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ABSTRACT
This paper presents a framework for the analysis and explo-
ration of performance space. It enables the user to visualize
performances in relation to other performances of the same
piece based on a set of features extracted from audio. A per-
formance space is formed from a set of performances through
spectral analysis, alignment, dimensionality reduction and
visualization. Operation of the system is demonstrated ini-
tially with synthetic MIDI performances and then with a
case study of recorded piano performances.

Author Keywords
performance space, visualization, exploration framework

1. INTRODUCTION
The music score is a representation which contains informa-
tion about the composer’s intention. In a classical setting the
performer interprets the score and prepares the performance
by rehearsing the piece with his/her own understanding
guided by the sense of aesthetics. While the audience hears
one outcome of this exploration at the concert, the per-
former spends a considerable amount of time experimenting
with various subtleties in phrasing, articulation, tone and
projection. Performers play an active role in shaping per-
formance and their performances reflect the result of their
exploration (e.g. [11]). Pitch, duration, rhythm, dynam-
ics, accents and other performance parameters are usually
indicated in the score but these fail to capture sonic and
time related performance details such as expressive timing
and stylistic phrasing, thus forming a gap between the score
and its performance. The information that resides within
the score-performance gap is by no means redundant and
makes for a large part of the musical experience. In today’s
practice we can capture performances through audio, or
to an extent, symbolic (MIDI) recordings. However, once
recorded these performances are stored linearly, identified
through metadata and therefore largely remain opaque to
exploration. The presented system aims at utilizing the in-
formation within this gap for purposes of analysis, cataloging
and exploration.

In this paper, we propose a flexible and modular framework
for visualizing performance space. Expressive performance
has many attributes and some of these are easily quantifiable
while others are not and remain as open problems. In this
work we focus on tempo and dynamics as the two most
important attributes of expressive performance. In the re-
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mainder of the paper we give a brief list of related work and
then describe the proposed framework. We then provide
examples incrementally to explain and demonstrate the op-
eration of one particular realization of the framework. We
provide examples from synthesized and actual performances.

2. RELATED WORK
We know that expert performers deviate significantly from
the norm and strive for individuality. This section very
briefly summarizes related work in expressive performance
modeling and analysis. In their work analyzing Chopin’s
24-2 Mazurka performances, Rink et al. [15] have pointed
out that many musical gestures are weakly captured by
musical notation, they are not necessarily correlated with
the harmonic and rhythmic patterns and these gestures are
realized through the agency of performance. Widmer et
al. [19][6][4] have published extensively on expressive music
performance. They proposed the performance worm which
is a graphical representation showing the trajectory of the
performance point in the dynamics-tempo plane which could
be used to characterize performers. Sapp’s scape plots [16]
are visualizations of comparative performances with a range
of time spans. Wang [18] devised a method for quantifying
performer styles using recordings. He calculated features
from performances and compared them across performers.
He noted the similarities in performances between various
performers.
Chew [3] argues that engineering tools are useful for vi-

sualizing musical parameters and these tools can shed light
on various aspects such as composition, music cognition and
performance. Fairly accurate performance analysis could
be done using transcription if it were reliable. Grosche
et al. [7] describe the di�culty of extracting tempo and
beat information from music recordings and propose a mid-
level representation that captures musically meaningful local
pulse information. Repp published a number of papers on
expressive timing from a music perception standpoint [14].
The Mazurka Project [1] collected recordings of Chopin’s
Mazurkas by di↵erent performers. Sapp [16] provided beat
annotations for several of the Mazurkas for multiple perform-
ers. Unaligned MIDI files can be found separately. Sapp
studied performance di↵erences in this collection and pro-
posed a numerical method for examining similarities among
tempo and loudness features extracted from recordings [17].

