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ABSTRACT
The Rulers is a Digital Musical Instrument with 7 metal
beams, each of which is fixed at one end. It uses infrared
sensors, Hall sensors, and strain gauges to estimate deflec-
tion. These sensors each perform better or worse depend-
ing on the class of gesture the user is making, motivating
sensor fusion practices. Residuals between Kalman filters
and sensor output are calculated and used as input to a re-
current neural network which outputs a classification that
determines which processing parameters and sensor mea-
surements are employed. Multiple instances (30) of layer
recurrent neural networks with a single hidden layer vary-
ing in size from 1 to 10 processing units were trained, and
tested on previously unseen data. The best performing neu-
ral network has only 3 hidden units and has a sufficiently
low error rate to be good candidate for gesture classification.

This paper demonstrates that: dynamic networks out-
perform feedforward networks for this type of gesture clas-
sification, a small network can handle a problem of this level
of complexity, recurrent networks of this size are fast enough
for real-time applications of this type, and the importance
of training multiple instances of each network architecture
and selecting the best performing one from within that set.

Author Keywords
recurrent neural network, gesture, classification, digital mu-
sical instrument, sensor fusion

CCS Concepts
•Computing methodologies → Neural networks;
•Hardware → Sensor applications and deployments;
•Applied computing → Sound and music computing;

1. INTRODUCTION AND BACKGROUND
Digital Musical Instruments (DMIs) need to be sufficiently
robust to work in a variety of performance settings where
conditions (e.g., stage lighting or ambient temperature of
a venue) might be inconsistent or unknown ahead of time.
Instrument stability is also necessary for practice and learn-
ing. Consistent repeatable sensing is key, and it may be that
no one sensor type is optimal for all playing circumstances.
In these cases, sensor fusion practices offer a means to DMI
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stability and machine learning can be a useful tool as part
of this approach.

The specific DMI discussed here includes multiple sen-
sor types, and sensor performance depends on the class of
gesture being made. Sensor fusion in this case requires the
use of filters, machine learning, or other classifiers to select
sensor input according to which class the current gesture
belongs. There are many different machine learning ap-
proaches that have been used effectively in DMI design [2],
and as the sophistication of these approaches increases it be-
comes important to include deeper exploration within a cat-
egory of machine learning and not just comparisons across
basic implementations from each category. To this end, mul-
tiple artificial neural networks (ANNs) of various sizes, both
with and without recurrent connections, are trained offline
on gesture data, and testing data is used to select the best
performing one. The selected ANN would be kept static
and not require additional training, so it can be simulated
more efficiently for real-time use with the DMI.

Multilayer perceptrons (i.e., ANNs without any recurrent
connections) have been used to customise gesture mapping
in DMIs by training [3] or retraining [19] gesture recognition
systems, retraining gesture primitive identifiers [9] or by re-
training the mapping between gesture and sound synthesis
model directly [6, 13]. In all of these cases, adjustments are
made to account for differences in individual users, and the
neural network training is not unlike an extended system
initialisation process. The multilayer perceptrons are pri-
marily recognising hand poses and positions and not move-
ment or gesture directly. (See figure 1 for an example of a
multilayer perceptron.)

Recurrent neural networks are ANNs that include feed-
back connections and tapped delay lines, allowing the order
in which data is presented to have an effect. They have
been used in hand gesture recognition for Japanese[11], Ara-
bic[14], and Korean[10] sign language. They have been used
as well in recognising hand gestures for image creation[4],
recognising full-body movement [5], and recognising move-
ments based on sensors in a hand-held device [1] or sensors
embedded in gloves [20]. See figure 2 for an example of a
recurrent neural network.

The method described in this paper finds small networks
that are still able to distinguish classes of gesture and even
out perform larger networks. It emphasises the value of
trying multiple variations of network topology and demon-
strates that recurrent connections improve classification per-
formance for the types of gestures considered here. It fur-
ther demonstrates the importance of training many identi-
cally structured networks and selecting the best performing
one, which is a step that is frequently either not taken or
not explicitly mentioned when ANNs are applied to specific
problem sets. It also demonstrates that a recurrent neu-
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Figure 1: Multilayer Perceptron
A multilayer perceptron with one hidden layer containing
5 hidden units, where each processing unit has a vector of
weights, W, and a bias, b. (This graphical diagram was
generated using ’view’ in Matlab.)

