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ABSTRACT
We present a novel brain-computer interface (BCI) inte-
grated with a musical instrument that adapts implicitly
(with no extra e↵ort from user) to users’ changing cognitive
state during musical improvisation. Most previous musical
BCI systems use either a mapping of brainwaves to create
audio signals or use explicit brain signals to control some
aspect of the music. Such systems do not take advantage of
higher level semantically meaningful brain data which could
be used in adaptive systems but still not detract from the
attention of the user. We present a new type of real-time
BCI that assists users in musical improvisation by adapting
to users’ measured cognitive workload implicitly. Our sys-
tem advances the state of the art in this area in three ways:
1) We demonstrate that cognitive workload can be classi-
fied in real-time while users play the piano using functional
near-infrared spectroscopy. 2) We build a real-time, implicit
system using this brain signal that musically adapts to what
users are playing. 3) We demonstrate that users prefer this
novel musical instrument over other conditions and report
that they feel more creative.
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1. INTRODUCTION
Brain-computer interfaces (BCIs) have been used to in-
crease the e↵ective communication bandwidth between the
human and the computer by passively obtaining and us-
ing extra information about the user [1, 13]. In a musical
instrument interface, such as a piano keyboard, the user’s
communication channels may be limited by the paucity of
input devices, body parts, and attention. An adaptive BCI
can increase this bandwidth by providing a cognitive com-
munication channel that passively measures user cognitive
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state without requiring additional e↵ort or attention on the
part of the user. This can then be used as an additional
input channel that implicitly modifies the music at appro-
priate times.
Traditionally, most musical BCIs have been based either

on di↵erent variations of mapping brainwaves to sound-
waves [9, 10, 11] or by using brain signals explicitly to mod-
ify aspects of the music [4, 6, 14].
Recent events in the field of brain sensing have opened

up a new avenue of measuring and using higher level mean-
ingful cognitive data implicitly without any extra attention
required from the user. Cognitive workload that has been
measured by fNIRS [3] has led to BCIs that can implicitly
adapt to user cognitive state in real-time [1, 13].
BCI technology has now reached the point where this

is an opportune time to introduce a musical system that
implicity adapts in real-time to users’ cognitive state. We
introduce BRAAHMS: BRain Automated Adaptive
Harmonies in a Musical System. BRAAHMS is a real-
time musical BCI system that calculates cognitive workload
to implicitly adapt to users in the creative task of musical
improvisation. BRAAHMS adapts to the user’s cognitive
workload by adding or removing musical harmonies that
are related to the notes that the user is currently playing,
hence augmenting their music without altering their original
general direction.

2. RELATED WORK: MUSICAL BCIS
Semantically meaningful brain data
Traditionally, most musical BCI systems have been based
on a mapping of brainwaves to audio signals. Examples
include assigning musical passages to certain frequencies of
EEG activity [10], applying a mapping to notes [2], or using
the magnitude spectrum of EEG to shape the spectrum of
white noise [9].
A clear need for higher level semantically mean-

ingful brain data has been highlighted in the field of
musical BCIs [10]. Miranda et al. [11] ran a pilot study
on a EEG-based BCI that detected active versus passive lis-
tening, however, reported di�culty in reliably detecting lis-
tening behavior. They also discussed directing the tonality
of music based on auditory cortex stimulation, however only
the music generation side has been built, which is based on
hypothetical brain data [11]. Grierson et al. [7] have used
the Neurosky headset’s attention and meditation levels to
control Brainemin and Brain Controlled Arpeggiator in live
performances. However there has been no user evaluation
or controlled experiment using these cognitive states.
Implicit brain sensing

Musical BCIs have also used brain signals as direct input to
an application, such as using the P300 signal to directly
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Figure 1: FNIRS equipment and experiment setup.

control a synthesiser [6] or select harmonies [14]. Icons
from a grid have been selected to compose music instead
of the standard keyboard and mouse using the P300 sig-
nal [4] or steady-state visually evoked potentials [8]. While
such active BCIs can be invaluable to people with motor
disabilities, they are too slow and inaccurate for the general
population compared to the standard mouse and keyboard.
Recently, however, advances in brain-sensing technologies

have been used for implicitly detecting and responding to
users by measuring user cognitive state without any addi-
tional e↵ort from the user. In this paper, we build and
evaluate an implicit musical BCI that analyzes and
responds to users’ cognitive workload.

