
Practical Considerations for MIDI over Bluetooth Low
Energy as a Wireless Interface

Johnty Wang
Input Devices and Music
Interaction Lab/CIRMMT
McGill University, Canada

johnty.wang@mail.mcgill.ca

Axel Mulder
Infusion Systems
Montreal, Canada

axel@infusionsystems.com

Marcelo M. Wanderley
Input Devices and Music
Interaction Lab/CIRMMT
McGill University, Canada

marcelo.wanderley@mcgill.ca

ABSTRACT
This paper documents the key issues of performance and
compatibility working with Musical Instrument Digital In-
terface (MIDI) over Bluetooth Low Energy (BLE) as a wire-
less interface for sensor or controller data and inter-module
communication in the context of building interactive digital
systems. An overview of BLE MIDI is presented along with
a comparison of the protocol from the perspective of the-
oretical limits and interoperability, showing its widespread
compatibility across platforms compared with other alter-
natives. Then we perform three complementary tests on
BLE MIDI and alternative interfaces using prototype and
commercial devices, showing that BLE MIDI has compa-
rable performance with the tested WiFi implementations,
with end-to-end (sensor input to audio output) latencies of
under 10ms under certain conditions. Overall, BLE MIDI
is a viable solution for controllers and sensor interfaces that
are designed to work on a wide variety of platforms.

Author Keywords
MIDI, Sensor Interfaces, Latency

CCS Concepts
•Hardware→ Sensor devices and platforms; •Applied
computing → Sound and music computing; Performing
arts;

1. INTRODUCTION
Digital Musical Instruments [12] constitute a subset within
the general category of interactive digital systems. In such
systems, a key part of the process involves transmission and
reception of control data arising from sensor interfaces [13]
or intermediary processing modules. Performance charac-
teristics and compatibility are main issues when implement-
ing such interfaces, and in this work we describe an inter-
face that implements the messaging specifications of Music
Instrument Digital Interface (MIDI) protocol over a Blue-
tooth Low Energy (BLE) connection, henceforth referred to
as BLE MIDI.

In this paper, we first present examples of available wire-
less hardware and communication protocols, which are com-
bined to represent alternative interfaces to BLE MIDI. Then,
we present an overview of the BLE MIDI standard along

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’19, June 3-6, 2019, Porto Alegre, Brazil

with some theoretical performance characteristics. Finally,
we describe the implementation and testing of various cus-
tom built and commercially available BLE interfaces with
other existing protocols and discuss the benefits and limi-
tations of using BLE MIDI.

2. BACKGROUND AND RELATED WORK
There are two main aspects of BLE MIDI that should be
mentioned with regards to related systems. First is the
hardware specification for the interconnection between two
systems, and second is the protocol for supporting the inter-
change of data. Any alternative to BLE MIDI subsequently
described and compared with this work are first contextu-
alized using both the hardware features as well as software
protocol, since these aspects work in tandem to influence
performance parameters and compatibility. Combining a
specific hardware specification with a protocol yields a par-
ticular interface for comparison.

2.1 Wireless Connections
One of the obvious features of Bluetooth as an interface is
its wireless nature. The freedom of an untethered device
may be attractive for many applications, and the reliability
of wireless connections have greatly improved over the years
[3]. Nearly all mobile computational devices on the market
today contain hardware that supports IEEE 804.15.4 (Blue-
tooth) and 804.11a/b/g/n/ac (WiFi). We acknowledge the
use of other wireless radio systems such as ZigBee, as ap-
plied in the case of Sense/Stage interface system that has
been successfully used in various artistic contexts [1]. Sim-
ilar systems such as the nRF24L01+, like ZigBee, possess
similar features and are especially interesting due to their
mesh networking capabilities that are useful when scaling
up to large number (100+) devices [5]. However, both these
systems require additional hardware not found on commod-
ity computational devices, and while an adapter dongle with
custom driver software can be easily added to a desktop
computing environment, the same cannot be said of mobile
platforms. WiFi is supported on virtually all mobile devices
currently in operation, while BLE MIDI is supported by all
Android and iOS devices from three or four generations ago
up to the date of this article. Therefore, WiFi and Blue-
tooth are significantly easier to work with where hardware
compatibility (especially with mobile devices) is needed.

