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ABSTRACT
In this paper we describe an approach for generating and
visualising new rhythmic patterns from existing audio in
real-time using concatenative synthesis. We introduce a
graph-based model enabling novel visualisation and manip-
ulation of new patterns that mimics the rhythmic and tim-
bral character of an existing target seed pattern using a
separate database of palette sounds. Our approach is de-
scribed, reporting on those features that may be useful in
describing units of sound related to rhythm and how they
might then be projected into two-dimensional space for vi-
sualisation using reduction techniques and clustering. We
conclude the paper with our qualitative appraisal of using
the interface and outline scope for future work.
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1. INTRODUCTION
Sampling of existing audio is a cornerstone of electronic
music composition and production. In rhythm-centric elec-
tronic music styles it is common practice to combine synthe-
sis of drum sounds with samples of existing drum sounds or
even complete loops such as breakbeats. Its origins lie in the
hip-hop movement of the 1980s, where the typical arsenal
of a producer was an Akai style MPC sampler and a drum
machine such as the iconic Roland TR-808. As dance mu-
sic emerged in the late 1980s and 1990s, sampling became
more and more sophisticated, as exhibited by complex, in-
tricate and frantic styles such as drum and bass and IDM
(Intelligent Dance Music).

Concatenative synthesis is a sample-based form of sound
synthesis, whereby existing snippets of sound are stitched
together to form new ones according to some set of rules.
It is closely related to granular synthesis, but differs in the
order of scale of the length of the sounds that are used.
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Granular synthesis typically operates on the microscale with
“grains” of lengths 20-200 ms [13], whereas concatenative
synthesis makes use of samples of unit lengths more musi-
cally related, such as a note or a phrase. It is an inherently
Music Information Retrieval (MIR) geared approach such
that feature extraction of acoustic and musical descriptors
(such as sprectral, energy and timbral features) are essential
for analysing and sorting existing sounds then concatenat-
ing them to create new ones according to some predefined
strategy.

Concatenative synthesis, with its ability to redefine and
adapt existing samples in a more automatic, assistive and
intelligent manner, then seems ideally suited for these dance
music applications of the sampling aesthetic. We propose
and describe a graph-based visualisation and interaction
system to generate sequences of rhythmic content that mod-
els the sonic character of an existing rhythmic loop based
on its timbral and spectral profile. The system strives to
break away from traditional interfaces such as the step se-
quencer, drum machines and linear timelines. The software
itself is implemented as a multi-touch capable VST plu-
gin and is intended to be playful and useful in exploring
sound while easily integrated into existing musical applica-
tions and workflows.

Let us now turn to some state of the art examples re-
lating to concatenative synthesis, or to use its alternative
portmanteau, musaicing. We will examine them in turn and
identify their key strengths and features in terms of musical
operation and interaction but also raise some shortcomings
as we see them.

2. EXISTING WORK
Concatenative synthesis has already seen many successful
applications in the areas of speech synthesis [9], but one of
the most concrete first applications in the domain of mu-
sic has been the CataRT system for the Max/MSP envi-
ronment by Schwarz [16]. Its defining characteristic is the
2D search space where the user selects which features are
assigned to each axis and uses the mouse to explore the
playback of sounds that have been previously organised as
an “amorphous” collection. It is especially suited for sound
design where a collection of sound files can be stochasti-
cally rearranged and made indecipherable from their origi-
nal character.

Related to CataRT is the EarGram system available for
the Pure Data environment [3]. It adds clustering strategies
and additional novel visualisation possibilities such as the
”InfiniteMode” which allows some clever mashups by means
of a self-similarity matrix. Crucially it has a tempo source
that facilities simple triggering and sequencing according to
a chosen BPM and metre. Frisson et al. also report on their
AudioGarden application for sound designers which also ex-
plores different ways of presenting concatenated sounds in
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2D space [7]. In their ”Disc” mode for example, sounds
are placed according to their radius/angle around a virtual
circle. The logarithm of the duration of the sound file is
mapped to the radius while the angle corresponds to some
component of the timbre.

Contrasting with these academic, experimental prototypes,
a commercial product suitable for the end producer/musician
is LoopMash 1 by Steinberg, originally released as a software
plugin but since expanded to mobile devices. Visually the
operation of the instrument is quite intuitive. A target loop
resides as a master track on the top of the screen with other
loops underneath it. Mashups are generated by mixing por-
tions of the other tracks depending on their similarity to
the master.