3. FRAMEWORK
We define a performance space as a low-dimensional visualiza-
tion that shows distance relationships of features extracted
from a set of performances. The assumption is that the set
consists of the same musical material, that is, the correspond-
ing score is the same, and the variation from one piece to
the other is due to the expressive performance choices. The
framework for obtaining a performance space is general and
the individual components can be conceptualized and imple-
mented in di↵erent ways. Here, we present the components
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of the framework and describe their specific realizations.
The framework consists of the following components: spec-
tral analysis front-end, alignment, dimensionality reduction
and visualization. The choice of distances as well as the
design of features play an important role in this process.
Distances between two performances can be defined in many
di↵erent ways depending on the degree information that can
be reliably extracted from the audio of these performances.
The pairwise distances are used to form a low-dimensional
spatial representation that allows the user to visualize the
’commonness’ or ’novelty’ of a particular performance in
relation to other performances in the set of pieces under
consideration.

In this work we chose to use time warping costs and simi-
larities between dynamics. We use a single musical fragment
of piano music as our working example. Piano is chosen as
the instrument because of its clear onsets and dynamics as
well as the availability of the performance data. We have
chosen to use measures 36-44 of Chopin’s Mazurka 17-4 dur-
ing which di↵erent performers exhibit ample variations in
tempo and dynamics.

3.1 Spectral Representation
Among the many options for a time-frequency representation
such as the Fourier Transform, wavelets, chroma pitch, sem-
igram or the constant Q transform, we chose to use chroma
pitch features described in [13]. The chroma pitches are
computed from the input signal decomposed into 88 bands
(A0 to C8) using a constant Q multirate filter bank. A filter
output is calculated for each time frame. Each filter output
measures the local energy content (short-time mean-square
power) in its subband. The logarithmically spaced output of
this filter bank provides a compact way to capture pitched
content while keeping summarization of the spectrum to a
minimum in contrast to, for example, the chromagram [2]
which usually folds the frequency over octaves. The tra-
ditional Fourier Transform on the other hand is linear in
frequency and has unnecessary resolution at the high end of
the spectrum for our purposes. We use a sampling frequency
of 22050 Hz and a window length of 40 ms with 50 percent
overlap.

3.2 Audio Alignment and Warp Cost
Audio-to-audio and audio-to-score alignment has received
ample attention in the literature and many approaches for
this problem exist (e.g. [12][5][9][8]). The purpose of align-
ment is to find correspondences between two renditions of
the same piece and align them on a frame by frame basis,
without resorting to any annotations, and solely looking at
their audio content. Audio-to-audio methods aim to find an
optimal warping path to match spectral representations on
both sides as best as possible. The audio-to-score problem
is usually translated back into the audio-to-audio problem
by synthesizing the symbolic score. This works reasonably
well even with simplistic sound synthesis.

The alignment component is implemented using a basic
version of Dynamic Time Warping (DTW) on the chroma
pitch features. Cosine distance is used to calculate the
similarity matrix prior to running the DTW algorithm. The
DTW results in a warp path for every pair of pieces in the
input sound set. The warp path reveals the time di↵erences
between corresponding musical events due to changes in
instantaneous tempo. The warp path is a straight line on
the diagonal of the cost matrix if the two pieces are identical.
The warp path will deviate from the diagonal when we need
to progress faster along one piece compared to the other.
For this module we have implemented two distance mea-

sures. One measures how similar the two performances are

in terms of their relative tempo curves. Two pieces are
considered similar if they tend to accelerate and decelerate
during the same parts of the music. The comparison is based
on relative tempo changes since we do not want absolute
tempi to be a factor. The warp cost is calculated by fitting
a spline curve on the downsampled warp path and averaging
the di↵erences between the spline curve and the diagonal. A
distance close to zero will be obtained when the two pieces
are almost identical. The farther the warp path moves away
from the diagonal in either direction the higher the distance.
The second measure approximates the similarity of dynamics
between two performances by comparing only the energies
along the warped spectra. For each frame, the wide band
energy is obtained by summing energies in all bins. Then
the frame sequence is smoothed with a Gaussian window
over time to make it tolerant to small alignment errors. The
distance is modeled with correlation distance between the
two wide band energy signals.

The distance matrix D is formed by calculating all pairwise
distances. We can choose to use only relative tempo, Dt

i,j

between piece i and j, only dynamics, Dd
i,j or a weighted

combination of the two, ↵Dt
i,j + (1� ↵)Dd

i,j . Both distance
matrices are normalized by dividing by their maximum
element. We will use the combined metric and set ↵ to
0 or 1 when only one distance is required. We demonstrate
each of these cases below.