2.2 Protocols
The MIDI messaging protocol, due to its widespread man-
ufacturer support, became extremely popular shortly after
its release [8]. Most modern music synthesis and production
software today, as well as most applications dealing with
digital media (such as visual and show control systems) will

25



Table 1: Additional dependencies for implementation, H = hardware; S = software

Interface iOS Android macOS Windows Linux
MIDI(BLE) None None None None* None

RTP-MIDI (WiFi) None S None S S
MIDI(USB) H H H H H
OSC(WiFi) S S S S S

Other(Wireless) H,S H,S H,S H,S H,S

*See Section 2.7 for details on Windows OS

support MIDI. Specifically, the General MIDI Standards1

define particular sets of messages that, while limiting (7 or
14 bit integers for parameter values), will ensure compatibil-
ity between devices. For custom data types, it is possible to
pack arbitrary byte streams via System Exclusive (SysEx)
messages, which can be parsed by a supporting receiver.

More recent standards such as OpenSoundControl (OSC)
[17] provide far more flexibility by providing a user defined
messaging namespace and custom message structures. By
utilizing the User Datagram Protocol (UDP)2 that sits on
top of the network stack, messages can be formatted us-
ing human-readable plain text without significant impact on
performance due to the high bandwidth available. Strings,
arrays of values, and floating point numbers in addition to
raw bytes (for compactness) can be transmitted via OSC.
However, the main consequent trade-off for this flexibility
is that both sender and receiver applications must be con-
figurable to parse the messages. Additionally, any device
that employs OSC must implement the networking stack
and transport mechanisms required. While this requires ad-
ditional processing compared with MIDI, this requirement
is becoming increasingly trivial with modern embedded sys-
tems since many microcontrollers provide the necessary pro-
cessing power and hardware interfaces. However, there are
much fewer end-user applications that support OSC versus
MIDI.

2.3 Interfaces and Interoperability
Combining the hardware specification and data exchange
protocol yields the concept of an interface that provides a
physical realization of the connection.

2.4 OSC over WiFi
The WiSe Box [4] and x-OSC [9] are two examples of WiFi
based general purpose sensor acquisition systems that em-
ploy OSC for transmitting sensor data to a host computer.
The former did not report specific results, while the latter
exhibited measured latencies of around 10ms and through-
put of 400kbps. Since most modern devices contain WiFi
capabilities, this interface is an ideal choice where the re-
ceiving software is capable of receiving and parsing OSC
messages.

2.5 RTPMidi over WiFi
Real Time Protocol MIDI (RTP-MIDI) provides a mecha-
nism to transmit standard MIDI messages over a network,
and can be theoretically implemented on any hardware sys-
tem that supports OSC since it uses the same UDP network-
ing stack. With the addition of a software driver bridge, it
is possible to implement a network MIDI port on a receiving
device. The physical performance of such a link would be
similar to OSC, but with a simpler messaging protocol that

1https://www.midi.org/specifications/category/
gm-specifications
2OSC can be transported via other means, but this is the
most common

has its associated strengths and drawbacks. Commercial
adapters that convert MIDI to RTP-MIDI exist, but the
receiving side must implement software support to create a
virtual RTP-MIDI compatible port.

2.6 MIDI over BLE
BLE MIDI transfers standard MIDI data over a BLE con-
nection. Making use of the ubiquitous nature of BLE hard-
ware on modern devices and the availability of native driver
support under all desktop and mobile operating systems,
once a BLE MIDI device is paired, the data is directly
available by most receiving software. The details of the
implementation is described in more detail in Section 3.1.

2.7 Compatibility Comparison
Table 1 presents a compatibility chart showing devices run-
ning various operating systems and the hardware/software
dependencies to support each interface. This table applies
to currently available devices on the market that almost
universally contain WiFi and Bluetooth 4.0-capable radios,
which are features that can be easily added to a non-wireless
desktop computer. Wired MIDI, in the form of a class-
compliant USB-MIDI interface adapter is presented for com-
parison and is universally supported in software by all de-
vices via a regular USB port or adapter dongle in the case
of mobile devices.

As the compatibility table shows, BLE MIDI is the best
supported system combination from both a hardware and
software perspective compared with other alternatives. The
only operating system environment where an additional bridg-
ing application is required is Windows 10 since a BLE MIDI
port is a separate entity inoperable with “standard” MIDI
ports. On all other systems, a connected BLE MIDI device
will simply appear as a native MIDI port, so any existing
MIDI application will be able to communicate with a BLE
MIDI device.

