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ABSTRACT
Although several Digital Musical Instruments (DMIs) have
been presented at NIME, very few of them remain accessi-
ble to the community. Rebuilding a DMI is often a neces-
sary step to allow for performance with NIMEs. Rebuild-
ing a DMI exactly similar to its original, however, might
not be possible due to technology obsolescence, lack of doc-
umentation or other reasons. It might then be interest-
ing to re-interpret a DMI and build an instrument inspired
by the original one, creating novel performance opportu-
nities. This paper presents the challenges and approaches
involved in rebuilding and re-interpreting an existing DMI,
The Sponge by Martin Marier. The rebuilt versions make
use of newer/improved technology and customized design
aspects like addition of vibrotactile feedback and imple-
mentation of different mapping strategies. It also discusses
the implications of embedding sound synthesis within the
DMI, by using the Prynth framework and further presents a
comparison between this approach and the more traditional
ground-up approach. As a result of the evaluation and com-
parison of the two rebuilt DMIs, we present a third version
which combines the benefits and discuss performance issues
with these devices.

Author Keywords
digital musical instruments, gestural controller, embedded
sound synthesis, self-contained DMI, mapping

CCS Concepts
•Hardware→ Sensor devices and platforms; •Human-
centered computing→Gestural input; •Applied com-
puting → Performing arts;

1. INTRODUCTION
Availability and longevity are key factors that determine
the success of an instrument [16]. However, for digital mu-
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sical instruments (DMIs) [14], there are various challenges
to overcome, for example, unpredictable advancements in
technology, problems related to hardware and software com-
pliance, lack of documentation [13], etc. which could lead
to obsolescence or abandonment of the instrument. Depre-
cated or aging electronic components, communication pro-
tocols (RS-232, USB 2.0, Bluetooth, etc.), operating sys-
tems updates, upgrades, and software compatibility are all
potential causes of DMI malfunction.

Ferguson and Wanderley [4] have stated that one effective
measure for the evaluation of a DMI is its ability to repro-
duce a performance of a particular piece. For the preser-
vation of several works and re-interpretation of pieces, the
existence of the DMI in a working condition is necessary.
Though there might be multiple versions of certain DMIs,
for instance, the Hands [17] or the T-stick [10], if one wishes
to play these instruments, they would probably need to re-
build the instrument. Though rebuilding a DMI might be
a hard task, mostly for non-experienced developers, it also
provides an opportunity for customization in order to sat-
isfy one’s idiosyncratic needs.

In this paper, we discuss various aspects involved in the
development of our interpretations of The Sponge [11] by
Martin Marier, a DMI embedded with sensors to detect
squeeze, flexion and torsion along with buttons to form an
interface to generate and sculpt sounds. The key idea of
the sponge is to harness the properties of a retractable,
flexible object that gives the performer wide range of multi-
parametric controls [8] with high resolution in a maximized
gesture space, considering its high maneuverability.

2. OVERVIEW
We created two versions reflecting our interpretation of the
original instrument:

• Version 1: Similar in concept to the original instru-
ment, but implemented with different mapping strate-
gies for sound synthesis and augmented with vibrotac-
tile feedback using Libmapper [9] and the Vibropixels
[6]. Version 1 uses an open architecture, where the
user can choose from a diverse set of tools with no
constraints in terms of the choice of hardware, soft-
ware, or protocols.

• Version 2: A re-interpreted table-top version of the
sponge with embedded sound synthesis, implemented
using Prynth (v0.3) [5], a framework that allows for
easy development of DMIs with up to 80 analog sen-
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sors (such as pots, switches, FSRs, LDRs, etc.) as in-
puts and synthesizers built on SuperCollider, respon-
sible for sound synthesis and mapping.

One of the main differences between Martin’s Sponge and
the two versions introduced in this paper is the spatial mul-
tiplexing of different synthesizers and virtual instruments,
where the controls of each set of sounds exist in different
regions of space, i.e. the orientation of the sponge deter-
mines the mapping between the sensors and musical pa-
rameters. This feature can possibly be used to achieve some
level of transparency as compared to using buttons for mode
switches in multi-modal instruments [3], which make mode
selection arbitrary and hidden from audiences.