Figure 2: Layer Recurrent Network
A recurrent neural network with one hidden layer containing
3 hidden units, and tapped delay lines with 1, 2, and 3
previous iterations. Each processing unit has a vector of
weights, W, and a bias, b. Hidden units have weights for
inputs from the input layer as well as weights for feedback
from tapped delay lines of the hidden layer output. (This
graphical diagram was generated using ’view’ in Matlab.)

ral network of this size can be fast enough for a real-time
application such as a DMI.

2. CONTEXT
2.1 The Rulers
The Rulers (see figure 3) is a Digital Musical Instrument
(DMI) with 7 aluminum beams, which includes infrared
sensors, Hall sensors and strain gauges [15]. The beams
(or tines) are of different lengths and are fixed at one end,
and the sensors are used to estimate deflection when the
beams are manipulated.

Medeiros et al. [17] recorded data from all 3 types of
sensor simultaneously with detailed motion capture data to
determine the accuracy of the various sensors and found
that the relative measurement error of the sensors depends
on the class of gesture the user is making. No single sensor
type performed optimally across all gestures, so sensor fu-
sion methods are used to combine the sensor data in order
to produce an output that is more accurate overall than any
one sensor type on its own.

2.2 Gesture Classification for Sensor Fusion
The gestures made when using The Rulers can be classi-
fied as either plucking or bending, where the former in-
volves the user releasing the beam and allowing it to oscil-
late freely, and the latter involves the user pressing down
or pulling up on a beam while maintaining contact with it.
The relative measurement error of the sensors is different
for these two types of gesture, with Hall sensors performing
best for plucking motions and strain gauges performing best
for bending motions [17].

Real-time performance requirements reduce the set of vi-
able filter options and the human-driven input data was
found to be sufficiently unpredictable that it does not follow
a consistent physical model, so a modified multiple model
Kalman filter was implemented [17]. A Kalman filter esti-

Figure 3: The Rulers.
The Rulers. A DMI with 7 metal beams that uses infrared
sensors, Hall sensors, and strain gauges. Pictured: Dr. Xe-
nia Pestova Photo by: Vanessa Yaremchuk

mates a variable recursively using the previous time step’s
calculation and the current input measurements. The resid-
uals between the Kalman filters and the sensor output are
calculated, and it is this that is used as input to be classified
as either pluck or bend. This classification then determines
which processing parameters and sensor measurements are
employed towards sound synthesis. This paper explores ar-
tificial neural networks (ANNs) for performing this clas-
sification task. Several works deal with the simultaneous
application of neural networks and prediction filters, and
primarily use training algorithms to tune the parameters
of the Kalman filter such as the process and measurement
noise distributions and the dynamic model itself [8].

3. RECURRENT NEURAL NETWORKS FOR
CLASSIFICATION

3.1 Training data
Training data was generated by calculating and recording
the differences between the Kalman filters estimates and
the best sensor output for each gesture, while performing
gestures of each of the two classes, pluck and bend. This
was used to produce sequences of input and desired output
pairs, where the inputs are the residuals from the Kalman
filters and there are two outputs corresponding to pluck or
bend respectively. That is, the input is the data from the
sensors after being preprocessed by calculating the residual
from a modified multiple model Kalman filter. This results
in just two input units, as seen in figures 1 and 2, which
contributes to keeping the networks small.

The target output is (1, -1) for pluck or (-1, 1) for bend.
As there are just two classes, this could have been imple-
mented with a single output, but using one output for each
class reduces required training times. The actual network
outputs are real values, so after training, the resulting clas-
sification for any input is indicated by the output with the
largest value.

Inputs are also normalised to fall in the range -1 to 1, but
this step is implemented as part of the ANN. This keeps
preprocessing consistent across all incoming data, and also
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allows it to be encoded as part of the trained ANN that
will eventually be simulated with stand-alone code. This
negates the need for an additional step in the system and
further restricts the potential overall impact of the ANN on
latency.

The training data was made from 868 input and output
pairs corresponding to pluck data and 982 input and output
pairs corresponding to bend data. The networks were later
tested on a separate batch of data containing 2505 and 3660
pluck and bend pairs respectively.

3.2 Artificial Neural Network Architecture
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Figure 4: Example Input
An example of the input to the two input units of the ANN.
The horizontal axis gives the sample number, and the ver-
tical axis gives the value of the corresponding input unit.
The data points before the red vertical line are the residuals
of the Kalman filters for a pluck, and the data points after
the vertical red line are the residuals for bending.

All connectionist architectures posses long-term memory
in the form of connection weights[12], but the tapped delay
lines associated with the feedback (i.e., recurrent) connec-
tions present in recurrent systems are one way of incorpo-
rating a form of short-term memory and enabling networks
to manage patterns that vary across time. The long-term
memory embodied in the connection weights remains static

after network training is complete, but the short-term mem-
ory changes in response to input during both training and
operation.