3. MIDI OVER BLE
3.1 Implementation
The BLE MIDI standard is defined using a Bluetooth Generic
Attributes (GATT) profile as part of the BLE standard3.
The profile defines how the device must advertise its pres-
ence, initiate connection with another device, and handle
the transfer of information once the connection is estab-
lished.

There are a number of hardware-specific commercial and
open source Bluetooth development environments available
that can be used to build a BLE MIDI interface, with
some popular integrated microcontroller solutions including
Nordic Semiconductor’s nRF series4 and Espressif Systems’

3https://www.bluetooth.com/specifications/gatt
4https://www.nordicsemi.com/eng/Products/
Bluetooth-low-energy

26



ESP325. The Arduino IDE has open source libraries for a
number of BLE capable platforms.

Based on the specification, a few key performance met-
rics can already be determined, and appear in the following
sections.

3.2 Theoretical Latency
Wired MIDI operates at a baud rate of 31250bps, and each
message byte is transmitted using 10 bits [7]. Therefore, the
minimum time it takes to send a 3-byte (30 bit) message
over the wire is 0.96ms. In practice, the lowest measured
latency for MIDI signals are slightly longer, especially when
going through interfacing hardware on a computer and have
been measured to be on the order of a few milliseconds, with
USB based systems that also transmit audio data perform
slightly worse [16]. This is not surprising since the bus must
handle both MIDI and audio data at the same time. At the
same time, modern USB-based MIDI interfaces are known
to provide the lowest measured latency in a comparison of
interfaces [11].

Since Bluetooth is a packet based protocol [2] and trans-
mission can only occur within connection interval events,
this interval will determine the lowest possible period be-
tween successive samples. Based on the standard, the min-
imum connection interval is 7.5ms for BLE, which is theo-
retically within the 10ms limit required for musical appli-
cations [15] but may not leave much room for the rest of
the signal processing and synthesis chain. The BLE MIDI
spec requires the interval to be 15ms6. Later in practical
measurements we see the connection interval, as tested on
a modern desktop operating system, is in fact higher at
11.25ms. The consequence of this is that if incoming data
cannot be transmitted within the current connection inter-
val, it must wait until the next one with a relatively large
gap between transmissions.

One redeeming factor of BLE MIDI is the addition of
a millisecond timestamp to each message, which allows the
exact signal acquisition time to be transmitted with a MIDI
message sent over the BLE link. This means that despite
the longer latency, it is possible to preserve the exact timing
characteristics of the signal, which may be useful for ap-
plications where timing accuracy is more critical than low
latency.

3.3 Theoretical Bandwidth
The overall bandwidth of Bluetooth 4.0 is 1 MBps. How-
ever, this is the maximum capacity of the physical channel
and must include the lower level support structures of the
networking stack. The theoretical maximum depends on a
number of variables, including the number of packets that
can be sent within a single connection interval which varies
by host operating systems, and varies between 56kbps and
128kbps depending on a number of parameters enforced by
the receiving operating system [6]. Based on these values
the actual bandwidth of BLE is actually much closer to
the MIDI standard of 31.25kbps as carried via the 5-pin se-
rial connection[7], and far from the rates of modern USB
and networking protocols that are capable of passing data
on the order of hundreds of MBps. This is perhaps not
surprising as BLE was intended for low power signal acqui-
sition purposes rather than high throughput. The obvious
consequence of BLE’s low channel capacity means that it is
unsuitable for delivering large amounts of data.

5https://www.espressif.com/en/products/hardware/
esp32/overview
6https://www.midi.org/specifications-old/item/
bluetooth-le-midi

4. PERFORMANCE COMPARISONS
In this section we describe empirical performance compar-
isons between BLE MIDI and other wired and wireless inter-
faces. We make use of devices and platforms that are widely
available to the NIME community including cheap micro-
controller systems, commodity computing devices and soft-
ware. We present the configuration and results from three
main tests: First we performed end to end latency tests.
Then we evaluated the roundtrip latency of a commercially
available adapter that added BLE MIDI capability to an ex-
isting wired MIDI port. Finally, we compare the available
bandwidth of the BLE MIDI connection with alternatives.
While these tests are significantly different in nature, they
present cases where the wireless BLE link can be isolated
and compared directly with another alternative.

