)

Figure 4: faust2api Overview.

3. FAUST2ANDROID
While a preliminary version of faust2android was pre-
sented in [4] it has been totally rewritten since then and
o!ers a large number of new functionalities.
faust2android is built at the top of faust2api. Its user

interface is constructed using the JSON description pro-
vided by the shared library generated by faust2api. All
the standard Faust UI elements are available: horizontal
and vertical groups, horizontal and vertical sliders, numer-
ical entries, knobs, checkboxes, buttons, drop-down menus,
radio buttons, bargraphs, etc. Some examples are shown
in Þgure 5. The values of the parameters of the audio pro-
cess running on the native side are changed using theset-
Param() function of the API.

3.1 Keyboard and Multitouch Interface
faust2android allows assignment of more interactive inter-
faces to the Faust process. For that, three di!erent meta-
data items can be added to the top-level group of a Faust
program. In Faust, a metadata item consists of a key:value
pair, speciÞed between square brackets within a title string,
i.e., "Some Title [key:value]...".

The [style:keyboard] metadata item speciÞes that the
freq, gain, and gate parameters in the Faust code should
be assigned to a piano keyboard that can be opened by
touching the Òkeyboard iconÓ in the top right corner of the
app. Also, these three parameters will be automatically
removed from the main interface for controlling the other
parameters.

The following example program illustrates a simple usage:

import("music.lib");

397

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



Figure 5: Example of interface generated by
faust2android containing groups, sliders, knobs and
checkboxes.

s = button("gate");

g = hslider("gain",0.1,0,1,0.001);

f = hslider("freq",100,20,10000,1);

process = vgroup("[style:keyboard]",s*g*osc(f));

This interface uses the polyphonic capabilities of faust2api
and allows up to eight voices of polyphony. Touching a key
on the keyboard determines the reference pitch of the note
but sliding the finger across the X axis of the screen allows
the user to continuously control it. The Y axis determines
the gain of the note. If a MIDI keyboard is plugged into
the Android device, it will be able to control the keyboard
interface (§3.3).
The [style:multi] metadata item will create a simple

interface in which parameters are represented by moveable
dots on the screen. Each dot can have two parameters as-
signed to it, corresponding to x and y screen coordinates.
This interface can also be opened by touching the keyboard
icon on the top right corner of the screen. Parameters are
linked to the interface via [multi:x] metadata where x is
the ID of the parameter in the interface. For example, the
Faust program

import("music.lib");

freq = hslider("freq[multi:0]",440,50,2000,0.1);

process = hgroup("[style:multi]",osc(freq));

creates an app in which the frequency parameter of a sine
oscillator is controlled by the X axis of the dot in the mul-
titouch interface. Parameters that have the accelerometer
assigned to them (cf. §3.2) will continue to be driven by the
accelerometer in the interface.
Finally, the [style:multikeyboard] metadata combines

the keyboard and multitouch interface into one (Fig. 6).

Figure 6: Example of “Multi-Keyboard” Interface
of an Application Generated by faust2android.

3.2 Using the Built-In Accelerometer

The Accelerometer can be used to control some elements of
the user interface. Assignments are made in the Accelerom-
eter Parameters panel that can be opened by holding the
label of a parameter for more than one second (Fig. 7).
From here, the mapping of an accelerometer to a param-
eter can be configured precisely to create complex linear
and non-linear behaviors. For instance, the user can choose
which axis will control the parameter (x, y, or z), its motion
orientation, and sensitivity.
Three di↵erent modes can be used to control the orienta-

tion of the accelerometer, normal, inverted, and bell. In bell
mode, the maximum value of the accelerometer is output
when it is in center position and the minimum value when
it is fully inclined to the left or right.
Sensitivity can be configured with three di↵erent parame-

ters, min, max, and center, that are all expressed in m/s

2
⇥

10�1. As an example, settingmin to -1, max to 1, and center
to 0 will create a linear behavior where the minimum value
of the parameter being controlled is given at position -90
degrees and the maximum value at position +90 degrees.
Any acceleration beyond these limits will be clipped.
All these parameters can be configured from the Faust

code using metadata by specifying [acc: a b c d e], where
a is the axis (0 for x, 1 for y, 2 for z), b the orientation (0
for normal, 1 for inverted, 2 for bell), c the minimum, d the
maximum and e the center.
Raw data from the accelerometers are passed directly to

the Faust audio process. Filtering can be carried out in
Faust which is better suited for that kind of task than
Java.
Finally, the accelerometer parameters window is only ac-

cessible if the app is unlocked by touching the “lock” icon
on the top right corner of the screen (Fig. 5). Apps can be
locked to prevent users from opening a configuration win-
dow or rotating the screen during a performance.

Figure 7: Accelerometer Configuration Pannel of an
Application Generated by faust2android.

3.3 OSC and MIDI Support
OSC support is enabled by default for all the parameters
of applications generated by faust2android. The OSC ad-
dress of a parameter corresponds to the path to this param-
eter in the Faust code. For example, the OSC address of
the freq parameter of the Faust code

freq = hslider("freq",440,50,2000,0.1);

process = hgroup("Main",osc(freq));

will be /Main/freq.
MIDI support is also enabled by default in apps generated

by faust2android. MIDI Key Number is automatically
mapped to the freq parameter by converting it to frequency
in Hz, and similarly MIDI velocity ! gain. Note on/o↵
events control the gate parameter, just like the keyOn() and
keyOff() functions of faust2api. Synthesizer apps gener-
ated with faust2android all have eight voices of polyphony.
MIDI control numbers can be assigned to specific param-

eters from the Faust code using the [midictl:x] metadata

398

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 



where x is the MIDI control number.

