
Augmenting Parametric Synthesis with Learned Timbral
Controllers

Jeff Gregorio
Drexel University

3401 Market Street
Philadelphia, USA

jgregorio@drexel.edu

Youngmoo E. Kim
Drexel University

3401 Market Street
Philadelphia, USA
ykim@drexel.edu

ABSTRACT
Feature-based synthesis applies machine learning and sig-
nal processing methods to the development of alternative
interfaces for controlling parametric synthesis algorithms.
One approach, geared toward real-time control, uses low di-
mensional gestural controllers and learned mappings from
control spaces to parameter spaces, making use of an in-
termediate latent timbre distribution, such that the control
space affords a spatially-intuitive arrangement of sonic pos-
sibilities. Whereas many existing systems present alterna-
tives to the traditional parametric interfaces, the proposed
system explores ways in which feature-based synthesis can
augment one-to-one parameter control, made possible by
fully invertible mappings between control and parameter
spaces.

Author Keywords
Feature-based synthesis

CCS Concepts
•Information systems → Music retrieval; •Applied
computing→ Sound and music computing; •Computing
methodologies → Neural networks;

1. BACKGROUND
Being unconstrained by mechanics of physical vibration,
many parametric synthesizers are able to offer musicians
and sound designers much wider spaces of sonic possibility
than acoustic and electroacoustic instruments. This flexi-
bility comes at the cost of a relatively high barrier to entry,
as operating the instrument with intention requires users to
learn complex and often non-intuitive relationships between
the parameters and the resulting sound. Parameters often
have technical names relating to the underlying synthesis
algorithm, and exhibit strong interdependencies and redun-
dancies such that mastery requires a working knowledge of
signal processing concepts and extensive ear training. More-
over, these requisite skills are unlikely to transfer from other
instrument families.

A number of researchers have proposed alternatives to
controlling parametric synthesizers in the traditional way,
namely by developing mappings from low-dimensional con-
trollers to parameters in such a way that places perceptu-

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

ally similar sounds in close proximity in the control space.
These techniques often borrow from modern timbre analysis
and machine learning methods used in Music Information
Retrieval (MIR), though the potential for musical control
based on timbral arrangement was perhaps first identified
by David Wessel [16] in 1979. When named, this approach
has been called feature-based synthesis [2] and perceptual
sound synthesis [3]. We can interpret “control spaces” as in-
cluding those based on audio input, as used in sound exam-
ple matching systems [6][5][9], text-based semantic spaces
[10], and gestural controllers [14][3]. The proposed work
pertains primarily to the latter class interfaces.

These control spaces have been proposed to simplify com-
plex, process-based interaction, which undoubtedly benefits
novices. However, care should be taken in such cases as to
avoid trading flexibility and nuance for a lowered barrier to
entry, in that such an interface is likely to lead to a quick ex-
haustion of possibility and lack of adoption by more experi-
enced users [11]. Such bias of experienced musicans in favor
of complexity and nuanced control over simplified mappings
was observed by Jack et. al. [8] using a guitar-derivative
digital musical instrument (DMI).

Despite the potential for over-simplification, user studies
conducted by Tubb and Dixon[13][15] using a gestural map-
ping system (though non-timbral) have suggested a specific
utility for expert users, namely in facilitating sound space
exploration, which was characterized as an early, divergent
stage of creation which is followed by a later, fine-tuning
stage where the original parameter interface may be more
appropriate. We believe this suggests that feature-based
synthesis also has the potential to mitigate trade-offs, ac-
commodating novices and experts alike.

It is worth noting that our current approach, as a starting
point, is intended primarily to be of interest to researchers
exploring the integration of gestural controllers with spe-
cific synthesizers and modules via timbre-based mappings,
provided to end users as pre-trained models in a ‘black box’
system. In this respect, its motivation differs from the work
of Stefano Fasciani [3], which considers use by creative prac-
titioners as well as researchers, and more general approaches
to the use of machine learning in tools for music creation,
most notably the work of Rebecca Fiebrink [4], which has
produced flexible and accessible toolkits for a much wider
class of users.