In the following sections we discuss the rebuilding process
and modifications made to the design aspects of the two ver-
sions. Section 3 describes the design and implementation of
version 1 along with addition of vibrotactile feedback to the
DMI. Section 4 presents the implementation of version 2 on
the Prynth framework. Finally, section 5 presents compar-
isons and evaluation of the two approaches and introduces
a third version that combines the advantages of both.

3. VERSION 1 : REBUILDING PROCESS
In this section, we present the key design aspects and mod-
ifications implemented while building the first version.

3.1 Hardware design
The Sponge’s supporting structure is made of flexible foam,
so the first step was to choose the optimal material. The
important considerations kept in mind were to make sure
that the material chosen had a reasonable amount of re-
tractability so that gestures like twisting and flexion could
be carried out easily. The dimensions (24cm x 16cm x 4cm)
were chosen such that the embedded force-sensing resistors
(Figure 1) had enough foam material above the sensing
area (depth) and the orientation sensors on either side of
the foam were placed reasonably far (along the breadth).
Several cuts had to be made in the various layers to allow
strategic placement of the various sensors.

The advent of superior sensing technologies today pro-
vided us the opportunity to make use of IMUs (Inertial
measurement units - comprised of accelerometer, gyroscope
and a magnetometer) instead of simple accelerometers that
were used in the original design. However, the main moti-
vation behind this upgrade was linked to our artistic goal of
being able to produce multi-timbral polyphonic sounds out
of the various gestures using dynamic mapping strategies.
In this way, the performer could make quick tilts and sways
to re-connect control signals to different synthesizers and
mappings. Two IMUs were placed at opposite ends of the
block of foam at the sites of the performer’s hands in order
to detect flexion and torsion from the roll and pitch angles
of the IMUs.

On the other end of the foam, a pair of FSRs separated
by a distance of 7cm, connected end-to-end by a rigid strip,
perform functions similar to that of a slide bar. Position of
press on this strip was measured by the relative pressures
detected by the FSRs (Figure 2).

Another design improvement involved doubling the num-
ber of tactile switches and placing them on the bottom face
of the sponge in the form of 4 x 2 matrix right under an
FSR placed in the middle layer. The main aim here was
to mimic the feel of playing on a touch-responsive instru-
ment; here the buttons would trigger notes and the amount
of force applied on the FSR would be mapped to velocity
control. Some switch buttons are also configured to trigger

Figure 1: Single FSR placed within the first layer

Figure 2: Two small FSRs placed at a distance
above which a slide bar is placed

sequences, control a looper and change presets and map-
pings. (Figure 3)

A Teensy 3.2 microcontroller performs signal acquisition
by collecting data from all the sensors connected to the
GPIO pins and I2C buses. All the sensor data is trans-
mitted via an HC-05 Bluetooth transceiver and received on
the laptop’s native Bluetooth port. All intermediate cal-
culations and signal conditioning, such as implementation
of filters, sensor fusion computations of roll, pitch and yaw
from the IMU data and position of press on the slide bar
are carried out on the Teensy before transmission, hence
reducing the amount of data to be transmitted. A vibro-
tactile feedback actuator is placed in the front face of the
foam(explained in Section 2.3). Care had to be taken for
the number and positions of vibrotactile actuators attached
to the body of the foam, since the vibrations would cause
undesirable fluctuations on the IMU data. Block diagram
of the arrangement is shown in (Figure 4).

3.2 Mapping and Sound Synthesis
As mentioned in earlier sections, our main artistic goal is
to perform polyphonic electro-acoustic music. Considering
the maneuverability of this DMI, it was really useful to have
quick mode/patch changes with gestures such as rotating
the sponge along the planar axis. The magnetometer keeps
track of number of rotations made; one full circle of rotation
to the right switches the patch number up by one and left
to switch down. This way the performer would be able to
have different sound synthesis mappings with the ability to
change them quickly to generate polyphonic sounds. Con-
sidering the different kinds of sensors that could measure
force applied, elevation, tilt amount and switches triggered,
the performer had several degrees of freedom while allowing
both separable(mode switches) as well as integral(control
tremolo depth while changing LFO parameters) control. An
example from one of our performances include: triggering a
huge percussion hit (jab: z-axis acceleration) with a long re-
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Figure 3: Placement of IMU (above) and switch
matrix (below)

Figure 4: Block diagram: Version 1

verb (adjusting the dry-wet mix amount using the FSR) and
quickly rotating the instrument once to play a melody while
triggering a stereo-delayed drone sound using the switch
matrix. This kind of spatial multiplexing of various synthe-
sizers and sound samples allow dynamic [15] mappings that
could change over time.