4.1 End-to-End Latency Test
During the design of a general purpose sensor interface, we
had an unique opportunity to isolate the BLE link from
an existing wired connection while keeping the rest of the
hardware components identical. Figure 1 shows the previ-
ous and newly developed sensor interfaces. The new inter-
face provides both a wired USB connection as well as a BLE
connection (as a peripheral device) and can operate in ei-
ther mode. This provides a configuration that can test any
differences in performance after introducing the BLE MIDI
to the processing chain.

Figure 1: Top-Existing Sensor Interface with USB Serial;
bottom-New interface with USB Serial and BLE MIDI

We constructed the test rig as described in a previous
study testing end to end latency [11] that measures the
time between a sensor input trigger and the final synthe-
sized audio output on a receiving host, and employ the low-
est latency Max/MSP software configuration (overdrive on,
32-bit vector size). While the results from this test embeds
a number of additional processing steps that contributes to
the overall latency, we are able to fix the other variables to
provide a comparison between just the wired and BLE in-
terfaces. To first make sure our general test configuration is
operating correctly, we also constructed an identical USB-
MIDI based Teensy system from the previous work, and
it reproduced very similar results. We also implemented a
minimal system that contained a single digital input trig-
ger that transmitted either a BLE MIDI, RTP-MIDI (over
WiFi), or OSC (over WiFi) message and compared the re-
sults. Figure 2 shows the test configuration for the custom
interface (USB and BLE MIDI), and the minimal test case
between BLE and WiFi connections.

As shown in Table 2, we first see that the Teensy imple-
mentation yielded very similar results to the previous study
[11], and the marginally better performance we recorded
may be attributed to a slightly faster computer. Our cus-
tom interface using the USB-Serial connection had perfor-
mance similar to the Teensy, but when the BLE MIDI link

27



Figure 2: Test setup for the custom sensor interface and
minimal examples

Table 2: End-to-End Latency Measurements

Connection Latency Std Dev
USB MIDI (Teensy) 4.1 ms 0.4 ms
USB MIDI (Teensy)* 5.1 ms 0.4 ms
USB-Serial (custom) 6.2 ms 0.35 ms
BLE MIDI (custom) 19.1 ms 2.7 ms
BLE MIDI (minimal) 7.5 ms 1.8 ms

WiFi RTP-MIDI (minimal) 8.5 ms 8.0 ms
WiFi OSC (minimal) 7.6 ms 2.9 ms

WiFi OSC* 6.7 ms 1.5 ms
BT 2.0-Serial 30 ms 14.6 ms

BLE* 139 ms 21.9 ms
* indicates results from previous study [11]

was used instead, latency was significantly higher. Looking
at the minimal configuration on the ESP32 microcontroller
running BLE MIDI, WiFi OSC and WiFi RTP-MIDI, we
see relatively comparable behaviour between the wireless
configurations. The custom BLE interface exhibited about
11ms more latency than the minimal case, possibly due to
internal sensor processing which resulted in the transmission
of the message in a subsequent BLE connection interval.

Compared with other Bluetooth based implementations,
we see that the BT 2.0-Serial interface, employed by a pre-
vious version of our sensor interface, exhibited significantly
higher latency than BLE. The final, extremely large latency
value in the table that reports measured latency from a BLE
interface [11], as explained by the original authors, could be
attributed to the polling method since the BLE MIDI im-
plementation was not used.

4.2 Commercial BLE MIDI Adapters
There are a number of commercially available BLE MIDI
controllers that operate as BLE MIDI peripheral devices.
A non-exhaustive list appears in Appendix A. Two inter-
esting adapter devices, the Yamaha MD-BT01 and CME
Widi Bud, allow BLE MIDI capability to be added to exist-
ing systems. The Yamaha device is a “BLE bridge” adapter
that allows a wired MIDI port to send and receive BLE
MIDI messages. Conveniently powered by the small amount
of power available on a MIDI Output port, the Yamaha
adapter provides an easy way to turn any MIDI device into
a BLE MIDI peripheral and communicate with a host re-
ceiving application. The CME device allows any host device
with a USB port to operate with other BLE MIDI periph-
erals.