2. MOTIVATION
In the proposed system, we detail an invertible control space
to parameter space mapping system which allows the two
spaces to be used in tandem, which retains the original
flexibility of one-to-one mappings while adding capabilities
for quick, gesture-based exploration and expressive modu-
lation. The stated goal of augmenting, rather than sup-
planting traditional control is also intended to ground the

431



Figure 1: Overview of the system during training and runtime. Encoded training examples are used to
predict known parameter values. The network minimizes the loss function given in equation 1 to obtain a
normally-distributed latent encoding. Post-training, principal component analysis re-orients the latent space
and parameters are exported for the bidirectional run-time model.

new interface in a familiar mode of interaction, and to task
prospective users with building on existing skills rather than
developing completely new ones. This serves as the guiding
principle for many design choices in the proposed system.

The importance of this principle is apparent consider-
ing the mathematical intuition necessary to recognize and
develop an accurate user mental model of a system built
on low-dimensional projection of high-dimensional spaces.
Such a mode of control is likely to be poorly understood by
general users based on aural feedback alone. One strategy
for conveying this underlying operation is the use of inferred
parameter values for updating parameter sliders, which is
trivial to implement in many software instruments. Do-
ing so should make it visually apparent to a user exploring
the control space that its dimensions do not neatly map
to parameters in a one-to-one manner, as is the typically
encountered use of multi-dimensional gestural controllers.

Just as important to establishing the equivalence of con-
troller and parameter space, however may be the invertbility
of control to parameter mapping, as such a mapping affords
rapid switching between the two spaces and maintenance of
a visual representation of the current control space location
as parameter sliders are updated. In doing so, experienced
users are able to see how familiar gestures and modulations
relate to the novel controller, grounding any new under-
standing in their existing practice.

To our knowledge, the only existing system whose inter-
face makes use of a fully invertible mapping is the afore-
mentioned system proposed by Tubb and Dixon. However,
this system uses a mapping of control space to parameters
based on space-filling Hilbert curves, which uses no inter-
mediate timbral representation. Its low-dimensional control
space therefore, while more quickly navigable than a high-
dimensional parameter space, is not likely to have a more
perceptually-intuitive arrangement, and would not elimi-
nate timbrally-redundant parameter settings, such as the

myriad combinations of modulation parameters when have
little to no effect when the modulation amount is close zero.
The proposed system addresses these limitations using a
straightforward, yet overlooked approach based on timbre
spaces learned by neural networks.

3. PROPOSED SYSTEM
This work proposes a deep latent Gaussian architecture for
obtaining invertible and computationally efficient mappings
through a learned timbre space representation. At training
time, an encoder projects a feature representation of sound
examples into a parameterized latent space, which feeds a
fully invertible regressor comprised of one or more dense
layers, terminating in a continuous output layer whose ac-
tivations are optimized to infer parameter values.

Following training, we export the model parameters indi-
cated in Figure 3, which are loaded by a custom Max/MSP
external which manages forward and inverse control to pa-
rameter space mapping. In this way, the encoder is allowed
to be arbitrarily complex, and datasets to be arbitrarily
large without increasing the computational complexity of
the learned mapping. In demonstrations of the proposed
system, we use a Roli Lightpad Block M 1 for control space
coordinates, which include horizontal and vertical position,
plus depth. Example patches and training/runtime source
code are available on GitHub2.

A note on notation
In this document we use P to denote an n-dimensional pa-
rameter space, C to denote an m-dimensional control space,
and Z to denote an also m-dimensional latent space learned
by the model. We use p to represent a length-n vector of

1https://roli.com/products/blocks/lightpad-m
2https://github.com/JeffGregorio/TimbreMap

432



parameter values originating from instrument’s interface,
and p̂ to represent parameter values inferred by the learned
mapping. Similarly, c and ĉ, as well as z and ẑ represent
known and inferred control and latent coordinates, respec-
tively. Finally, X, Z, P, and P̂ represent matrices of train-
ing data, encodings, and known and inferred parameters.

