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ABSTRACT 
This paper describes a system for automating the generation of 
mapping schemes between human interaction with extramusical 
objects and electronic dance music. These mappings are 
determined through the comparison of sensor input to a 
synthesized matrix of sequenced audio. The goal of the system 
is to facilitate live performances that feature quotidian objects in 
the place of traditional musical instruments. The practical and 
artistic applications of musical control with quotidian objects is 

discussed. The associated object-manipulating gesture 
vocabularies are mapped to musical output so that the objects 
themselves may be perceived as DMIs. This strategy is used in a 
performance to explore the liveness qualities of the system. 
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1. INTRODUCTION 

1.1 Background 
Participation in the creation and development of digital musical 
instruments (DMI) has surged in recent years due to an increase 
in computing power and the availability of real-time signal-
processing applications [12]. These new capabilities have altered 

notions of what can be considered a musical instrument, as the 
totality of digital sound generation opens up new possibilities for 
controlling music [1].  
 The anatomy of a DMI can be described as the combination of 
a controller or interface, sound generation mechanism(s), and, 
between the two: a mapping strategy. As long as a sensor array 
is capable of adequately capturing a motion, that gesture may be 
mapped to a defined musical event. Usually, the gesture-sound 
relationships which comprise a mapping strategy are arbitrarily 

assigned by the instrument designer based on their aesthetic 
values or practical needs [12]. The collection of these actions is 
referred to in the literature as a gesture vocabulary, wherein each 
gesture word is mapped to the control of one or many musical 
parameters. Many DMIs have been created which incorporate 
extramusical objects and actions as control mechanisms. A 
unique mapping may even be created for a specific performance 

or composition [4]. Mappings employ varying levels of control, 
determinacy, expressivity, and complexity [12]. 
 Usually, the gesture-sound relationships which comprise a 
mapping strategy are arbitrarily assigned by the instrument 

designer based on their aesthetic values or practical needs. In 
many cases, it is not desirable for a mapping to be “fully baked.” 
A DMIs control space may change; inconstancies in the human 
performer, faulty capture by the sensor array, or changes in 
artistic context can benefit from mapping strategies with 
adaptive capabilities. Given the tools available, it should be 
possible to automate the assignment of control space 
components to musical parameters. This would make the 
mapping process a viable task during rehearsal, for example. 

Rather than choosing arbitrary motions to form the vocabulary 
and designating map-points, this project aims to automatically 
determine a best-candidate mapping that changes dynamically 
throughout the performed activity according to the relationships 
between each gesture word in the variable control space. 

1.2 Goals 
The work described below is a prototypical system for the 

automation of mapping schemes in the context of an individual 
compositional practice. In this approach, repetitive, object-
manipulating hand motions generate the data that determines 
output. The scope of musical output was limited to a style of 
experimental electronic dance music characterized by repetitive 
sequences and sparse instrumentation, making it a good 
candidate for testing the reproducibility and accessibility of the 
resulting mappings. Such a system would allow the composer to 
experiment with different gesture vocabularies and combinations 

thereof during the creative process, rather than devoting time and 
resources to the assignment of every action-sound relationship in 
the mapping scheme. Extramusical skills might be exploited as 
performative activities, and the nuances of sonifying those 
gesture vocabularies explored. The automated mapping of a 
quotidian gesture vocabulary has the potential to benefit artistic 
and compositional practices by expanding the conceptual 
implications of instrumental performance, visual themes in 

instrumentality, and enabling inclusive musical collaborations. 
 The goal of this project was to develop a MAX/MSP 
performance environment for the automated mapping of 
repetitious sensor input to MIDI messages, to be used in the 
control of loop-based electronic music [5][8]. The input scope 
was limited to object-manipulating gestures; as a basis for 
composition and performance but also to promote predictable 
interpretations of the sensor data. By recording and mapping the 

primary cycle of interaction with an object, that object may be 
perceived as a DMI. A successful DMI is defined in the literature 
as one possessing accessible, reproducible, and expressive 
gesture-sound relationships [12]. At least some of these 
relationships should be simple enough to grasp on first use yet 
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complex enough to for the performer to develop skill and 
individuality [11]. Embodied instrumental practices increase the 
feeling of control and expression for mapping schema having 
more than a handful of linear relationships and highlight the 
unique characteristics of the performer’s movement [1][9]. 

Furthermore, a system for the control of music should have a 
certain degree of indeterminacy [3]. These criteria guided the 
design of the decision-making process for the mapping scheme 
and the modes of control used in the patch.  
 By constraining the scope of gestural input to repetitive 
interaction with physical artifacts, the movement of the 
performer is limited by the shape and size of the artifact as well 
as the time it takes to complete one cycle of interaction. This 

made the task of sonifying a gestural event more predictable, and 
the resulting music more likely to be perceived as being 
generated by that movement. Although the sensor array 
measures only the performer’s movements, not the artifact itself, 
given the project constraints the system can be understood as an 
augmented extramusical instrument controller. The gesture 
vocabulary is limited to the scope of movement in the object-
manipulating gesture that is performed within a musical phrase. 