3.4 Audio IO Configuration
Android applications generated with faust2android auto-
matically choose the best sampling rate and bu↵er size as
a function of the device that is running them (for Nexus9

devices only). Indeed, it was explained during the Google
I/O 2013 conference on High Performance Audio10 that An-
droid phones and tablets achieve better audio latency per-
formance if they run with a specific bu↵er size and sampling
rate (see Fig. 8). Users may override these default values in
the settings menu of the app.

Device Sampling Rate Bu↵er Size

Nexus S 44100 880
Galaxy Nexus 44100 144
Nexus 4 44100 240
Nexus 7 44100 512
Nexus 10 44100 256
Others 44100 512

Figure 8: Preferred Bu↵er Sizes and Sampling
Rates for Various Android Devices.

3.5 Easy App Generation
While it is relatively simple to use faust2android, it re-
quires the programmer to have an important number of de-
pendencies installed (Android SDK and NDK, etc.). How-
ever, FaustLive [2] and the Faust Online Compiler [5]
make the process of turning Faust code into an Android
application very simple. Indeed, when the user chooses to
compile a Faust program as an Android app, a QR code
pointing to the generated app package is displayed that can
be scanned by the device where the user want the app to
be installed.

4. APPLICATIONS
The Faust distribution contains a collection of libraries that
implement a large number of common and less-common au-
dio e↵ects, filters, and synthesizers. With faust2api, iOS
and Android programmers who don’t know signal process-
ing or who never worked with real-time audio can easily
integrate any of the pre-written Faust modules into their
project without having to write a single line of DSP code.
On the other hand, this tool also gives the opportunity to
Faust developers to have their work used by more people.
A concrete use of this tool was made this year in the Mu-
sic 256b class11 “Mobile Music” o↵ered at Stanford Univer-
sity’s Center for Computer Research in Music and Acoustics
(CCRMA)12 where students were given the opportunity to
use faust2api in their final projects.
Another use of applications generated by faust2android

and faust2ios is the SmartFaust13 project led by Xavier
Garcia and Christophe Lebreton at GRAME. The idea was
to make a series of concerts where the music is made by
the audience with their mobile phones. Several applications
were put on the Apple Store and the Google Play Store that
people could download prior to the concert. This project
led to more metadata for controlling the user interfaces; for

9http://www.google.com/nexus/
10http://youtu.be/d3kfEeMZ65c
11
https://ccrma.stanford.edu/courses/256b-winter-2015/

12http://ccrma.stanford.edu
13
http://www.grame.fr/anything_slides/concert-smartfaust

example, it is possible to choose to not integrate a UI ele-
ment to the interface. This enables the Faust programmer
to control some specific parameters with the accelerometer
(using metadata too) without displaying them in the in-
terface. faust2android can also generate “concert apps”,
where the user can switch between di↵erent Faust objects
within the same application.

5. CONCLUSIONS
Several tools that use Faust to help design or make ready-
to-use Android and iOS applications were presented. We
believe that they make the development of musical appli-
cations on mobile platforms easier and that they will con-
tribute to making the use of Faust objects more accessible
to musicians and performers.
While iOS real-time audio applications provide much bet-

ter (smaller) audio latency than Android, the various re-
strictions imposed by Apple on their deployment makes
them less accessible which is a big issue for the use that
we make of them with Faust. Therefore, we hope that
Google will resolve the audio latency issues for Android ap-
plications in the near future.
FaustLive and the Online Compiler provide easy ways

to use the tools presented in this paper. However, we think
that enhancing them with an online platform where Faust
developers can easily share their work with others in order
to create a repository of Faust resources would be a great
addition.

6. ACKNOWLEDGMENTS
Part of this work has been implemented under the FEEVER
project [ANR-13-BS02-0008] supported by the Agence Na-
tionale pour la Recherche.

7. REFERENCES
[1] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,

M. Roth, and H.-C. Steiner. Embedding Pure Data
with libpd. In Proceedings of the Pure Data
Convention. Bauhaus U., Weimar (Germany), 2011.

[2] S. Denoux, S. Letz, Y. Orlarey, and D. Fober.
FaustLive: just-in-time Faust compiler and much more.
In Proceedings of the Linux Audio Conference
(LAC-14), pages 102–107. ZKM, Karlsruhe (Germany),
May 2014.

[3] D. Fober, Y. Orlarey, and S. Letz. Faust architecture
design and OSC support. In Proceedings of the
Conference on Digital Audio E↵ects (DAFx-11), pages
213–216, IRCAM, Paris, France, 2011.

[4] R. Michon. Faust2android: a Faust architecture for
Android. In Proceedings of the 16th International
Conference on Digital Audio E↵ects (DAFx-2013),
pages 98–102. National University of Ireland
(Maynooth), September 2013.

[5] R. Michon and Y. Orlarey. The Faust online compiler:
a web-based IDE for the Faust programming language.
In Proceedings of the Linux Audio Conference
(LAC-12), pages 111–116. CCRMA, Stanford
University (USA), 2012.

[6] Y. Orlarey, D. Fober, and S. Letz. An algebra for block
diagram languages. In Proceedings of the International
Computer Music Conference (ICMA), pages 542–547.
Gothenburg, Sweden, 2002.

[7] S. Yi and V. Lazzarini. Csound for Android. In
Proceedings of the Linux Audio Conference (LAC-12),
pages 233–239. CCRMA, Stanford University (USA),
2012.

399

Proceedings of the International Conference on New Interfaces for Musical Expression, Baton Rouge, LA, USA, May 31-June 3, 2015 