2.1 Brain Sensing in the PFC with fNIRS
FNIRS is a non-invasive imaging technique that can be
used to measure levels of oxygenated hemoglobin (oxy-Hb)
and deoxygenated hemoglobin (deoxy-Hb) concentrations in
brain tissue. When an area of the brain, such as the pre-
frontal cortex (PFC), is activated, it consumes more oxygen
which leads to an increase in blood flow to that area. The
increase in oxygen consumption, however, is less than the
volume of additional provided oxy-Hb, hence resulting in
an increase in oxy-Hb [5]. This hemodynamic response can
be measured by emitting frequencies of near-infrared light
around 3 cm deep into the brain tissue [15] and measur-
ing light attenuation to determine how much oxy-Hb and
deoxy-Hb is flowing in the area.
We can therefore use fNIRS to measure levels of cognitive

activation in the anterior prefrontal cortex by placing the
sensors on the forehead. The fNIRS signal has been found to
be resilient to respiration, heartbeat, eye movement, minor
head motion, and mouse and keyboard clicks [12]. Due to
its general ease in setting up with users and its relative
tolerance of minor motion, fNIRS is an increasingly popular
method of brain sensing in HCI [12, 3, 13, 1].

3. RESEARCH GOALS
Our primary research goal was to use semantically meaning-
ful brain data to develop and evaluate an implicit, musical
BCI that would measure, analyze and adapt to user cog-
nitive state. In order to do this we conducted three main
stages of experimentation and design:

• A feasibility study to determine whether di↵erences in
brain data corresponded with high and low di�culty
levels while users played the piano (Experiment 1)

• Through an iterative design process and pilot stud-
ies we built BRAAHMS, a passive real-time BCI that
adapts to the brain signal during musical improvisa-
tion by adding or removing musical harmonies.

• An evaluation of BRAAHMS carried out on 20 par-
ticipants. Two BCI conditions were tested along with
a constant and non-adaptive condition.

Experiment 1 was an o✏ine analysis of participants’ brain
data while Experiment 2 was carried out in in real-time in
order to respond to participant’s brain signals as they played
the piano.

Figure 2: Left: Mean change and standard error in
oxy-Hb in Expt 1 across all participants. Right:
Mean change in oxy-Hb was significantly higher
during hard pieces (p < .01).

4. EXPT 1: WORKLOAD CLASSIFICATION
In this section, we examine the feasibility of automatic clas-
sification of cognitive workload using fNIRS while users
played the piano. Fifteen easy and hard piano pieces were
chosen by a musicologist (see [16] for details) for 15 par-
ticipants (7 female, mean age of 21, SD of 2.4) to play in
randomized order for 30 seconds at a time followed by a 30
sec. rest period. Figure 1 shows the setup of Experiment 1.

4.1 fNIRS System
Two probes from an Imagent fNIRS device were placed on a
participant’s forehead to measure data from the prefrontal
cortex. Each probe contained four light sources, each emit-
ting near-infrared light at two wavelengths (690 and 830
nm) and one detector; thus we had sixteen data channels (2
probes x 4 source-detector pairs x 2 wavelengths) (Figure
1). The signals were filtered for heart rate, respiration, and
movement artifacts.
Training and Modeling: The easy and hard musical

pieces were used to train the system for each individual
user’s cognitive activity during low and high cognitive work-
load, respectively. During each piece, the system calculated
the change in optical intensity compared to a baseline mea-
surement for each of the sixteen channels. The mean and
linear regression slope were calculated by the system for
each 30 second trial for each channel resulting in 32 fea-
tures (16 channels x 2 descriptive features). These features
were inputted into LIBSVM, a support vector machine clas-
sification tool, with a linear kernel [1].