4. DATA COLLECTION AND TRAINING
Here, we briefly describe a system for automatically gener-
ating datasets consisting of audio features X and ground-
truth parameter values P. The synthesizers used in the
proposed work are implemented/hosted in Max/MSP. The
synthesizer’s parameter inputs are normalized to [0, 127].
Max/MSP’s js objects are used to perform a grid search
over n parameters with a given step size, or draw from a
uniform random distribution of values. These js instances
write their generated parameters to CSV files and control
sfrecord∼ objects which write the examples to WAV using
the sample rate specified in the Max/MSP audio settings.

Durations of examples are controlled by the js objects,
and can be specified as a uniform length across all examples.
Alternatively, custom synths or hosted VST/AudioUnit plu-
gins whose amplitude envelope generators provide end-of-
state signals can be used for variable example duration. For
example, after the parameter generator sets parameters and
sends sends a MIDI note on, it can be configured to wait for
an end-of-decay message to send a MIDI note off, then wait
for an end-of-release message to terminate the recording and
write the example to WAV.

We have primarily tested the proposed system using Mel-
scaled spectrogram images computed from each audio file,
typically after downsampling to 11.025kHz, using length-
2048 FFTs computed with a hop size of 128. Mel-spectrograms
are computed in Python scripts using librosa [1], and models
are trained using the Keras deep learning API 3.

4.1 Encoding and Parameterization
In our preliminary experiments, we have evaluated encoders
based on dense layers, long short term memory (LSTM) lay-
ers, and convolutional layers. Though we make no claims
regarding the ideal encoder model in general, we’ve found
that given our input representation, the LSTM-based en-
codings proved to be the best predictors for parameter ac-
curacy, particularly concerning slowly-changing parameters,
such as LFO rates, which may have cycle lengths exceed-
ing the example length. We use a single LSTM layer with
128 units (one for each Mel-spectrogram bin), followed by
a dropout layer, which feeds an L2-regularized dense layer
of 64 units.

We use a latent Gaussian model inspired by variational
autoencoders [12]. We assume the data to be generated by
some Gaussian generative process p(x|z) with independent
latent variables z ∼ N(0, I), and model an estimated pos-
terior q(z|x). We minimize a cost function consisting of a
the estimated posterior’s KL divergence from the assumed
Gaussian prior, which penalizes latent encodings which de-
viate from the Gaussian distribution, plus a mean-squared
prediction error term, which encourages encodings which
yield predictive latent dimensions.

1

m

m∑
i=1

(yi − ŷi)2 −
1

2

m∑
i=1

(1 + log(σ2
i )− µ2

i − σ2
i ) (1)

Local variational parameters µ2
i and log(σ2

i ) are approxi-
mated by dense layers, and latent space encodings are pro-
duced using reparameterization.
3https://keras.io/

4.2 DNN Regression
Though dense neural network layers are not strictly invert-
ible in all cases, and there is an active area of research on the
subject of invertible neural networks, both the nature of our
mapping problem and additional range constraints imposed
by controller and parameter values lend well to preserving
convertibility with minimal complexity. Therefore, it is ap-
propriate to take the näıve view of neural network inversion,
namely that we can learn a set of weights W and biases b,
and sample the latent space z to infer parameters as such

p̂ = σ(zW + b) (2)

and from known parameters p, infer ẑ

ẑ = (σ−1(p)− b)W−1 (3)

assuming W is invertible, as is the case when we have as
many predictors as targets, or m = n. In the case where
m > n, the inverse mapping is not guaranteed to be unique.
However, the problem posed by feature-based synthesis es-
sentially dictates that we have more targets than predic-
tors as a condition for simplifying interactions using low-
dimensional controllers. So in the typical case where m < n,
we can replace W−1 with the pseudoinverse W+ to obtain
the inverse mapping, provided activation σ is a linear or
otherwise invertible function such as sigmoid, hyperbolic
tangent, or leaky ReLU.

We use a single dense output layer with a sigmoidal acti-
vation function, followed by a lambda function which scales
the normalized outputs of this layer to [0, 127]. Parameter
inputs for the inverse mapping never exceed this range.

