
PourOver: A Sensor-Driven Generative Music Platform

Kevin Schlei
University of

Wisconsin-Milwaukee
3223 N. Downer Ave.
Milwaukee, WI 53211
kdschlei@uwm.edu

Christopher Burns
University of Michigan

1100 Baits Drive
Ann Arbor, MI 48109-2085

burnscl@umich.edu

Aidan Menuge
University of

Wisconsin-Milwaukee
3223 N. Downer Ave.
Milwaukee, WI 53211
ajmenuge@uwm.edu

ABSTRACT
The PourOver Sensor Framework is an open iOS framework
designed to connect iOS control sources (hardware sensors,
user input, custom algorithms) to an audio graph’s param-
eters. The design of the framework, motivation, and use
cases are discussed. The framework is demonstrated in an
end-user friendly iOS app PourOver, in which users can run
Pd patches with easy access to hardware sensors and iOS
APIs.

Author Keywords
generative music, mobile music, sensor mapping

ACM Classification
[Applied computing] Sound and music computing, [Human-
centered computing] User interface design, [Software and its
engineering] Software design engineering

1. INTRODUCTION
Generative music can be difficult to distribute in a way that
preserves its generative qualities. Fixed recordings can cap-
ture a particular performance, but may be interpreted as a
canonic representation by the listener, especially upon mul-
tiple listenings.

Generative pieces can use sensors or external input sources
to add an interactive dimension to performance. Adding
hardware requirements to the performance of a piece fur-
ther complicates its distribution.

PourOver is an iOS app that provides a platform for cre-
ation, playback, and distribution of sensor-driven algorith-
mic / generative pieces. It aims to be a music player app
built for generative music.

The underlying controller management is handled by PS-
Framework, a new open-source framework for iOS. PSFrame-
work is built as a generic and extendable controller and API
management system.

2. RELATED WORK
The iOS platform has provided tools for distributing gener-
ative, interactive, or multimedia-rich music apps. ‘Album
apps’ such as Björk’s Biophilia [2] and Brian Eno’s Bloom

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’16, July 11-15, 2016, Griffith University, Brisbane, Australia.
.

[6] push the concept of ‘open works’ that invite user input
to guide playback [5].

The role of the mobile device user as both audience mem-
ber and participant is explored in echobo [10] and Nexus
[1]. In echobo, audience members join a ‘master musician’
via a network, who controls high level musical structure.
The NEXUS system provides a web-based distributed per-
formance interface. Each blurs the performer / audience
barrier through individual contributions to a larger collab-
orative performance. PourOver looks to apply this model
to an individual listening experience by following many am-
bient, environmental, motion, and location changes.

The MoMu framework demonstrated how quickly acces-
sible device parameters, paired with an included audio en-
gine, could speed development of sensor-rich audio applica-
tions [3]. The PSFramework aims to solve similar design
problems, but via a more generic protocol in which custom
objects can easily register as controller sources, and the tar-
geted destination is not a particular audio engine.

There are a number of projects that provide on-device
GUI interactions to an underlying audio engine. The NexusUI
JavaScript framework enables rapid GUI prototyping for
instrument interfaces [11]. These pieces and instruments
expose their interactivity through the portal of the device
screen.

The urMus system provides a number of solutions for mo-
bile music creation: sensor streams, value scaling, controller
mapping, and networked live-coding all integrated with the
built-in audio engine [7][8]. Through the urMus interface,
musicians can design and perform pieces that leverage the
device’s multitude of interfaces. The system also allows for
networked live coding where a desktop user can push code
to another user’s mobile device [9]. This design solution,
where some coding was split from the device, was a signifi-
cant inspiration for this research.

RjDj1 was an iOS app that filtered external audio to
create a reactive listening experience. Later, a desktop
app, RJC1000, allowed users to customize their own RjDj
‘scenes.’ The PourOver app and framework also aims to
give listeners a reactive listening experience. However, us-
ing Pd to create pieces affords a more general, open, and
customizable content creation system.

Sensors2PD is a framework designed to quickly link An-
droid device sensor data to Pd patches, and is the most
similar in scope to PourOver [4]. The system sends con-
troller values to numbered receivers (sensor1v0, sensor1v1,
etc.). The system also supports touch input (sensorTIDvx,
sensorTIDvy) and WiFi router information (sensorW-ID).
PourOver looks to extend this kind of connectivity with a
generic protocol design and expandability.

1http://rjdj.me/

355



3. PSFRAMEWORK
The PourOver Sensor Framework (PSFramework) was de-
veloped by the authors to provide simple connectivity from
iOS data streams to an audio engine’s parameters, while
automatically handling instantiating and clean up of source
APIs. A variety of included control generating sources pro-
vide quick access to common sensor data.