4.2 Experiment 1 Results and Discussion
Figure 2 shows the mean and standard error in the oxy-
genated hemoglobin of participants while they played easy
(blue) versus hard (green) pieces on the piano. Although we
built an individual model for each participant, we present
the mean findings across all 15 participants across all 30
trials in Figure 2 to illustrate this general trend.
To investigate di↵erences between hard and easy pieces,

we performed a t-test on the mean change in oxygenated
hemoglobin. This revealed a significant di↵erence between
conditions when participants played an easy piece (µ =
�0.1,� = 0.1) versus a hard piece (µ = �0.02,� = 0.1)
on the piano (t(14) = �3.04, p < .01). Means and standard
errors are shown in Figure 2.
The significantly higher levels of oxy-Hb when partici-

pants were playing harder pieces on the piano correspond
with the hemodynamic literature, whereby, when there is
increased cognitive activity in an area of the brain, excess
oxygen is provided to that area. The increase in oxygen
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Figure 3: Musical harmonies added by BRAAHMS
(red) to user’s keys (blue) of the left (L) and right
(R) hands (* indicates middle C).

consumption is less than the volume of oxy-Hb provided,
resulting in more oxy-Hb [5].

5. BRAAHMS: DESIGN PROCESS
Experiment 1 established that there were di↵erences in the
fNIRS signal when participants played easy vs. hard pieces
on the piano. We built upon these findings to design a
novel musical brain-computer interface BRAAHMS: BRain
Automated Adaptive Harmonies in a Musical System.

5.1 Design Iterations and Final Design
The musical adaptations used in Experiment 2 were deter-
mined by a number of design iterations and pilot studies.
These iterations explored the space of possible musical addi-
tions that an adaptive system could provide, and resulted in
musical enhancements indicated as most helpful or pleasing
by users in the pilot studies.
Please see technical report [16] for full details on iterative

designs. Results from this stage of pilot studies showed
that participants preferred the simple harmonic additions
and experienced them as pleasing enhancements without
compromising creative control. This formed the basis for
the musical system design used in Experiment 2.
The design iterations and pilot studies showed

that participants enjoyed an harmonic supplement
to their music which enhanced their playing while
staying true to their melodic and rhythmic choices.
The musical adaptation system accomplishes this with a
simple harmonic addition of one octave above user pitch on
the right-hand (middle C or above) and one octave below
on the left-hand with the third of the chord between user
pitch and octave (Figure 3).
The additions provide harmonic reinforcement of the tonal

centers, adding depth and richness, while users retain flexi-
bility for melodic choices and control of rhythmic aspects.

5.2 fNIRS System
Real Time Classification: To predict user state in real
time, we used the same LIBSVM machine learning proce-
dure as Experiment 1 to build the model. In addition, while
the user was improvising, the machine learning model pre-
dicted user cognitive state in real time. The system ana-
lyzed the last 30 seconds of real-time fNIRS data to calcu-
late a prediction of user cognitive state (high or low) along
with a confidence percentage value. Predictions were sent
every 500 ms, with the last 10 seconds of predictions to give
a more overall model of cognitive activity.
Confidence Threshold Automation: One of our find-

ings from our pilot studies was that a fixed threshold for con-
fidence average values did not work for all individuals dur-
ing musical improvisation. In previous adaptive BCIs, the
adaptations would occur if confidence averages were above
some fixed percentage for low or high cognitive workload
levels [13, 1]. In this work, we automated this threshold
value for each individual by setting the threshold at the 75th
percentile of confidence values for both high and low cog-
nitive workload classifications during the first non-adaptive

Figure 4: Left: Mean change in oxy-Hb and stan-
dard error across all trials and participants. Right:
Mean change in oxy-Hb was significantly higher
during hard pieces (p < .001).

trial. This ensured that the system would only add or re-
move musical additions at a more accurate and representa-
tive level of each individual user’s cognitive workload.