It’s important to note that this mapping is invertible in
the sense that we can send c through the mapping and
back, and recover ĉ = c with negligible error. However,
the same is only true of p to the extent that the model can
accurately infer parameter values from the latent encodings.
This means there are locations in P which map onto C, but
are unreachable from C alone.

4.3 Control to Latent Space Mapping
Real-time exploration in the encoder’s learned latent space
Z is accomplished by mapping a normalized control data
vector c to z. The control data can originate from any con-
troller whose available degrees of freedom matches the di-
mensionality of the latent space, provided the output range
of the controller is normalized to (0, 1).

Though navigation in the latent space amounts to sam-
pling from the joint distribution p(z,X), generative models
are not strictly necessary. Whether generative or discrimi-
native, we obtain the parameters of the mapping of C → Z
by encoding a dataset X and computing statistics of its
latent space representation.

The linear mapping, which uses the minimum coordinate
and the range, is trivial, and while functional, this mapping
assumes a uniform distribution in the latent space, which
maps the same proportion of the control space to the latent
space, regardless of the density of encoded examples in a
given volume. Its also sensitive to outliers if no efforts are
made to detect and remove these from the dataset.

Both of these problems are addressed by assuming that
the latent space is normally distributed, and mapping z to
the uniform control space c and vice versa using the normal
cumulative distribution function (CDF)

c = Φ(z, µz, σz) =
1

2

[
1 + erf

(
z− µz

σz

√
2

)]
(4)

and its inverse, the quantile function

433



Figure 2: Left: forward runtime mapping c → p̂.
Control space values are mapped onto the normally-
distributed Z∗ using the quantile function given in
equation 5, followed by an inverse PCA transfor-
mation to the original latent space Z, and finally
a dense layer with sigmoid activation function σ.
Normalized parameter outputs are scaled to [0, 127].
Right: inverse mapping p→ ĉ

.

z = Φ−1(c, µz, σz) = µz + σz

√
2erf−1(2c− 1) (5)

respectively, under the condition that ci ∈ (0, 1) ∀i, which
is guaranteed by using normalized control space values.

4.3.1 PCA Transformation
Though the learned latent space is optimized by the end-
to-end model for accurate prediction of parameters p, the
dimensions of Z are not guaranteed to align with the pri-
mary axes of variation in Z. This would lead to poor utiliza-
tion of controller area. In addition, the controller used to
demonstrate this system is not equally sensitive in all its di-
mensions. The depth dimension in any 3D touch controller
might be expected to be the most sensitive and least con-
trollable. It is therefore preferable to map this dimension
onto the axis of least variation in Z.

This is easily accomplished by performing a Principal
Component Analysis (PCA) on Z, yielding a matrix of or-
thogonal basis vectors V, arranged in decreasing order of
their corresponding eigenvalues. The last eigenvector, rep-
resenting the flattest dimension, is used in mapping the
depth dimension on the touch controller. The reoriented
space Z∗ is inserted between C and Z.

5. DISCUSSION
The proposed system can be trained on any synthesizer pa-
rameter with continuous value, which makes it quite diffi-
cult for user evaluations to disentangle the control model
from the underlying synthesis method. Although we have
not yet made such a systematic evaluation of this system, in
this section we describe some of the models we have trained

and offer some observations, however subjective, which may
be of use in narrowing the field of synthesis methods offer-
ing promising applications of timbre-based gestural control.
We also detail some caveats and assumptions that must be
made in order to generate training data tractably.

5.1 Duration
Generation of training data should ideally make consider-
ations for the durations of slowly-evolving signal compo-
nents. Training on amplitude envelope parameters, for ex-
ample, is contingent on the use of an end-of-release signal
to truncate audio examples. Models can be trained on ex-
amples with widely varying length either by zero padding
to the maximum length, or by training on batches which
have been grouped by duration and standardized to a fixed
length within batches.