To test the implication of retrofitting an existing device
with a BLE MIDI connection, we created a test configu-

ration consisting of concurrent wired USB and BLE MIDI
connections between two computers. An M-Audio MIDIS-
port 2x2 was used on Computer 1 (2010 Mac Pro Tower,
Quad-core Xeon 2.8G hz) with A connected to a Roland
UM-One 1x1 on Computer 2 (2014 Macbook Pro, 2.5 Ghz
i5). The Yamaha MD-BT01 was connected to Port B of the
MIDISport and a BLE MIDI link established with the built
in BLE interface of Computer 2. By measuring the timing
of messages sent through these two links, we can observe the
effect of replacing the wired USB MIDI port on the second
computer with a BLE link, as shown in Figure 3.

Figure 3: Wired and BLE MIDI Test Configuration

A simple MIDI timing application was written in C using
the RtMidi library in MacOS [14]. The application opens a
MIDI input and output port, and performs one of two roles:

• Sender: Emits a note-on message and measures the
interval until a message is received and outputs to
screen. Performs this operation in a loop with a preset
delay between the next test.

• Receiver: Emits a note-on message whenever a mes-
sage is received.

A flow diagram of the application is presented in Figure
4 showing the operation of the sender and receiver modes.

Figure 4: Flow Diagram of MIDI roundtrip latency mea-
surement

When the sender and receiver’s MIDI input and output
ports are connected to each other, the sender will effectively
measure the round-trip delay of the MIDI channel. We took
measurements of 1000 samples with an inter-message delay
of 500ms, and the results are presented in Table 3, with
Computers 1 and 2 taking turns being sender and receiver,
respectively. The results show that the addition of the BLE

28



MIDI link resulted in nearly 26ms of additional delay for the
roundtrip, or about 12ms for one way. Similar to the end-
to-end latency measurements between the USB and BLE
interfaces of our custom interface in Section 4.1, this added
delay may be accounted for by the additional BLE connec-
tion intervals.

Table 3: Round-trip Delay of wired and BLE interface

Connection Round-trip Std Dev
Wired Computer 1 to 2 4.3 ms 2.2 ms
BLE Computer 1 to 2 29.9 ms 15.0 ms

4.3 Bandwidth Tests and Packet Inspection
Since the saturation point of a wireless channel depends
on many changing environmental factors, we attempted to
perform a rudimentary test using the BLE devices available
on hand to obtain a general idea of the overall bandwidth
of a BLE MIDI connection, and compare that with WiFi
links where possible. A test BLE application was imple-
mented on the ESP32 and nRF51822 microcontrollers that
emits increasing amounts of synthetic data via MIDI Sys-
tem Exclusive messages. Using Apple’s BLE PacketLogger
application on the receiving computer, we found that both
radios, when using the BLE MIDI interface, were able to
transmit up to around 40kbps before packets were no longer
being received at the nominal transmission intervals. This
is significantly lower than the theoretical values described
in Section 3.3. Running a similar test on the ESP32 oper-
ating as an WiFi OSC sender instead, the total bandwidth
was nearly double. Other WiFi radios such as the x-OSC
interface [9] perform at much higher rates.

One other interesting outcome obtained through the anal-
ysis of the packets received by MacOS is that the connection
interval chosen by the OS appears to be 11.25ms. While this
conforms to the requirement of being less than 15ms, this
value is larger than the minimum possible connection inter-
val of 7.5ms. This suggests that access to and modification
(if possible) of the operating system Bluetooth driver could
potentially yield better performance. Another consequence
of the connection interval is that internal processing delays
beyond a certain threshold would result in the addition of
an entire connection interval to the latency.

5. DISCUSSION
In this section we first describe some of the implications of
the results obtained in the evaluation, and list some limita-
tions of the evaluation and ways in which it can be extended.

5.1 Suitability of BLE MIDI
Given its significant advantages of compatibility, BLE MIDI
is an ideal choice for general purposes sensor interfaces and
controllers. As shown in Table 1 in Section 2.3 we see that
BLE has nearly universal support on almost every platform,
which is better than any other available alternative. One
example where this could be useful is when building a con-
troller interface that can work with a wide variety of ex-
isting software applications. A custom sensor interface or
controller that contains built in mapping to MIDI messages
could be used by a large number of MIDI-compatible se-
quencing and synthesis software running on desktop com-
puters, laptops, and tablets out of the box if it supports BLE
MIDI. This can serve to explain the choice of the increasing
number of commercial MIDI controllers that have this capa-
bility (a non-exhaustive list presented in Appendix A), since
in this application, the controller is designed to work with a

potentially large number of receiving devices/software run-
ning on different platforms. The minimally measured la-
tency of a BLE interface is comparable with WiFi, and while
the bandwidth appears to be worse, is comparable with the
original MIDI specifications. It is possible to make existing
MIDI-compatible devices wireless using commercially avail-
able BLE MIDI adapters, at the cost of significantly higher
latency.