6. EXPT 2: EVALUATION OF BRAAHMS
We tested BRAAHMS over 4 di↵erent conditions of musical
adaptation. We did not assume whether to add and remove
the harmonies when cognitive workload was high or low to
account for individual di↵erences and to investigate user
preference. We therefore tested 2 di↵erent BCI conditions
as well as 2 non-BCI conditions:
BCI1 : Musical harmonies are added with low cognitive
workload and are removed with high cognitive workload.
BCI2 : Musical harmonies are added with high cognitive
workload and are removed with low cognitive workload.
Constant : Musical harmonies are always present.
Non-adaptive : There are no musical harmonies.
Twenty participants (14 female, mean age of 21, SD of

1.9) first carried out the training task described in Experi-
ment 1 in order to build a model from their brain data. They
then carried out the 4 conditions described above in random
order except for the non-adaptive condition which had to
come first to extract the automated threshold for low and
high cognitive workload. Participants had no knowledge
that some conditions were brain-controlled or not as they
wore the fNIRS sensors throughout the experiment. We also
carried out and recorded post-experiment interviews during
which participants watched each condition back on video.

6.1 Experiment 2 Results and Discussion
The fNIRS data showed an increase in oxy-Hb during hard
pieces that was consistent with the findings from Experi-
ment 1 as well as previous literature [5]. A t-test on the
mean change in oxy-Hb revealed a significant di↵erence be-
tween easy (µ = �0.1,� = 0.1) versus hard pieces (µ =
0.1,� = 0.1) (t(18) = �4.50, p < .001). Means and stan-
dard errors of these conditions are shown in Figure 4.

6.1.1 Participants preferred the BCI conditions

Participants were asked to state their favorite trial at the
end of the post-experiment interview, after they had watched
footage of each trial. They were blind to the conditions of
the trials and wore the brain sensors during all trials.
Fifteen out of twenty participants responded that their

favorite condition was a brain-controlled condition (Fig. 5).
To investigate why participants preferred the BCI condi-
tions, we turn to the interview data.

6.1.2 Participants felt more creative
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Figure 5: Favorite conditions of 20 participants

Out of the 15 participants who ranked a BCI condition as
their favorite, 12 of them commented that the BCI additions
helped them to musically perform in a way that they would
not have been able to do by themselves. In contrast, only 2
participants made such comments about the constant con-
dition. These are some comments highlighting the general
comments about creativity (please see [16] for more detail):
“[BCI2] was my favorite. I felt I was at my creative peak.

Obviously it’s clunky because I’m not a real pianist, but I felt
like I was playing a real song. I was combining my comfort
zone with the additions.”
“Being that I am not as experienced and I’m able to get

a chord out of just one key, I can do sounds that I probably
wouldn’t know how to make on my own.”

6.1.3 Participants felt the BCI was responsive

Out of the 15 participants who stated a BCI condition as
their favorite, the other reason given for preference was the
responsiveness of the musical additions. Comments on their
favorite BCI condition included:
“[BCI2] was my favorite... I felt like I was responding to

the additions and they were responding to me”
“In [BCI2] for some reason I felt that the changes were

more responsive and I couldn’t tell you why... I couldn’t
quite figure out any pattern of when they were coming and
out so I couldn’t tell if I was influencing them but for some
reason it didn’t feel random, I don’t know why.”
It seems that it is not enough for musical additions to be
arbitrary, that they must subjectively feel responsive to a
user, even if the user does not understand why.

7. CONCLUSION
We have demonstrated that it is possible to measure brain
signals using fNIRS that correlate with high and low levels
of cognitive di�culty while playing the piano. We used this
semantically meaningful brain data to build a real-time mu-
sical brain-controlled system that adapts implicitly to users’
cognitive state. We have carried out pilot studies through
an iterative design process to determine which musical addi-
tions would add the most pleasing harmonic enhancements
to users’ playing without compromising control over rhythm
or tempo. Finally, we showed in an experiment that 15 out
of 20 users preferred a brain-controlled condition, and we
have discussed the possible reasons for this through post-
experiment interview analysis.
We suggest that BRAAHMS increases the communica-

tion bandwidth between human and musical instrument, re-
sponding to user cognitive state and providing appropriate
musical additions when they are needed, without requiring
the user’s e↵ort or attention to control them.
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