A Max/MSP patch running on the host computer receives
all sensor data serially via Bluetooth. The Max patch ma-
nipulates the sensor data to normalize the magnetometer
values and also performs signal conditioning and scaling of
sensor data so that the output values are compatible in the
8-bit MIDI CC (0-127) range. This Max patch communi-
cates to the VibroPixels Max patch via Libmapper to send
control signals for vibration feedback and sound synthesis.

Libmapper [9] is a cross-platform software library for declar-
ing data signals on a shared network and enabling arbitrary
connections to be made between them. Libmapper creates
a distributed mapping system/network, and potential for
tight collaboration, easy parallelization and interactive con-
trol of media synthesis. Here Libmapper is used to switch
between various mapping strategies easily. The mappings

have 2 parallels: one from the driver Max patch to the
Sound Synthesis patch and other to the respective vibra-
tion feedback patch depending on the feedback mechanism
chosen.

3.3 Vibrotactile feedback
It is generally accepted as a fact that performers of tradi-
tional musical instruments receive important feedback from
their instruments through the sense of touch [2]. In the
context of DMIs, we implemented three different feedback
mappings using the VibroPixel [6] (Figure 5) which en-
hances the ’feel’ of the instrument. The Vibropixel also
includes RGB lighting, which can be used as an additional
visual feedback mechanism to improve the awareness of var-
ious modes of the DMI and it also adds to the aesthetics
of the DMI. Three different kind of feedback mapping were
implemented:

• Sign-based mapping provides discrete cues to help the
performer navigate the DMI in multi-dimensional space.
This becomes very useful when the DMI has to be
brought to absolute positions and orientations.

• Signal based mapping creates a haptic illusion to get
a better ’feel’ of the instrument [12] by producing vi-
brations using perceptual sound features in the audio
output produced by the DMI.

• Cue-based mapping uses tactons [1] for improvisational
suggestion [7] during sponge-duet performances.

Figure 5: The Vibropixels

3.4 Challenges faced in version 1
Apart from having to retain the flexibility and maneuver-
ability of the sponge (placement of non-flexible sensors and
circuitry), the technical challenges we faced in our approach
to developing version 1 are:

• Developing the firmware (which included setting up
serial communication, sensor data acquisition, sensor
fusion and filtering algorithms, etc.) required reason-
ably high level of expertise in hardware design aspects
and associated programming skills.

• In an open-architecture set up like in version 1, there
were no well-defined set of software that could com-
municate with each other. There were several issues
relating to non-compatibility due to version updates
and lack of robust protocols to setup communication
between Max/MSP, Libmapper and the sound synthe-
sis patch.

• There were quite a few instances during performances
when technical issues popped up and they were diffi-
cult to trace, considering there were several separate
components in the system.

• This DMI lacked quick start-up and immediate playa-
bility. Bluetooth pairing, loading of patches and set-
ting up four different applications ended up being time-
consuming as well as processor-heavy on the com-
puter.
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Figure 6: Final prototype design of FlexSynth in
action

4. VERSION 2
The roots of the challenges mentioned in the previous sec-
tion can be traced majorly to the fact that there were many
sub-systems, forcing the developer to build links between
them. Some amount of abstraction in development of a
DMI can help alleviate this problem and assist in faster de-
velopment of prototypes. Our hunt for a good foundation to
develop a DMI led us to Prynth. The Prynth framework [5]
provides a platform for easy prototyping and development
of musical instruments by employing simple plug-and-play
methodology for interfacing commonly available analog sen-
sors with a sound synthesis engine in a portable form. The
documentation provided gives sufficient guidance on how
to go about building instruments from scratch using the
framework.