The framework is open and extendable, allowing for new
hardware sensors or custom controller streams to be added
as they appear. Programmers can engage with the iOS side
of an app by creating and registering their own controller
generating objects with the framework.

PSFramework will be available on Github and installable
via CocoaPods.

3.1 PSController
The framework is built around managing PSController ob-
jects. A PSController defines a data stream by name and
transmits values in a normalized range.

For example, a PSController can be created to handle
pitch attitude data from the gyroscope sensor. The con-
troller would be initialized with the following properties:

PSController(

name:"CMMotionManager.deviceMotion.attitude.pitch",

min:-M_PI / 2.0,

max:M_PI / 2.0

)

Controller names should follow a DNS-like, ‘member of’
naming convention. In this instance, UIKit’s CMMotion-

Manager class has a deviceMotion property, which has an
attitude property, which is a struct that contains pitch.
While this naming convention is verbose, it creates a strong
bridge between the PSController name and the API it is
referencing.

The gyroscope pitch sensor outputs values from -π/2 to
π/2. In this case, the sensor range is a fixed limit. In others,
such as CMPedometer.speed, a best estimate can be used for
expected controller output ranges. PSController requires a
value range because it normalizes its output. More infor-
mation on controller ranges is discussed in 3.4.

PSControllers are designed to minimize excessive updat-
ing. They store a sentValue property, which is checked
for equality on subsequent updates. They also have an
active property to indicate whether a receiver exists for
that controller. PSControllers will avoid sending superflu-
ous messages based on these checks. This functionality can
be overridden in cases where the behavior is undesired, for
example when sending a single value repeatedly to act as a
trigger.

3.2 Generators
Objects that produce control data and manage PSControllers
are called ‘generators.’ Generators can implement hard-
ware sensor APIs, handle user input, or create custom data
streams (e.g. physics simulations).

Generators adhere to the PSControllerUpdating protocol.
The protocol requires a static dictionary of PSControllers
and method implementations for controller updating. The
controller updating methods handle API instantiation, up-
dating, and clean up. There is an option for generators to
use a global timer for controller updating, indicated by a
requiresTimer property.

Generators are instantiated automatically by the frame-
work. When an outside object requests a controller, the
framework will look for a generator class that contains that
controller name. If it finds a generator class, it will load an

instance of that class, or use the existing instance. This
setup avoids unnecessary instantiation of objects, excess
battery drain, and memory pressure.

Once a generator is up and running, it handles the pulling
of data streams from its model. It then calls the PSCon-
trollerUpdating method updateValue:forControllerNamed:

to send an updated data value through its corresponding
PSController and on to its final destination.

3.3 PSControllerDelegate
To install PSFramework, instantiate a PSControllerCoor-
dinator object and assign its controllerDelegate prop-
erty. The PSControllerDelegate handles the reception of
all PSController value changes. From there it can pass the
updated value to the desired target.

3.4 Activity Modes and Controller Ranges
Sensor-driven applications normally need to scale sensor
values to an appropriate range, since sensors can produce
wildly different values depending on the use case. Present-
ing the complete range of a sensor in all cases only passes
the issue to the user, who then must test for a practical
range and scale their data accordingly.

PSFramework attempts to solve this issue by supporting
four different activity modes during playback: walking, run-
ning, cycling, and automotive. These modes were chosen to
match the output of CMMotionActivityManager, an object
that analyzes the current activity of the device.
CMMotionActivityManager supplies real-time updates of

the device activity along with an estimated confidence

property. In tests, the ability to predict whether the de-
vice was stationary or in motion worked fairly well, but was
skewed towards moving. Using the confidence property to
filter out less confident reports fixed the issue.

A PSController can store separate value ranges for each
of the four activity modes. When an activity mode is re-
ported, the PSController object checks for a range for that
mode and adjusts its minimum and maximum values ap-
propriately. PSControllers that do not use different ranges
will ignore the change.

This system allows pieces to produce a similar outcome
regardless of whether the user is walking or driving. Con-
versely, a piece could be designed to follow mode changes
and alter the music as they occur.

4. POUROVER APPLICATION
The iOS application PourOver has two major goals: provide
a platform to play sensor-driven algorithmic / generative
music, and give Pd coders a mobile, sensor rich platform
for their patches.

PourOver prioritizes indirect user interactions over direct
ones. There are no on-screen GUI controls that connect to
audio parameters. This ‘zero interface’ approach generally
suggests that pieces will make use of ambient, environmen-
tal, motion, and location changes rather than in-app user
interaction.