2. METHOD 

2.1 Sensors 
To study the mapping procedure for various object-manipulating 
gestures, a sensor array was chosen which would be suitable for 
the capture of as many object-manipulating gestures as possible. 
An ideal sensor array would not impede nor be impeded by any 
fine motor movements involving objects. Early experimentation 
with the system incorporated a Leap Motion controller.1 The 

Leap Motion captured movement reliably but required multiple 
sensors in the case that an object obfuscated any portion of the 
performers hands. The Myo armband was found to be a good 
alternative. Although it is prone to data fluctuations between 
uses, it has the benefit of not cutting into the performer’s mental 
bandwidth [4]. 
 The Myo armband is an off-the-shelf device that measures both 
bioelectric and inertial data. The armband contains 8 

electromyographic (EMG) sensors as well as an inertial 
measurement unit (IMU) with 9 degrees of freedom [11]. The 
sensor array has been shown to be useful for the control of 
prosthetic devices. Although the sampling rate of 200 Hz is less 
than the medical standard, it meets the suggested rate for control 
of musical parameters [12].   

 

Figure 2. The Myo Armband 

 IMUs and electromyography are most frequently used in open-
air control systems and augmented instruments to drive 
continuous musical parameters [12]. This project utilized the 
Myo Armband and Myo for MAX external library to control 
loop-based electronic music, which commonly consists of a 
sequence of discrete events. Defining the conditions for 

 

1https://www.ultraleap.com 

generating those events was based on a comparison between the 
sensor input and a user-defined sequence. 

2.2 Automated Mapping Performance 

Environment     
Through a combination of pre-processing, feature extraction, and 
concepts from machine learning, a working prototype was 
created. The system requires that the user program a sequence of 
n instrument patterns, designate global musical variables, load 
examples of audio samples of instruments matching the chosen 

instrumentation and run an analysis on a matrix of the sequenced 
audio. A phrase-length n-dimensional stream of input from the 
sensor is then analyzed and grouped into n streams, matching the 
number of voices chosen for the piece. The grouped sensor 
inputs are again analyzed and assigned to the voice type which 
they are best suited to control based on comparison to the matrix 
of sequenced audio. Individual stream groups drive MIDI 
messages to their assigned voice/MIDI channel. 
 

 

Preparing for a composition requires that a number of settings be 
defined before operation. This is accomplished in the 

“composition form” module, which requires that the user 
program a sequence of desired output in addition to defining 
number of voices, beats per measure, rhythmic subdivision per 
beat, measures per phrase, and tempo. These values control the 
behavior of every module of the patch. The range of possible 
values is limited by available processing power.  

Figure 1. Diagram of the patch functionality. 

 

Figure 1. The composition form. 
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2.3 Synthesized Training Data, Feature 

Extraction, and Voice Assignments  
To automate the stream-to-voice determination of the mapping 
scheme, a phrase-length section of the cluster-streams is 
compared to a set of examples describing the ideal control data 
for that voice. These examples are generated by sequencing 
downsampled audio of the desired instrument according to the 

patterns in the composition form. Audio samples were collected 
from a multi-genre consumer sample pack of conventionally 
used one-shot drum machine samples. The resulting lists fill a 
Jitter matrix, one voice per plane, which is used for storage and 
visualization. 

 Before comparing a phrase of the input stream to the data 
matrix, feature representations of the individual patterns were 
created. Time-domain features were extracted from each row in 

each plane of the matrix, which contains a list of the 
downsampled sequence’s amplitude values. These include mean 
absolute value, zero-crossing rate, maximum, and first-order 
difference [6]. In addition, the number of peaks is measured by 
the [ml.peak] object from ml.lib [2], and the number of onsets 

is measured by the same process used to drive note-on messages 
in the MIDI output module.  
 Spectral features were extracted through use of the 
zsa.descriptors external Max objects. These include Mel-
Frequency Cepstral Coefficients from [zsa.mfcc~], which 

describe the spectral envelope of the audio and are often used for 
instrument classification, as well as Spectral Centroid from 
[zsa.centroid~], which provides information about the 

center of mass of a spectrum and is used as a measure of 
brightness [7]. These features were chosen for the current 
implementation because of the priority of differentiating 
between drum sounds. 
 Determining the best fit mapping for a specific cluster-stream 
is accomplished by comparison of the relationship between 
clusters to the relationship between the planes in the synthesized 

matrix. Early experiments were done using supervised 
classification models using K Decision Trees [10] and K Nearest 
Neighbors [2], but this relies on the assumption that each cluster 
will be best suited to a different voice type. It is desirable for the 
automated scheme to result in the same instrumentation as was 
intended by the composer when populating the composition 
sequence. Rather than classifying the clustered streams of sensor 
input, a hierarchical method was implemented in which feature 

sets were extracted from the “training” data and used to sort the 
voice labels in order of the mean of their values. The same 
extraction and sorting are then performed on the input streams. 