While LoopMash is close to our aims in terms of providing
a concatenative model that mimics a target, the interface is
restrictive in a number of ways. Most fundamentally it does
not offer the user any conceptual map or visual representa-
tion of the relationship between the units of sound. User
selection and interaction is restricted to setting similarity
“gain” levels and individual loudness levels of up to seven
tracks. Conversely, the functionality offered in CataRT 2

and EarGram is more exploratory-oriented and don’t offer
much in the way of loop targeting capabilities or indeed
integration with existing audio systems. Our system aims
to combine these novel interface and interaction paradigms
with intuitive operation and ease of integration.

3. SYSTEM DESCRIPTION
In this section we will describe our implementation of the
system, beginning with an explanation of the musical anal-
ysis stages of onset detection, segmentation and feature ex-
traction. This is followed by an examination of the interac-
tive user interface and the the pattern generation process.
Figure 1 gives a diagrammatic overview of these important
stages, which can be briefly summarised as:

1. Sound Input

2. Onset Detection & Segmentation

3. Audio Feature Extraction

4. Storage & Data Representation

5. Similarity Computation & Pattern Generation

6. Real-time Audio Output

The system is developed in C++ using the JUCE frame-
work 3, the Essentia musical analysis library [5] and the
OpenCV computer vision library [6] (for matrix operations).

3.1 Sound Analysis
The first stage in building a concatenative music system
generally involves gathering a database of sounds to select
from during the synthesis procedure. This database can be
manually assembled but in many musical cases the starting
point is some user-provided audio that may range in length
from individual notes to phrases to complete audio tracks.

The two inputs to the system are the Sound Palette and
the Seed Sound. The sound palette refers to the pool of
sound files we want to use as the sample library for gener-
ating our new sounds. The seed sound refers to the short

1steinberg.net/en/products/mobile apps/loopmash.html
2The author does briefly suggest how loop-based concate-
native synthesis might be achieved in another article [15]
proposing the use of loop libraries and acoustic descriptors.
3http://www.juce.com

loop that we wish to use as the similarity target for gener-
ating those sounds. The final output sound is a short (one
to two bar) loop of concatenated audio that is rendered in
real-time to the audio host.

Figure 1: Block Diagram of Functionality

3.1.1 Onset Detection and Segmentation
In cases where the sounds destined for the sound palette
exceed note or unit length, the audio needs to be separated
into its constituent units using onset detection and segmen-
tation.

Onset detection is a large topic of continuous study, and
we would encourage the reader to examine the excellent re-
view of methods summarised in [1]. Currently, with some
tuning of the parameters, Sebastien Böck’s Superflux algo-
rithm represents one of the best performing state of the art
detection methods [4]. For our purposes we have experi-
enced good results with the standard onset detector avail-
able in Essentia, which uses two methods based on analysing
signal spectra from frame to frame (at a rate of around
11 ms). The first method involves estimating the high-
frequency content in each frame while the second method
involves estimating the differences of phase and magnitude
between each frames.

The onset detection process produces a list of onset times
for each audio file, which we use to segment into new au-
dio files corresponding to unit sounds for our concatenative
database.

3.1.2 Feature Extraction
In music information retrieval systems, the task of deciding
which features are used to represent musical and acoustic
properties is a crucial one. It is a trade off in choosing
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the richest set of features capable of describing the sig-
nal succinctly at the expense of storage and computational
complexity. When dealing with musical signals specifically,
there are a number of standard features that correspond
roughly to certain perceptual ideals. We briefly describe
our chosen features here, but for a more thorough treat-
ment of feature selection with relation to percussion the
reader should consult [8], [14] and [17].

Our first feature is the loudness of the signal, which is is
implemented in Essentia according to Steven’s Power Law,
namely the energy of the signal raised to the power of 0.67
[5]. This is purported to be a more perceptually effective
measure for human ears. Next we extract is the spectral
centroid, which is defined as the weighted mean of the spec-
tral bins extracted using the Fourier Transform. Each bin
is weighted by its magnitude (Equation 1).

centroid =

∑N−1
n=0 k(n)f(n)∑N−1

n=0 f(n)
(1)

Perceptually speaking, the spectral centroid relates mostly
to the impression of the brightness of a signal. In terms of
percussive sounds, one would expect the energy of a kick
drum to be more concentrated in the lower end of the spec-
trum and hence a lower centroid than that from a snare or
crash cymbal.