3.3 Visualization
As is the case for most dimensionality reduction methods,
Multidimensional Scaling (MDS) [10] aims to find a mapping
from a high dimensional representation to a low dimensional
one such that the between-element distances are preserved
as much as possible. In this paper we utilize MDS to obtain
2-dimensional spaces for visualization purposes, however, the-
oretically this is not a limitation and the output dimension
could be chosen to be higher. We use Sammon’s nonlinear
mapping as the goodness of fit criterion for MDS. The dis-
tance matrix D is the only input to MDS besides the output
dimension.

4. PERFORMANCE SPACES
Before presenting some examples we summarize the sequence
of operations carried out by the components described above.
In order to construct and visualize a performance space for
a given collection, initially the chroma pitch features are
calculated for each performance. Next, the pairwise distance
matrices are calculated for all types of distances to obtain
the combined distance matrix (by setting weights). MDS is
applied to the distance matrix for the given output dimension.
Finally, the coordinates of the objects are plotted together
either with their labels or tempo and dynamics curves.

4.1 Relative Tempo Curves
We first show how the proposed model can be used for
visualization of performance space using similarity of tempo
curves. In order to understand how the system maps the
input sounds to a 2D output space we created parametrized
tempo curves. Each tempo curve is defined by 3 points
over time (beginning, middle and end of fragment). These
points are generated randomly for each piece and spline
interpolated for evaluation at any arbitrary time in the
fragment. A value of 1 on this curve means original tempo
and 1.15 means 15 percent faster tempo. A modified MIDI
sequence is calculated according to the interpolated tempo
curve from an original MIDI sequence that contains the
music with constant tempo and flat dynamics. The audio is
synthesized using the modified MIDI sequence and stored
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in the collection. The performance space is calculated with
↵ = 1.

The output for 30 parametrized performances are shown in
the left plot in Figure 1. The points are locations of the data
points in the MDS output space. To the right of each point
the corresponding tempo curve is shown. The horizontal line
depicts unity tempo and a tempo curve on this horizontal
line would result in the original MIDI timing without any
tempo alterations. As far as vertical scale, in this example,
the peaks represent a 15 percent swing around the unity
tempo curve. The color is cycled for purposes of clarity
in visualization to distinguish between overlapping curves
and does not provide any additional information. It can be
seen from the figure that the not so exciting performances
that have relatively little tempo changes are concentrated
around the middle of the space. Decreasing tempo curves
have grouped in the top middle while the increasing tempo
curves are in the bottom middle. To the right are U shaped
curves and to the left are the inverse U shaped curves. The
relationship between location in the output and the tempo
contour can be clearly seen. Since the output is continuous
and not categorical, a tempo curve with any shape will find
a place in this 2D space.

Figure 1: Output space showing relative tempo
curves (left) and relative dynamics curves (right).

4.2 Relative Dynamics Curves
Similar to the relative tempo curves, we now turn to dy-
namics by replacing the tempo curve with a dynamics curve.
The dynamics curve is found by correlating the smoothed
wide band energy signals of the aligned spectra. The use of
correlation distance to calculate the distance between the dy-
namics curves allows the dynamics comparison to be relative.
That is, changes in dynamics are compared regardless of
the absolute loudness. The right plot in Figure 1 shows the
output for the same 30 performances for randomly generated
dynamics curves (↵ = 0). The contents of the figure have the
same interpretation with the following exception: the range
of the dynamics curves is +-57 MIDI velocity increments
relative to the current velocity of the note. We use a baseline
of velocity 70 in the flat MIDI file to allow for a swing in
both directions. It can be clearly observed in the figure that
a similar distribution of points has taken place.

4.3 Combined Dynamics and Tempo
In actual performance, tempo and dynamics changes are
engaged simultaneously. We therefore provide a combined
example with ↵ = 0.5. Figure 2 shows the output in which
the thick (orange) lines are tempo curves and the thin (blue)
ones are dynamics curves. Here the results are somewhat
mixed possibly due to having equal weight between tempo
and dynamics. Similar to the previous examples, the regions
with similar patterns can be clearly identified.