An example of the input from a pluck followed by some
bending is shown in figure 4. When viewed as sequences of
data, the input looks distinguishable, but there is definitely
overlap (primarily between -1 and 1) where both gestures
have data points.

Matlab’s Neural Network Toolbox was used to implement
feedforward neural networks and layer recurrent neural net-
works. The tapped delay lines in the recurrent networks
were made with delays from 1, 2, and 3 previous iterations.
Recurrent connections or some other means of accounting
for sequence order was expected to be required for gesture
classification, especially since the intersection of input val-
ues of each class, when viewed as isolated points, is non-zero
for plucking and bending. Nevertheless, feedforward neural
networks (which do not have an encoding of sequence or
ordering by default) were trained as well to test this as-
sumption.

All ANNs had 2 input units, 2 output units, and a single
hidden layer varying in size from 1 to 10 processing units,
and were trained using Bayesian regularization to improve
generalisation. Regularization reduces overfitting by adjust-
ing the performance function to result in smaller weights
and biases in the trained network, and Bayesian regular-
ization in particular does this by treating the weights and
biases as random variables with unknown variances to be
estimated [7]. Generalisation is also improved by keeping
networks as small as possible, while still maintaining good
performance, and this is why a range of sizes were trained
and tested.

As is standard, networks are initialised with randomised
weights and biases before training, and convergence during
training can be effected by this starting state. For this rea-
son, multiple instances (30) of each neural network size were
trained to allow for this effect and to improve the chances
of producing trained networks that perform well.

Between the variety of sizes and the two architectures
(i.e., feedforward and recurrent), there are 20 different net-
works, and training 30 instances of each results in 600 net-
works in total. In order to accommodate training so many
networks, the training algorithm was modified to run across
multiple CPU cores by using Matlab’s Parallel Computing
Toolbox, and executed on a supercomputer. This level of
computation is only relevant for the training phase, and only
then because of the large number of networks being trained.
As ANN training is so readily done in parallel, it is also an
option to use the increasingly available range of inexpensive
cloud computing resources for this task. Running a single
already trained network will take comparatively quite few
resources.

3.3 Network Evaluation and Selection
Testing data was generated in the same manner as the train-
ing data and kept separate from the training data so that all
ANNs could be tested on previously unseen data. Testing
sets for the recurrent networks were constructed to ensure
that all 4 types of transition were present. That is, the tran-
sition from bend to bend, bend to pluck, pluck to bend, and
pluck to pluck. For the feedforward networks this ordering
is irrelevant, and makes no difference in the network output.
There were 2505 input output pairs generated from pluck-
ing and 3660 pairs from bending, and this data is distinct
from the data used in training.

The best performing feedforward network had 5 hidden
units and correctly classified 92.1% of the test data and
93.0% of the training data. Figure 5 shows the output for
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this network on testing data. As the order of the input does
not have an effect, all of the pluck data comes first, followed
by the bend data, to make it easier to follow. The two out-
puts are just reflections of each other, so anything above 0 in
the output 1 graph is considered to be classified as pluck and
anything above 0 in the output 2 graph is classified as bend.
The misclassifications are scattered throughout the output,
which could make for jarring sudden changes mid-gesture
of the processing parameters and sensor measurements that
are employed towards sound synthesis.
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Figure 5: Output from the best performing feedfor-
ward ANN.
Output from the best performing feedforward ANN. The
horizontal axis gives the sample number, and the vertical
axis gives the response of the output unit. The desired
output is plotted in red.

The best performing recurrent network has 3 hidden units
and correctly classified 97.5% of the test data and 99.6%
of the training data. Figure 6 shows the output for this
network on testing data that alternates between plucks and
bends, and figure 7 shows the output for this network on
testing data that presents a series of plucks followed by a
series of bends. The errors in these figures occur briefly
and only take place when transitioning between gestures
(including sometimes gestures of the same type as occurs
between the second and third pluck in figure 7).

The best performing recurrent neural network has a suffi-
ciently low error rate, and enough consistency within a ges-
ture, to be a good candidate for gesture classification. The
feedforward networks (i.e., without recurrent connections)
were found to have too many mid-gesture classification er-
rors to perform smoothly.
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Figure 6: Output from the best performing recur-
rent ANN.
Output from the best performing recurrent ANN in re-
sponse to alternating pluck and bend data. The horizontal
axis gives the sample number, and the vertical axis gives the
response of the output unit. The desired output is plotted
in red.