4.1 Playback Interface
The PourOver interface similar to a music player. Users
choose pieces to play and have basic playback control: play,
stop, and timeline scrubbing. The app comes with a number
of presets, and users can sync their own files through iTunes
file sharing.

In addition to the standard playback controls, the app
provides a ‘freeze’ button. Freezing a piece suppresses con-
troller messages but does not stop any activity in the Pd
file or cause the audio to mute. In a frozen state, controllers
do not alter the state of the piece. The user can use this

356



Generator

PSController

PSController
Delegate

PSController
PSController
...

iOS API object

update()

Audio
Engine

Figure 1: An API updated value patched from generator to audio engine.

Figure 2: In the PourOver app, the user can over-
ride the detected activity mode.

button to hold on to a particular set of parameters and let
the music continue in that state. When the user is ready to
continue, they can press the ‘thaw’ button, and controller
messaging resumes.

The timeline that displays the current time of the piece
is a PSController. Scrubbing through the timeline does not
move through an audio file, but rather communicates to the
graph the current playback percentage. The piece can use
this data to switch between formal sections of the music.

Finally, piece length is flexible and can be changed by
the user from 1 minute to 24 hours. This may be useful in
matching a particular excursion’s duration.

4.2 Editing Platform
Creating content on mobile devices has had many approaches,
including live coding, networked ensembles, on-the-fly map-
ping, GUI design, and distribution systems.

The PourOver app interface was designed for content
playback rather than content editing. There are no patch
editing capabilities2, and no GUI interactions beyond the
playback controls.

To create a piece for PourOver, a standard Pd patch (plus
associated files) is copied into the iTunes File Sharing Doc-
uments directory of the PourOver app. This makes patch
creation a desktop activity rather than an on-device activ-
ity.

PourOver will scan Pd files to build a list of pieces to
load. Since Pd patches can make use of file abstractions,
a method of determining a top-level patch was needed. To
indicate a top-level patch, the following comments are re-
quired somewhere in the file: //PSDECRIPTION: and //PS-

DEFAULTLENGTH:

//PSDESCRIPTION: A really ‘driving’ piece.

//PSDEFAULTLENGTH: 180

The text after //PSDECRIPTION: appears in the app as the

2Early design mock-ups contained the ability to map pa-
rameter controllers on-the-fly. This feature was abandoned
in part to make clear the separation of desktop content cre-
ation and device playback.

piece comments (the file name is used for the piece title).
The //PSDEFAULTLENGTH: value sets the default piece length
in seconds when the file is loaded.

An obvious area for improvement is the method of syn-
chronizing Pd / asset files between the edited desktop ver-
sions and the device. The drag-and-drop iTunes file sharing
method is tedious and often error-prone. It also requires the
device to be physically connected to the computer, which
is not ideal when the app testing often occurs in motion.
While an ideal solution might look like the live code updat-
ing found in urMus, it is also possible that less direct, but
more industrial solution such as Dropbox integration might
be enough.

4.3 Pd Implementation
Some setup is required to link a target (in this case, libpd
[?]) to PSFramework for message reception.

The target audio engine is responsible for requesting the
controllers it needs. A solution was found that simplifies
this process and minimizes error during development.

The libpd framework uses Pd’s [send] and [receive] ob-
jects to communicate with the iOS side of the app. Rather
than request a controller using [send], then catch the in-
coming data with a [receive], a new receiver object was
created to handle controller requesting, data reception, and
value mapping.

The [psr] object acts as a normal [receive] object,
catching incoming messages matching its name argument.
To request a controller data stream, it passes its controller
name to the PSFramework when it finishes loading. The
PSFramework then loads the required generator, and be-
gins streaming data for the [psr] to receive.

Figure 3: The [psr] object handles controller re-
questing and data mapping.

The [psr] object maps its output range to user supplied
minimum and maximum value arguments. This removes
the need to look up sensor data ranges. The object also
provides data sloping functionality. By removing the need
for redundant in-graph range adjustments and sloping, a
significant amount of Pd message pressure can be reduced
in controller heavy patches.

Multiple instances of [psr] can request the same con-
troller data without causing duplicate generator instantia-
tion. This provides some flexibility in programming, since
each unique [psr] can map its output to a different range.

357



While [psr] is available as a Pd external, its installation
is not required for Pd users to write patches for PourOver.
A dummy object with one inlet and outlet can stand in for
[psr] during editing.