Due to some of the advantages of BLE MIDI, we have, in
collaboration with Infusion Systems, recently released the
I-CubeX WiDig, a new sensor interface that adds BLE MIDI
functionality (in addition to USB and potential for WiFi).
Since the sensor interface contains configurable on-board
mapping to MIDI messages from sensor data, the added
BLE MIDI capability allows a custom sensor setup to seam-
lessly connect to a large number of applications (such as
GarageBand on iOS), and synthesizers running on desktop
platforms. We are also experimenting with a new version
of the T-Stick [10], a controller developed over the past 10
years for research in digital musical instruments, with built-
in mappings that generate BLE MIDI output to explore the
potential conveniences that the interface affords.

On the other hand, if one is building a system from scratch
or is able to provide additional software integration and/or
tools that already support other protocols like OSC, WiFi
devices can be used for better bandwidth. When using
networked devices, RTP MIDI is another viable alternative
that retains some of the compatibility benefits of standard
MIDI while employing a higher performance wireless chan-
nel. Finally, if both ends do not need to conform to the
limited speed of the ”classic” serial connection via the 5-pin
DIN connection, USB MIDI can operate at much higher
rates (up to full USB speed7) over a wired connection.

5.2 Scope of Evaluation
The evaluations performed and described above may be im-
proved in many ways. For example, the latency of these
connections are often a function of other parameters such
as packet size and sampling interval since the saturation
of available bandwidth will affect the response time [9], re-
sulting in a more comprehensive test that integrates the
latency test described in Section 4.1 with the bandwidth
test in Section 4.3. Additionally, the number of concurrent
devices may be another parameter of interest for certain
applications.

One other significant factor that was not tested was gen-
eral reliability metrics like connection stability, and per-
haps more importantly, the range of the connection. There-
fore, the conclusions made in this evaluation can be sup-
plemented with further tests to obtain these parameters,
ideally under a wide variety of conditions including perfor-
mance settings with other equipment (such as stage lighting,
wireless audio systems, etc).

Power consumption, and its subsequent effect on battery
life and shape/size/weight parameters is yet another con-
sideration for portable wireless applications, but once again
beyond the scope of this evaluation. It should be noted how-
ever that modern battery power densities typically mean a
suitable pack can be found to meet the needs of most ap-
plications [3].

Finally, so far we have only compared and discussed the
compatibility part of the cross platform capabilities. The
performance analysis could be done on multiple platforms
to see if the results are consistent across different operating
systems using the same test procedures.

7https://forum.pjrc.com/threads/
46111-Teensy-USB-MIDI-Bandwidth

29



5.3 Value of Standardized Tests
Finally, we acknowledge the importance of standardized
testing procedures for these devices, and appreciate the ef-
forts of previous research that attempted to increase the
reproducibility of evaluations through the sharing of test-
ing tools [11]. We follow this initiative by adding the new
tools implemented and additional documentation such as
the schematics of the hardware testing rig to a publicly
available repository8. We hope that this will further in-
crease the accessibility of these test procedures, to the ben-
efit of the wider community.

6. CONCLUSION
In this paper we have described the implementation, use,
and testing of MIDI via Bluetooth Low Energy as an inter-
face for communication between modules in the context of
digital interactive systems. Based on the features and mea-
sured performance characteristics, BLE MIDI is a poten-
tially interesting replacement for wired MIDI interfaces due
to its wireless capability and extensive hardware and soft-
ware support in modern systems. A BLE MIDI device will
transparently operate with a MIDI compatible application
on most mobile and desktop platforms with no additions,
and provides “out of the box” support for the most number
of use cases compared with any wired or wireless alterna-
tive. The existence of commercially available BLE adapters
allow both peripheral and central BLE MIDI devices to be
added to existing wired MIDI systems or computers with-
out BLE radios, at the cost of increased latency. BLE MIDI
is a viable solution for any sensor interface that requires ex-
tensive interoperability with existing MIDI-compatible ap-
plications, and may serve to explain the growing number of
consumer oriented musical interfaces that use BLE. At the
same time, more extensive testing of other critical param-
eters such as range and general reliability are need before
one can make a confident claim for using BLE MIDI in more
serious applications.