Another useful single-valued spectral feature is the spec-
tral flatness. It is defined as the geometric mean of the
spectrum divided by the arithmetic mean of the spectrum
(Equation 2). A spectral flatness value of 1.0 means the en-
ergy spectrum is flat whereas a value of 0.0 would suggest
spikes in the spectrum indicating harmonic (with a specific
frequency) tones. The value intuitively implies a discrim-
ination between noisy or inharmonic signals and harmonic
or more tonal signals. Kick drums sounds (especially those
generated electronically) often comprise quite a discernible
centre frequency whereas snares and cymbals are increas-
ingly broadband in spectral energy.

flatness =

N

√∏N−1
n=0 F (n)∑N−1

n=1 F (n)

N

(2)

Our final feature is the vector quality known as MFCCs
(Mel Frequency Cepstrum Coefficients). MFCCs can be
considered as a compact approximation of the spectra for
the purposes of conveniently estimating the ”timbre” of a
signal. It has been applied extensively in speech process-
ing, genre detection [18] and instrument identification [11].
MFCC computation, as outlined in [10], is basically achieved
by computing the spectrum, mapping result into the more
perceptually relevant Mel scale, taking the log then apply-
ing the Discrete Cosine Transform (Equation 3).

MFCC(x) = DCT (log Mel(FFT (x)) (3)

It is difficult to interpret exactly what each of the MFCC
components mean, but the first component is generally re-
garded as encapsulating as the energy. Since we are already
extracting the loudness using another measure we have dis-
carded this component in our system.

3.1.3 Data Representation and Seed Computation
Further on in the paper we will describe a bit more on how
the seed or target audio signal is actually received from the
VST host, but in terms of analysis on that seed signal, the
process is the same as before: onset detection and segmen-
tation followed by feature extraction.

The resulting feature vectors are stored in two matri-
ces: the palette matrix and the target matrix. The palette
matrix stores the feature vectors of each unit of sound ex-
tracted from the sound palette and similarly the target ma-
trix stores feature vectors of units of sound extracted from
the seed loop.

3.2 Pattern Synthesis and User Interaction
This section details the visible, aural and interactive ele-
ments of the system as they pertain to the user. Figure
2 gives a glimpse of the user interface in a typical pattern
generation scenario.

3.2.1 Workflow
The layout of the interface was the result of a number of
iterations of testing with users who, while praising the nov-
elty and sonic value of the instrument, sometimes expressed
difficulty understanding the operation of the system. One
of the main challenges faced was how best to present to the
user the general workflow in a simple and concise manner.
It was decided to represent the flow of the various opera-
tions of the software emphatically by using a simple set of
icons and arrows, as is visible in Figure 2 - A.

The icons indicate the four main logical operations that
the user is likely to do, and opens up related dialogs, namely:

• The Palette Dialog - as indicated by the folder icon

• The Seed Dialog - as indicated by the jack cable icon

• The Sonic Dialog - as indicated by the square feature
space icon

• The Output Dialog - as indicated by the speaker icon

3.2.2 Sound Palette
The user loads a selection of audio files or folders containing
audio files which are analysed to create the sound palette as
has previously been discussed. Next, dimensionality reduc-
tion is performed on each feature vector of the units in the
sound palette using Principal Component Analysis (PCA).
Two PCA components are retained and scaled to the visi-
ble area of the interface to serve as coordinates for placing
a circular representation of the sound in two-dimensional
space. These visual representations, along with their asso-
ciated audio content we term sound objects and are clearly
visible in main timbre space window in the figure.

3.2.3 Seed Input
Seed audio is captured and analysed by recording directly
from the input audio of the track on which the instrument
resides in the audio host. Using the real-time tempo and
bar/beat information provided by the host, the recorder
will wait until the next bar starts to begin capture, and
will only capture complete bars of audio. This audio is
analysed as before but with one exception. Since the goal
of the instrument is to integrate with an existing session and
generate looped material, we make the assumption that the
incoming audio is quantised and matches the tempo of the
session. Thus onset detection is not performed on the seed
input; rather, segmentation takes place at the points in time
determined by the grid size (lower left of the screen).

An important aspect to note: since the instrument is fun-
damentally real-time in its operation, we need to be careful
about performing potentially time consuming operations as
feature extraction when the audio system is running. As
Ross Bencina so aptly puts it: ”time waits for nothing”
[2]. Thus we perform the audio recording stage and feature
extraction process on separate threads so the main audio
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Figure 2: Main User Interface with Onset Graph

playback thread is uninterrupted. This is separate to yet
another thread that handles elements of the UI.