 

2 https://www.waldorfmusic.com/en/blofeld-overview 
3 adaptive threshold onset detection by Rodrigo Constanzo: 
https://cycling74.com/forums/fastest-onset-detection-native-or-
external 

The resulting lists are then paired by order and sent to a routing 
module, which forwards the cluster-stream to its assigned voice. 
 It is assumed that the updated voice assignments are accessible 
because of the conventional patterns and instrumentation shared 
by the sub-genres of electronic dance music: 4 on the floor kick 

drums, off-beat high hats, etc. This accessibility is dependent on 
the sequencing of the composition form and polyphonic 
synthesizer timbres following those conventions. 

2.5 MIDI Output 
Once the composition form has been populated and sensor input 
has been clustered into the desired number of voices, MIDI 
output begins. MIDI information is transmitted to an external 
synthesizer as CC messages, which differ between hardware 

synthesizers. Changing the CC messages which correspond to 
synthesis parameters makes the Max patch adaptable to different 
external synths, as long as they are multi-timbral. For this 
implementation and experiment, the Waldorf Blofeld2 was used, 
which is a 16-voice polyphonic synthesizer with internal effects. 
The timbres on each channel were set to match the voice types 
defined in the composition form. 
 For rhythmic voices, the input cluster-stream which was 

assigned to that voice is run through an onset detection 
algorithm3 with an adaptive threshold calculated by a moving 
average over the last 20 samples. The value of the stream at that 
onset is paired with the note-on MIDI message and controls the 
velocity of that note. The minimum time between onsets and the 
resulting note-on messages is determined by the millisecond 
value of the smallest rhythmic subdivision, which is defined by 
the user in the composition form. 

 Melodic voices are controlled by two streams: the first controls 
note-on messages in the same way as a rhythmic voice and the 
second is used as an input to key prediction. Tonal scale is 
defined in the composition form, and the key is predicted by a 
Hidden Markov Model using [ml.hmm]. Examples of melodic 

sequences in the user-defined scale are used to build emission 
and transition matrices, the model is trained, and new values 
from the cluster stream are analyzed to update the predicted key. 
This is based on a key-prediction method found in the ml.* 
external Max package [10]. Currently, melodic output functions 
for a single voice. 

3. DISCUSSION & CONCLUSION 

3.1 Live Performance  
A live performance was given midway through the development 

of this implementation. Through collaboration with an extra-
musical instrumentalist, a piece was constructed around an AI-
generated narrative.4 During the performance, a speech synthesis 
recording of the generated text was played back in sections, and 
each section of the narrative cued the instrumentalist to interact 
with one of a set of physical props. To keep in time with the 
patch’s internal clock, the instrumentalist wore Bluetooth 
headphones to which the metronome clicks were routed. Each 

time they began a new gesture a phrase-length section of sensor 
data was recorded for clustering. This process waits for the first 
beat of a new phrase to start recording, so that the cluster 
assignment is aligned with one gestural cycle.  
 It was clear from this experience that a sense of rhythm and 
musicality are crucial to the performer’s ability to repeat musical 
output, and that practicing precise repetition of movements was 
necessary to achieve the desired result. The instrumentalist 
reported feeling as if they were a member of an orchestra being 

4 https://talktotransformer.com 

Figure 3. A synthesized “training” matrix for 3 voices: kick, 

high hat, and snare. 
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conducted, and that although they did not feel completely in 
control of the output, the music did respond to their expressive 
modulations of the gestures. 
 Voice assignments and spectral features were not yet 
implemented at this time, but the experience of live performance 

proved that real-time clustering of sensor data was feasible in a 
live setting. General responses to the performance suggested an 
awareness that the performer’s interaction with props had control 
over the music, as well as positive engagement with the visual 
elements of that control.  

3.2 Reproducibility 
The automated mappings were found to be reproducible through 
repeated use of the patch in testing and performance. However, 

musical output was not found to be reproducible or varied 
enough to be recognizable as being controlled by a familiar 
gesture. This is due in part to the current implementation using 
only many-to-one mappings and rhythmic voices. This may be 
improved upon by expanding the control space to include 
additional musical parameters.  

6. CONCLUSIONS & FUTURE WORK 
This prototype sets the foundation for continued research of 
automated best-candidate mapping strategies and provides a 
framework for the exploration of object-manipulating gestures 
in musical performance. The approach generates mappings with 
little to no effort from the user. However, all the generated 
mappings are comprised of one-to-many or one-to-one 
relationships. The system is playable but lacks expressivity, 
which is partially due to the simplicity of the mappings. Short 
examples can be viewed at the following links: 

 https://www.youtube.com/watch?v=wEds97EUWb0 
 https://www.youtube.com/watch?v=PzyiV6zgFJo  

Improvement of best-candidate mapping would likely be 
achieved by the addition of phases and/or layers of input 
analysis, as well as the use of additional musical parameters. The 

author hopes to develop this approach alongside compositional 
experiments which serve to inform the work. 
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