Similarly, low modulation rates require some care. For
example, learning parameters of a triangular LFO with vari-
able duty cycle (varying the shape between descending ramp,
through triangular, to ascending ramp), highlights one case
of ambiguity at low modulation rates if example durations
are fixed and relatively short. If we assume that the model’s
learned representation relates to the rate of change of such
a modulator, then it becomes important for examples to
extend across both the rising and falling portions of the
modulator since, for example, a short window containing a
relatively high slope might part of a symmetric, high-rate
modulator or an asymmetric, low-rate modulator. In this
case, an LFO end-of-cycle signal can control example times
by sustaining the note until the LFO has completed an en-
tire cycle.

5.2 Pitch
Our current models have been trained on datasets generated
with notes of a single fixed pitch (middle C), under the as-
sumption that pitch is largely independent from the timbral
representation learned by the model. This somewhat unsafe
assumption has seemed to work reasonably well in practice
for controlling amplitude envelopes and LFO modulations
of pulse width and filter cutoff frequency. Though it’s pos-
sible that dependencies between pitch and timbral arrange-
ment in the control space may be mitigated by generating
multiple copies of the parameter grid, each used with a dif-
ferent note, in practice this would be highly dependent on
the input features and encoder design.

Care should be taken in cases where a learned parameter
has a strong interaction with pitch. Such is the case, for
example, when learning a continuously-variable LFO rate
used for amplitude or frequency modulations (AM/FM).
While this limitation provides no indication for or against
any subjective utility of a continuous AM/FM control space,
it nonetheless cannot be assumed to preserve a timbral ar-
rangement independent of pitch. Traditional ‘FM synthesis’
may be more appropriate for preserving timbral arrange-
ment, where modulator frequencies are constrained to be
harmonically-related to the carrier frequency. This leaves
the model able to learn other parameters of modulator sig-
nals which would primarily affect timbre, such as amplitude,
phase, and shape. This application of synthesis parameter
learning has been explored by Horner [6] among others.

Similarly, other parameter modulations may exhibit strong
dependencies on the parameter’s base value and related pa-
rameters. For example, learning parameters of a modula-
tion signal used for filter cutoff frequency modulation can
assume a single fixed cutoff frequency center and quality
factor when generating data, but deviations from those set-
tings disrupt the timbral arrangement of the controller to
varying degrees.

434



5.3 Dimensionality
Perhaps the greatest caveat to applying these methods to
high-dimensional synthesizers is that possible combinations
of parameter values increase exponentially as new parame-
ters are added, so dataset sizes and training times increase
drastically unless the grid resolution is reduced to a degree
that may lead to undesirable sparsity in the latent space.

As noted in Section 4.2, the inverse mapping guarantees
that every location in the parameter space maps onto the
control space, but the same is not strictly true of the forward
mapping from control to parameter space due to imperfect
inference of parameter values from the learned encodings.
This effect is particularly pronounced in higher-dimensional
models, perhaps due to over-regulation of the latent space
distribution and the underlying uni-modal assumption on
the Gaussian prior p(z). In these cases, we may consider
developing latent space encodings that allow for multimodal
distributions.

We have also found that models trained on sets of dis-
parate parameters found in high-dimensional synths, espe-
cially those which affect pitch or include multiple types of
modulation, tend to yield latent spaces that range quite
widely, but at some cost to subtlety. Namely, such a wide
latent space may support the divergent mode of creation de-
tailed by Tubb and Dixon [15] or afford novice users quick
location of sounds in a manner analogous to preset selec-
tion, it may be difficult to use for expressive modulation in
keyboard or sequencer-driven performance without either
further configurability of the control space, or thoughtful
consideration of which parameter sets would be conducive
to subtler timbre variation.

5.4 Configurability
The invertibility of the mapping layer makes it straightfor-
ward to explore the former path. Considering a user famil-
iar with parametric synthesis, we might anticipate a mode
of interaction consisting of finding familiar settings in P ,
which would project to a unique location in C. The user
may then wish to modulate about that point, only confined
to a much smaller sub-region of C, avoiding areas which
differ drastically. This mode of interaction is currently sup-
ported by our runtime model (a Max/MSP external) using
a ‘center’ toggle, which sets the center of the sub-region to
the current location, and a ‘scale’ slider, which re-scales the
bounds of the control space around the center (equally in
all dimensions).