The Prynth framework helped in overcoming a lot of has-
sle faced in building version 1. Firstly, since the system is
optimized for capturing gestures and synthesizing sounds,
the setup time is far less compared to version 1. Secondly,
the main goal of Prynth is to integrate the sound synthesis
engine of a DMI within the interface to form a self-contained
instrument, much like hardware synthesizers whose qualities
stimulate attention towards the cognitive activity of per-
formance. An added advantage of using Prynth is that it
makes use of SuperCollider on a mobile platform for sound
synthesis.

4.1 Hardware Design
The Prynth module consists of a Raspberry Pi 3b, which
carries out several signal processing tasks such as sound
synthesis and mapping of sensor data to sound synthesis pa-
rameters, with a Teensy 3.2 microcontroller for the sensor
data acquisition. Since the Prynth base hardware is larger
than the Teensy 3.2 used in version 1, it cannot be used in
a highly maneuverable context such as the original sponge.
This encouraged us to reinterpret the instrument by utiliz-
ing the core principle of the sponge, which is to use gestures
such as flexion, torsion and squeeze to control sound syn-
thesis, in a table-top instrument with a larger form-factor
(foam of dimensions 30cm x 15cm x 10cm).

This version comprises of the same sensors as used in
version 1. Though the increased size of the DMI restricts
its maneuverability, an additional FSR was included in the
available real-estate (middle of the sponge), thereby increas-
ing its gesture space. Several sensor placement strategies
were considered, one such design is shown in (Figure 8).
The sensor placement strategy employed in this version of
The Sponge was such that the instrument would be used

Figure 7: Block diagram : Version 2

like a surface controller, which would be placed on top of a
table while performing. (Figure 7) shows the block diagram
of version 2 and (Figure 10) shows the playing position of
the instrument.

The Arduino code provided with Prynth (v0.3) offers a
basic structure for analog sensor acquisition along with sim-
ple low-pass filtering of the sensor data 1. The user would
only have to enter the number of multiplexers being used
and number of sensors connected to each multiplexer in
specified places in the program and the sensor data can be
accessed within SuperCollider. Since the IMUs used in this
project communicate through I2C protocol, the code pro-
vided could not be directly used. The program was mod-
ified to include initialization of and data acquisition from
the two IMUs. Moreover, in order to reduce the amount of
data flow from the microcontroller to the Raspberry Pi, the
roll, pitch and yaw information was computed within the
microcontroller itself.

Figure 8: Alternate designs considered

4.2 Sound Synthesis and Mapping
The sound synthesis part of the instrument was programmed
on SuperCollider through the web interface of Prynth. For

1Current version of Prynth, v0.5, was not available at the
time of development

40



demonstration of spatial multiplexing, three different syn-
thesis types were chosen; FM synthesizer, Granular synthe-
sizer and Sampler.

The difference between the implementation of spatial mul-
tiplexing of synthesizers in versions 1 and 2 is that in version
1, synthesizer control changes occur on complete rotation of
the instrument, whereas, in version 2, because of less mobil-
ity (confined to the surface of a table), the rotation of the
instrument to switch between synthesizers was restricted to
180 degrees. (Figure 9) shows the state transition diagram
for mode changes.

Figure 9: State transition diagram for mode
switches

Figure 10: Playing position : Version 2

5. DESIGN APPROACH COMPARISON AND
THE SPONGE V3

In this section we present an informal comparison of the
two versions of The Sponge, version 1 built from ground up
and versions 2 built using the Prynth framework, on two
aspects; difficulty in development and ease of use. From a
development standpoint,

• Version 1 has less power requirements (350mAh Li-ion
battery to power the Teensy and Bluetooth module
for more than 12 hours), hence is a wireless controller
without the sound synthesis part of the DMI. On the
other hand, the Prynth framework consists of the full
DMI and uses a Raspberry Pi which requires more
power, hence it would require a wired powering setup.

• The Prynth framework takes care of most of the hard-
ware aspects, hence designing version 2 did not require
significant experience in electronic hardware design.
Whereas, version 1 needed a fair amount of expertise
in embedded system design as it involved interfacing
sensors and implementing filtering algorithms.