By comparison, of the 30 recurrent networks with 3 hid-
den units that were trained, the worst performing one cor-
rectly classified only 57.4% of the test data and 56.9% of
the training data. The training conditions were the same as
those for the best performing network, but the (randomly
initialised) starting state for the weights and biases led to
a very different result. Figure 8 shows the significant per-
formance range over the 30 recurrent networks of each type
that were trained. This is why it is important to not just
train one network.

4. RESULTS AND DISCUSSION
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Figure 7: Output from the best performing recur-
rent ANN.
Output from the best performing recurrent ANN in re-
sponse to pluck data followed by bend data. The horizontal
axis gives the sample number, and the vertical axis gives
the response of the output unit. The desired output is plot-
ted in red. The green vertical line indicates the transition
between the second and third pluck.

Once deployed, continuing to train ANNs is often unneces-
sary, and can even be counter productive when used with
DMIs in particular, as further training can work against
DMI stability and result in something that doesn’t behave
consistently enough for practicing to be satisfying. This is
especially the case for applications where the ANN is part of
a sensor fusion approach, and not specifically tied to some
element of the interface that needs to be customisable or
tuneable.

Trained ANNs can be simulated with stand-alone exe-
cutables, libraries or code. Stand-alone code for the best
performing recurrent ANN was generated and its accuracy
was tested against the full neural network on the test data
and training data. The difference in output between the
stand-alone code and the full neural network it was sim-
ulating was compared for each input in the data set, and
never exceeded 1.66e−11, which for this application is negli-
gible. For ANNs trained using Matlab in particular, Matlab

Figure 8: Classification performance of trained re-
current networks.
Box plots showing the variation in percentage of test data
correctly classified over the 30 trained recurrent networks
of each size (from one hidden unit to 10 hidden units).
This demonstrates the importance of training and compar-
ing multiple networks with same hyperparameters.

CoderTM can also be used to generate C or C++ code that
simulates the trained network, which in some circumstances
can further reduce running time.

An advantage to using such a small network is that its
impact on latency is minimal, even when run on some-
what older hardware. For instance, the stand-alone net-
work, when run on a 2012 Mac mini with a 2.6GHz Intel
Core i7 with 16GB of memory, processes 14807 input pairs
per second. Most of the NIME applications use Arduino as
a microprocessor [16]. The standard analog to digital con-
version for Arduino boards has 10 bits resolution and their
successive approximation circuitry can operate at a maxi-
mum input clock frequency of 200kHz [18]. The maximum
time cost to operate a single ADC conversion is 38.5 clock
cycles, which corresponds to 0.1925 ms. The time cost to
convert three analog channels (strain gauge, IR, and Hall
sensors) is then 0.5775 ms. A safe reading rate would be a
measurement interval of 10 times the conversion cost (ap-
proximately 173 Hz), and the maximum reading rate for
the application in this paper is 1,732 Hz. The maximum
serial communication baud rate recommended for Arduino
boards is 115,200 bps and the default data packet is 8 data
bits, with no parity, one start bit, and one stop bit. In
order to send 10 bits per channel, 2 bytes per channel are
needed. For 3 channels, 6 bytes of information are needed,
which leads to a maximum baud rate of 1,920 bytes per
second or 1,920 Hz for the measurements. Finally, we are
limited both in the ADC side and in the serial communi-
cation side on how fast we can acquire data. A 1,500 fps
capture rate for the analog sensors would produce 1,500
pairs of residuals per second for the ANN input. The ac-
cumulated delay caused by the ANN for a second of data
would be (1500 × 1000)/14807 = 101 ms. That is, a frame
is computed every 0.67 ms, and for each frame the ANN
contributes with a delay of 0.0672 ms. Finally, we can guar-
antee that for the capture rate of 1500 fps, the delay added
by the NN is approximately 10% of the interval between
measurements.

5. CONCLUSIONS
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Increasingly, researchers have access to the computing re-
sources required to rapidly train large numbers of ANNs and
test for ones that perform well. Training multiple ANNs
makes it possible to experiment with sizes and find the
smallest effective network which improves how well the so-
lution generalises to new data. It also makes it possible to
compare networks of the same size with different randomly
initialized starting weights, and control for any effect that
may come from that.

Simulations of trained ANNs require comparatively quite
minimal resources to run, and this makes it a potentially
viable option to use in real-time applications, such as sensor
fusion. This is especially the case with ANNs as small as
the ones discussed in this paper.

6. ACKNOWLEDGMENTS
This research was enabled in part by support provided by
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