Similarly, two specific settings in P can define two vertices
of a cube in a sub-region of C. Any such scaling within C is
easily implemented with an additional linear mapping layer
between C and Z∗ which re-scales the normalized outputs of
the controller to smaller volumes, using the current control
space coordinate as a reference.

5.5 Choosing Parameters
While exploring the latter path may have a technical advan-
tage of limiting timbral range and ensuring smooth latent
space distributions, it may also be advantageous in that it
leads to an encapsulation of function within specific mod-
ules, which fits well with our guiding principle of accessibil-
ity via building off existing skills. We might speculate that
an experienced synthesist is accustomed to viewing a syn-
thesizer as comprised of individual interacting modules (es-
pecially considering the recent re-popularization of modular
and semi-modular synthesizers), and might prefer gestural
control confined to a specific module as a way of integrating
it with their existing systems.

As yet, we’ve primarily explored fairly standard additive
and subtractive synthesis engines, where we’ve found the

best modules for timbral control to be those with a num-
ber of closely-related parameters which yield subtle effects
on timbre, without drastic affects on pitch. The additive
example has eight harmonics and sub-harmonics configured
in the manner of a ‘clonewheel’ organ, and has been the
most stable and useful high-dimensional example, perhaps
due to the lack of any significant interdependencies between
its parameters.

The subtractive example models in the proposed system
have been trained on modulation sources built on an a cus-
tom Attack Decay Sustain Release (ADSR) envelope with
a shape parameter allowing each curve to range from expo-
nential, through linear, to logarithmic. Another ADSR in-
stance is used also as a low frequency oscillator (LFO), with
its sustain level set to zero, and an end-of-decay signal used
to retrigger attacks. The LFO offers rate and symmetry
controls, provided by mapping these parameters to attack
and decay times, as well as a shape control. The result-
ing LFO wave shape can therefore range continuously be-
tween triangular, ascending and descending sawtooth, and
(nearly) square. We train models on this 3-parameter LFO,
as well as 4- and 5-parameter versions which include am-
plitude and bias of the LFO waveform, which correspond
to modulation amount and the base value of the parameter
being modulated.

6. CONCLUSIONS AND FUTURE WORK
We have detailed the motivation, design, caveats, and first
impressions of a system for augmenting one-to-one paramet-
ric synthesizer interfaces with timbre-based gestural control.
Our future work will continue to explore a wider range of
synthesis and effects engines, particularly considering the
use of Max/MSP affords relatively easy integration with a
wide array of VST and AudioUnit plugins.

Regarding the neural network model, it is possible that
some modifications would obviate the post-training PCA
step by generating a latent space oriented on its primary
axes of variation in an end-to-end manner. This would fur-
ther reduce the computational and memory requirements
of the runtime model, though they are currently relatively
lightweight. Further reduced complexity would be particu-
larly advantageous if we were to consider the feasibility of
signal-rate modulations through timbre space with external
modulator signals.

Considering applicability to a limited number of param-
eter sets, we’ve noted (subjectively) that high-dimensional

Figure 3: Example patch controlling 5-parameter
LFO

435



models are best trained on sets of related parameters. Tech-
niques like granular synthesis offer such an interface, in ad-
dition to an infinite space of audio sources to granulate,
which can also be synthesized with parametric models. Sim-
ilarly, parameterized excitation signals for physical models
such as waveguides may offer a promising application.

We also have yet to consider applications that are not
primarily keyboard or sequencer driven, in which it may be
advantageous to explore integrating feature-based synthesis
methods with higher level controller gestures, such as using
strikes to trigger notes of a parametric percussion model,
with the strike location determining the note’s timbre.