• Form factor of the Prynth module is not suitable to
comply with the original design of The Sponge, while
version 1 has potential for miniaturization to match
the original design. Version 1 is more maneuverable,
thus allowing more gestures that use spatial multiplex-
ing.

From an usability standpoint,

• Version 2 is a self-contained DMI and it requires little
to no set up time to get it running. One would only
have to plug in the power supply and wait for the sys-
tem to boot to performance state. On the other hand,
the setup for version 1 involves setting up bluetooth
communication, loading mappings on libmapper, set-
ting up DAW with virtual instruments and routing
MIDI and audio buses, which is time consuming.

• Version 2 favours the use of SuperCollider for sound
synthesis and mapping schemes, whereas on version
1, one can simply modify the MIDI signal routing and
mapping schemes to generate sound using any synthe-
sis and mapping tools like Max/MSP, SuperCollider
and even VSTi plugins running within a DAW.

• In version 1, feedback is required as mode switches
happen due to the absolute orientation of the device.
Whereas, since version 2 is confined to a surface, feed-
back is not as critical.

In this context, a third version was built which combined
the desirable features of versions 1 and 2 which are:

• The mobility and manoeuvrability of version 1.

• The ease of development and cohesive nature of sub-
systems of version 2.

Version 3 was built using a modified version of Prynth,
where the sensor data acquisition part (Teensy microcon-
troller) was physically decoupled from the sound synthesis
unit (Raspberry Pi). The sensors were connected to the
Teensy directly using a perfboard instead of using the PCB
that comes as part of the Prynth package in order to satisfy
the size constraints for maneuverability. Figure 11 shows
the sensor data acquisition unit of version 3.

Figure 11: The Sponge: version 3.

This unit is directly connected to the Raspberry Pi via
USB, although this could be accomplished using an HC-05
connected to the teensy transmitting sensor data to the on-
board Bluetooth receiver of the Raspberry Pi, which would

41



result in increased mobility and the similar playability as
that of version 1, but introduce latency due to the wireless
transmission.

This version consists of 1 IMU, 1 FSR and 3 push buttons
on either edges of the instrument as shown in figure 11.
This was done deliberately to explore how the number of
sensors would affect the ease of learning and playing the
instrument. We will not be commenting on these aspects as
they are out of the scope of this paper. The sound synthesis
is however similar to that of version 2.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the various aspects that
are involved in the process of rebuilding and reinterpreting
a pre-existing DMI, The Sponge, along with design changes
and modifications to re-purpose the instrument to the needs
of the performer. These modifications implemented helped
us achieve spatial multiplexing of synthesizers and provide
vibrotactile feedback to the user in case of version 1.

We successfully rebuilt the instrument using two approaches;
version 1 made use of an open architecture in which there
are no restrictions on the choice of sensors and their inter-
facing schemes, and version 2 made use of the Prynth frame-
work, which provides a guided pathway to build DMIs by
handling most of the hardware design aspects. We also pre-
sented a comparison of the two approaches, evaluating the
two instruments in juxtaposition, which helped in designing
a third version that incorporates the best aspects of both.
Using a framework reduces the threshold of entry by making
the process of building an instrument easier. Prynth, being
an open-source framework, provided an excellent starting
point to design an instrument and at the same time gave us
enough freedom to make modifications to suit our needs.

Through the course of development of this project, we re-
alized that rebuilding a DMI is important for two reasons.
Firstly, it helps us gain a better understanding of an existing
DMI and identify aspects that can be improved using newer
technology, apart from facilitating innovation. Secondly, the
development of an instrument takes place through multiple
iterations of rebuilding and reinterpreting it. Hence, re-
building is a necessary step for the evolution of DMIs, which
would effectively tackle issues concerning obsolescence and
longevity.

Our future work would be focused towards development of
a miniaturized version of the Prynth framework that would
be more suitable for instruments with size constraints and
greater mobility. Such a framework could also be used to
implement miniaturized plug and play synthesis modules
for previously built interfaces and instruments that comply
to specific standards of communication.
Following are links to performances which made use of

the rebuilt versions:

• https://youtu.be/U7UMkQxeKC4

• https://youtu.be/6C0c8fTA1eU
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