Figure 2: Output space using combined tempo and
dynamics curves.

4.4 Actual Performances
Having understood the capabilities of the system we can
now move on to actual performances. Figure 3 shows the
output for 50 performances from actual commercial record-
ings with ↵ = 0.5. Here the data points are labeled with
performer names - duplicate performer names appear be-
cause the collection contains multiple recordings by the same
performer. The space reveals interesting similarities as well
as di↵erences between well-known performers.
The numbered points represent a pianist’s performances

specifically for testing our system. The pianist was asked to
practice the fragment and then he listened to performances of
the same fragment by Kissin, Kushner and Ashkenazy twice
each. After listening to each performer, the pianist played
the piece three times aiming for a similar interpretation but
not necessarily an exact imitation as he did not have time to
dissect and memorize the interpretations. Performances la-
beled 51-53 were played on a weighted-key velocity-sensitive
electronic keyboard with sampled sounds and without a
pedal after listening to Kissin. Points labeled 54-56 were
performed on a baby grand after listening to Kushner. The
final three labeled 57-59 were again played on a baby grand
after listening to Ashkenazy. Only one performance of the
first group got close to Kissin. This is probably because
of the keyboard’s response characteristics. Members of the
second group were close to Kushner and the performances
can be considered to be fairly consistent (close). The last
group had the highest consistency although they did not
end up being closest to Ashkenazy but in the same area.

5. DISCUSSION
Performance space is a multi-faceted concept and its models
need to o↵er fine-grained and accurate processing algorithms
that are sensitive to subtle variations. Micro timing, artic-
ulation, tone and stylistic touch are among these currently
elusive attributes. In this work, we have chosen to provide
realizations of the components in order to present a proof
of concept. Hence we did not try to employ sophisticated
methods. The modular nature of the system allows for both
specialization and refinement on a component basis. The
application to piano music is discussed in this paper but in
another context the same framework could be used for ex-
ploring idiomatic performance details for other instruments.
For each application appropriate features need to be chosen,
signal processing algorithms implemented and associated
distances need to be defined.
Both distances described in the paper are relative mea-

sures. We look at the changes rather than absolute tempi
and dynamics. While the nature of the changes carry im-
portant information about expressive performance it is true
that two performances will be received as entirely di↵erent
if they are di↵ering widely in dynamics and/or tempo. For
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Figure 3: Output space from actual commercial
recordings plus pianist performances.

example, two performances that have very di↵erent starting
tempi with the same percentage speed-up throughout the
piece will be heard as significantly di↵erent, but, the current
system will not di↵erentiate between the two. We assume
that the performances are guided by a score or listening
experiences such that the interpretations roughly aim for
the composer’s intended tempo and dynamics.
In the last section, our example aimed to demonstrate

the use of the system as a pedagogical and personal devel-
opment tool. It showed how pianists could systematically
examine their performance, explore variations relative to
others and even find a niche by experimentation. If, on
the other hand, the pianist chose to start only with his/her
own performances he would be visualizing the space within
the realm of his imagination and aesthetic choices. Obvi-
ously, this exploration can be conducted iteratively such
that the visualization can be obtained after each new per-
formance. In the same vein it could be used for checking
the consistency of expressive performance across multiple
performances separated by considerable time.
Finally, it is interesting to note that the Hatto hoax sur-

faces again in this work, even in the short fragment that
we are using. It has been reported in many works that
recordings by Indjic were used in place of Hatto’s.

6. CONCLUSION
We have presented a framework for exploration of expres-
sive performances through visualization. We have provided
realizations of the components of the framework in order
to show its operation. While we recognize that many other
attributes play important roles in music expression we have
concentrated on tempo and dynamics in this work. Never-
theless, this is not a limitation of the framework and the
system can be designed to ’hear’ musically relevant aspects
of performances with more sophisticated features. The out-
put space in 2D has been shown to be quite informative and
to be able to associate regions with certain shapes of tempo
and dynamics curves.
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