5. EXAMPLES AND TESTING
5.1 ‘Rose’
‘Rose’ makes use of heading data to control several vari-
ables of a generative composition with a pulse-oriented,
minimalist aesthetic articulated by waveshaped oscillators.
The piece cycles repeatedly through twelve sparse rhyth-
mic patterns. Each is associated with a distinct pitch, and
arrayed in a virtual circle around the listener. As the lis-
tener turns, new patterns gradually fade in and pan across
the stereo field (opposing the listener’s rotation, in simula-
tion of a fixed spatial position), while previously sounding
patterns gradually fade out and exit. If the listener pauses
their rotation, the patterns gradually accumulate additional
rhythmic elements, so that the piece tends to move from low
to high rhythmic density over time.

5.2 ‘Floors’
‘Floors’ detects when a user moves between floors of a build-
ing and crossfades between sample playback states. Two
methods of floor detection were attempted: the pedometer’s
floorsAscended and floorsDescended properties, and the
altimeter’s altitude property.

While the pedometer did detect changes, the floorsAs-

cended and floorsDescended properties only detect when
a user walks between floors. Elevator travel did not cause
the controller to register a change.

The altimeter altitude property performed better. It
detected both stairwell movement and elevator movement,
and seemed to update more frequently and accurately.

5.3 ‘Virgo’
‘Virgo’ was designed to change based on movement direc-
tion, motion activity, and playback timer percentage. It
follows the heading detected by CLLocationManager and de-
tects whether the user is stationary. Changes in heading,
for example rounding a corner or driving down a curved
street, produce clear shifts in texture.

The piece structures changes around the physical stop-
ping and starting of the listener. Layers enter and exit
based on the direction pointed when stopped. A strong
textural shift is programmed to begin at 70% piece dura-
tion. However, the shift waits for the next change in motion
activity in order to pair the formal change with a moment
of physical transition.

6. FUTURE WORK
The ability to easily share finished pieces between users,
using an in-app interface, is a top priority for future versions
of PourOver.

The editing / testing cycle would greatly benefit from a
file synchronization solution, so the user can edit and update
files on the desktop without the need to manually manage
file copying to the device.

Similarly, testing sensor data could benefit from a sensor
recording / playback system. During development, play-
back of a captured sensor performance could allow testing
to occur at the desktop. As a distribution feature, users
could store a particular ‘performance’ of a piece.

7. CONCLUSIONS
The PourOver Sensor Framework provides an opportunity
to explore new combinations of generativity and interactiv-
ity, with a strong emphasis on indirect interaction involving
movement, location and environmental factors. The open,
expandable framework can grow with new device hardware
or API additions.

The PourOver app has the opportunity to make gener-
ative playback experiences available to a large audience of
iOS users, and gives composers of generative pieces a mobile
performance platform.

8. ACKNOWLEDGMENTS
The authors would like to thank the Office of Research
at the University of Wisconsin-Milwaukee for their fund-
ing and support for this project. Special thanks to Rebecca
Yoshikane for her assistance.

9. REFERENCES
[1] J. Allison, Y. Oh, and B. Taylor. Nexus:

Collaborative performance for the masses, handling
instrument interface distribution through the web. In
Proceedings of the New Interfaces for Musical
Expression conference, 2013.

[2] Björk, L. One Little Indian, and L. Well Hart.
Biophilia.

[3] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,
M. Roth, and H.-C. Steiner. Embedding Pure Data
with libpd. In Proceedings of the Pure Data
Convention, volume 291. Citeseer, 2011.

[4] N. J. Bryan, J. Herrera, J. Oh, and G. Wang. Momu:
A Mobile Music Toolkit. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, Sydney, Australia, 2010.

[5] A. D. de Carvalho Jr. Sensors2PD: Mobile sensors and
WiFi information as input for Pure Data. In Proc. of
the International Computer Music | Sound and Music
Computing Conference, Athens, Greece, 2014.

[6] F. S. Dias. Album Apps: A New Musical Album
Format and the Influence of Open Works. Leonardo
Music Journal, 24:25–27, 2014.

[7] B. Eno and P. Chilvers. Bloom.

[8] G. Essl. UrMus-an environment for mobile instrument
design and performance. Ann Arbor, MI:
MPublishing, University of Michigan Library, 2010.

[9] G. Essl and A. Müller. Designing Mobile Musical
Instruments and Environments with UrMus. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 76–81, Ann
Arbor, MI, USA, 2010.

[10] S. W. Lee and G. Essl. Live Coding the Mobile Music
Instrument. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
volume 1001, pages 493–498, Ann Arbor, MI, USA,
2013.

[11] S. W. Lee and J. Freeman. echobo: A Mobile Music
Instrument Designed for Audience to Play. Ann
Arbor, 1001:48109–2121, 2013.

[12] B. Taylor, J. Allison, W. Conlin, Y. Oh, and
D. Holmes. Simplified Expressive Mobile Development
with NexusUI, NexusUp and NexusDrop. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pages 257–262,
2014.

358