We intend to use the proposed system to address ques-
tions regarding preferences for one-to-one and many-to-many
mappings in parametric synthesis and how preferences are
influenced by prior experience and evaluation task. Similar
questions have been addressed by Hunt and Kirk [7] us-
ing hand-designed many-to-many mappings, yet never with
a direct comparison between one-to-one and many-to-many
mappings on the same controller. In doing a direct compari-
son between a learned 3-parameter mapping and an identity
mapping, we may be able to indicate whether preference is
driven by complexity of the mappings or the gestural nature
of the controller itself.

We also intend to use the mapping invertibility to inves-
tigate the degree to which establishing visual equivalence of
parameter and controls spaces influences the accuracy user
mental models, which would have strong implications for
the feasibility of adapting these techniques to commercially-
produced synthesizers.

7. REFERENCES
[1] Brian McFee, Colin Raffel, Dawen Liang, Daniel

P.W. Ellis, Matt McVicar, Eric Battenberg, and Oriol
Nieto. librosa: Audio and Music Signal Analysis in
Python. In Kathryn Huff and James Bergstra, editors,
Proceedings of the 14th Python in Science Conference,
pages 18 – 24, 2015.

[2] M. D. Hoffman and P. Cook. Feature-based synthesis:
A tool for evaluating, designing, and interacting with
music ir systems. In Transactions of the International
Conference on Music Information Retrieval, pages
361–362, 01 2006.

[3] S. Fasciani. Interactive computation of timbre spaces
for sound synthesis control. In Proceedings of the 2nd
International Symposium on Sound and Interactivity,
pages 69–78, 2016.

[4] R. Fiebrink and B. Caramiaux. Machine Learning
and Listening in Composition and Performance,
chapter 12. Oxford University Press, 2018.

[5] S. L. Groux and P. F. Verschure. Perceptsynth:
mapping perceptual musical features to sound
synthesis parameters. In 2008 IEEE International
Conference on Acoustics, Speech and Signal
Processing, pages 125–128, March 2008.

[6] A. Horner, J. Beauchamp, and L. Haken. Machine
tongues xvi: Genetic algorithms and their application
to fm matching synthesis. Computer Music Journal,
17(4):17–29, 1993.

[7] A. Hunt, M. M. Wanderley, and M. Paradis. The
importance of parameter mapping in electronic
instrument design. Journal of New Music Research,
32(4):429–440, 2003.

[8] R. H. Jack, J. Harrison, F. Morreale, and A. P.
McPherson. Democratising dmis: the relationship of
expertise and control intimacy. In T. M. Luke Dahl,
Douglas Bowman, editor, Proceedings of the

International Conference on New Interfaces for
Musical Expression, pages 184–189, Blacksburg,
Virginia, USA, June 2018. Virginia Tech.

[9] J. Janer. Voice-controlled plucked bass guitar through
two synthesis techniques. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 132–135, Vancouver, BC,
Canada, 2005.

[10] C. G. Johnson and A. Gounaropoulos. Timbre
interfaces using adjectives and adverbs. In Proceedings
of the International Conference on New Interfaces for
Musical Expression, pages 101–102, Paris, France,
2006.

[11] S. Jordà. Digital instruments and players: Part i –
efficiency and apprenticeship. In Proceedings of the
International Conference on New Interfaces for
Musical Expression, pages 59–63, Hamamatsu, Japan,
2004.

[12] D. P. Kingma and M. Welling. Auto-encoding
variational bayes. CoRR, abs/1312.6114, 2013.

[13] R. Tubb and S. Dixon. The divergent interface:
Supporting creative exploration of parameter spaces.
In Proceedings of the International Conference on
New Interfaces for Musical Expression, pages
227–232, London, United Kingdom, 2014. Goldsmiths,
University of London.

[14] R. Tubb and S. Dixon. A zoomable mapping of a
musical parameter space using hilbert curves.
Computer Music Journal, 38:23–33, 2014.

[15] R. H. Tubb. Creativity, Exploration and Control in
Musical Parameter Spaces. PhD thesis, Queen Mary
University of London, School of Electronic
Engineering and Computer Science, 2016.

[16] D. L. Wessel. Timbre space as a musical control
structure. Computer Music Journal, 3(2):45–52, 1979.

436