7. ACKNOWLEDGMENTS
The primary author’s research is funded through an NSERC
Industrial Innovation Scholarship in collaboration with In-
fusion Systems

8. REFERENCES
[1] M. A. Baalman, V. De Belleval, J. Malloch,

J. Thibodeau, C. Salter, and M. M. Wanderley.
Sense/stage-low cost, open source wireless sensor
infrastructure for live performance and interactive,
real-time environments. In Proceedings of the
International Computing Music Conference, 2010.

[2] Bluetooth SIG. Bluetooth core specification version
4.0. Specification of the Bluetooth System, 2010.

[3] P. R. Cook. Re-Designing Principles for Computer
Music Controllers: a Case Study of SqueezeVox
Maggie. In Proceedings of the 2009 Conference on
New interfaces for musical expression, pages 218–221,
2009.

[4] E. Fléty. The Wise Box: a multi-performer wireless
sensor interface using WiFi and OSC. In Proceedings
of the 2005 Conference on New interfaces for musical
expression, pages 266–267, 2005.

[5] I. Hattwick, I. Franco, and M. M. Wanderley. The
Vibropixels: a scalable wireless tactile display system.
In International Conference on Human Interface and

8https://github.com/idmil/bletests

the Management of Information, pages 517–528.
Springer, 2017.

[6] K. Karami. Maximizing BLE Throughput on iOS and
Android, Apr 2016.
https://punchthrough.com/blog/posts/

maximizing-ble-throughput-on-ios-and-android

(Accessed 5 Aug 2018).

[7] P. D. Lehrman and T. Tully. MIDI for the
Professional: The Essential References for the Serious
MIDI User. Amsco, 1993.

[8] G. Loy. Musicians make a standard: the MIDI
phenomenon. Computer Music Journal, 9(4):8–26,
1985.

[9] S. Madgwick and T. J. Mitchell. x-OSC: A versatile
wireless I/O device for creative/music applications. In
Proceedings of the 2013 Sound and Music Computing
Conference, 2013.

[10] J. Malloch and M. M. Wanderley. The T-Stick : From
Musical Interface to Musical Instrument. In
Proceedings of the 2007 Conference on New Interfaces
for Musical Expression, pages 66–69, 2007.

[11] A. P. McPherson, R. H. Jack, G. Moro, et al.
Action-sound latency: Are our tools fast enough? In
Proceedings of the 2016 Conference on New interfaces
for musical expression. Griffith University, 2016.

[12] E. R. Miranda and M. M. Wanderley. New digital
musical instruments: control and interaction beyond
the keyboard, volume 21. AR Editions, Inc., 2006.

[13] A. Mulder. The I-Cube system: moving towards
sensor technology for artists. In Proceedings of the
Sixth Symposium on Electronic Arts (ISEA 95), 1995.

[14] G. P. Scavone and P. R. Cook. Rtmidi, rtaudio, and a
synthesis toolkit (stk) update. In Proceedings of the
2005 International Computer Music Conference, 2005.

[15] D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Computer
music journal, 26(3):11–22, 2002.

[16] J. L. Wright and E. Brandt. System-Level MIDI
Performance Testing. In Proceedings of the 2001
International Computing Music Conference, 2001.

[17] M. Wright. Open sound control: an enabling
technology for musical networking. Organised Sound,
10(3):193–200, 2005.

APPENDIX
A. EXAMPLES OF COMMERCIALLY AVAIL-

ABLE BLE MIDI DEVICES

Manufacturer Model Device Type
ACPAD ACPAD Guitar Controller

CME X-Key Air Keyboard Controller
CME WIDI Bud USB-BLE MIDI Adapter
Isla KordBot Chord Controller

Livid Minim Control Interface
Korg micro/nanoKey Keyboard Controller

Quicco mi.1 MIDI to BLE MIDI
Roland Aerophone AE-05 Wind Controller
ROLI Blocks Control interfaces
ROLI Seaboard Keyboard Controller
Sensel Morph Reconfigurable Interface

Yamaha MD-BT01 MIDI to BLE MIDI
Yamaha UD-BT01 USB-Host to BLE MIDI

Zivix jamstik Guitar Controller

30