3.2.4 Sonic Parameters
Clicking on the square sonic icon in the centre of the work-
flow component opens up the set of sliders shown in Figure
2 (B) that allows us to adjust the weights of the features in
the system. Adjusting these weightings have effects in terms
of the pattern generation process but also in the visualisa-
tion. Presenting their technical names (centroid, flatness
and MFCCs) would be confusing for the general user, thus
we have relabelled them with what we consider their most
descriptive subjective labelling. With the pattern genera-
tion process, these weights directly affect the features when
performing similarity computation and unit selection, as we
will see in the next section. Depending on the source and
target material, different combinations of feature weightings
produce noticeably different results, informally we have ex-
perienced good results using MFCCs alone for example, as
well combinations of the flatness and centroid. In terms of
visualisation, when the weights are changed, dimensionality
reduction is re-initiated and hence positioning of the sound
objects in the timbre space changes. Hence manipulating
these parameters can help disperse and rearrange the sound
objects for clearer interaction and exploration by the user
in addition to affecting the pattern generation process.

3.2.5 Pattern Generation
Once the palette and seed matrices have been populated,
a similarity matrix between the palette and seed matrix is
created. Using the feature weightings from the parameter
sliders a sorted matrix of weighted Euclidean distances be-
tween each onset in the target matrix and each unit sound
in the palette matrix is computed, as given by equation 4.

SIM MATRIX = SORT ASC

√√√√ n∑
i=1

wi(ai − bi)
2


(4)

When the user hits the “New Pattern” button (Figure 2 -
C), a new linked list of objects we term sound connections
is formed, representing a traversal through connected sound
objects in the timbre space. The length of the linked list
is determined by the grid size specified by the user, thus if
the user specifies a grid size of 1/16 for example, a one bar
sequence of 16th notes will be generated. The exact proce-
dure whereby we generate a list is detailed in Algorithm 1.
The variance parameter affects the threshold of similarity
by which onsets are chosen. With 0 variance the most sim-
ilar sequence is always returned. This variance parameter
is adjustable from the Accuracy/Variety slider in the lower
left corner of the instrument (Figure 2 - C).

Algorithm 1 Onset Generation Algorithm

1: procedure Get–Onset –List
2: for n in GridSize do
3: R = Random Number between 0 and Variance
4: I = Index from Row R of Similarity Matrix
5: S = New SoundConnection
6: S->SoundUnit = SoundUnit(I)
7: Add S to LinkedList
8: end for
9: return LinkedList

10: end procedure

In the main timbre space interface (Figure 2 - D), a vi-
sual graph is generated in the timbre space by traversing the
linked list and drawing line edges connecting each sound ob-
ject pointed to by the sound connection in the linked list. In
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this case a loop of 16 onsets have been generated, with the
onset numbers indicated beside the associated sound object
for each onset in the sequence. The user is free to manip-
ulate these sound connections to mutate these patterns by
touching or clicking on the sound connection and dragging
to another sound object. Multiple sound connections as-
signed to an individual sound object can be group selected
by slowly double tapping then dragging.

On the audio side, every time there is a new beat, the
linked list is traversed and if a sound connection’s onset
number matches the current beat the corresponding sound
unit is played back. One addition that occurred after some
user experiments with the prototype is the linear waveform
representation of the newly generated sequence (Figure 2
- E). Users felt the combination of the 2D interface with
the traditional waveform representation made the sequences
easier to navigate as well as being able to manipulate the
internal arrangement of sequence itself once generated.

4. CONCLUSIONS AND FUTURE WORK
In this paper we introduced a real-time system for generat-
ing and interacting with rhythmic patterns using concate-
native synthesis. We described how the system can mimic
the rhythmic and sonic character of a seed sound using an
unrelated palette of sound samples with a variable range of
accuracy and variety. A graph-based model was introduced
as a way to present the structure and relation of sounds
in the generated pattern for the user to manipulate these
patterns in a novel manner.

The instrument has undergone a number of development
iterations based on feedback and testing with internal users,
including one live performance for an external audience for
a project review. Currently we are developing a formalised
framework for testing the instrument with external users
such as composers and producers. In this survey we aim
to evaluate quantitative aspects of the system relating to
the fundamental ideas presented in this paper. Firstly, we
will gather ratings of generated patterns in terms of their
similarity to the target and ”suitability” of the generated
patterns in the wider context of the composition being work
on (i.e. “does it fit”), as we had previously carried out in a
similar project using symbolic patterns [12]. Secondly, we
will examine the suitability of the audio features we have
chosen, their combinations and their impact. We have cho-
sen a small, but in our view, effective set of features for
encapsulating rhythmic sounds. However there are many
more that warrant investigation and experimentation. For-
tunately our design is flexible and scalable in such a way
that such features can be easily incorporated.

5. LINKS
Binary software is available to download here:
https://github.com/carthach/rhythmCAT

A video demonstration can be viewed here:
https://youtu.be/Jl1bV4STAmw
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