
There and Back Again:
The Practicality of GPU Accelerated Digital Audio

Harri Renney
Com Sci Research Centre

University of West of England
Bristol, UK

harri.renney@uwe.ac.uk

Benedict R. Gaster
Com Sci Research Centre

University of West of England
Bristol, UK

benedict.gaster@uwe.ac.uk

Thomas J. Mitchell
Creative Technology Lab

University of West of England
Bristol, UK

tom.mitchell@uwe.ac.uk

ABSTRACT

General-Purpose GPU computing is becoming an increas-
ingly viable option for acceleration, including in the audio
domain. Although it can improve performance, the intrin-
sic nature of a device like the GPU involves data transfers
and execution commands which requires time to complete.
Therefore, there is an understandable caution concerning
the overhead involved with using the GPU for audio com-
putation. This paper aims to clarify the limitations by
presenting a performance benchmarking suite. The bench-
marks utilize OpenCL and CUDA across various tests to
highlight the considerations and limitations of processing
audio in the GPU environment. The benchmarking suite
has been used to gather a collection of results across vari-
ous hardware. Salient results have been reviewed in order to
highlight the benefits and limitations of the GPU for digital
audio. The results in this work show that the minimal GPU
overhead fits into the real-time audio requirements provided
the buffer size is selected carefully. The baseline overhead
is shown to be roughly 0.1ms, depending on the GPU. This
means buffer sizes 8 and above are completed within the
allocated time frame. Results from more demanding tests,
involving physical modelling synthesis, demonstrated a bal-
ance was needed between meeting the sample rate and keep-
ing within limits for latency and jitter. Buffer sizes from 1
to 16 failed to sustain the sample rate whilst buffer sizes 512
to 32768 exceeded either latency or jitter limits. Buffer sizes
in between these ranges, such as 256, satisfied the sample
rate, latency and jitter requirements chosen for this paper.

Author Keywords

NIME, DMI, GPGPU, HPC

CCS Concepts

•Computing methodologies → Graphics processors;

1. INTRODUCTION
General-purpose GPU (GPGPU) computing provides the
capacity for massively parallel processing using a widely
available hardware accelerator: the graphics processing unit
(GPU). There are many digital audio processes that are
suitable for the GPGPU environment and can result in a
substantial performance increase, relative to a CPU bound

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire, Birming-
ham City University, Birmingham, UK.

program. Examples of academic work exploring the use
of GPUs in digital audio with notable results can be seen
in [17] and [1]. However, the communication overhead im-
posed when using a hardware accelerator, like the GPU,
can outweigh the benefits. This is especially relevant for
applications with real-time requirements, such as digital
audio processing. There seems to be an understandable
caution within the digital audio developer community sur-
rounding GPGPU, and consequently GPGPU optimisation
is sparsely used. But what are the practical limitations
of audio processing on the GPU? This paper aims to in-
vestigate the performance overhead of GPGPU within the
audio domain, by measuring the communication overhead
between the CPU and GPU in both unidirectional and bidi-
rectional cases. In particular, the contributions are:

• An open-source benchmarking suite for evaluating GPU
computation within a digital audio domain;

• Results from the benchmarking suite across various
hardware systems; and

• A summary of the salient findings.

1.1 Digital Audio
Digital audio is the representation of acoustic sound in a
discretized and quantized form in order for it to be com-
putable [2]. An originally continuous audio signal must be
broken up into a finite set of samples representing the signal
(quantization), where each sample is represented with finite
precision (discretization). When signals are represented in
this form, computer systems can process existing or synthe-
sise new signals.

The most convenient, and abundant way to process dig-
ital audio is to program tools and software that runs on
the central processing unit (CPU) in a language such as
C++. The CPU has limitations as a powerful, but coarse-
grained parallel processor, as shown when compared with
other processors by Mistry et al. [9]. Highly regarded ex-
perts predict future computational growth will come from
utilizing parallel architectures and heterogeneous comput-
ing [16]. As a result, processor design is undergoing signif-
icant changes. As the state of the art hardware develops,
software must map appropriately. There is a variety of fun-
damentally different processor types that can be used in
digital audio processing. These include digital signal pro-
cessors (DSP), field-programmable gate arrays (FPGA) and
graphics processing units (GPU). In this work, we explore
the practicalities of using the GPU as a device for offloading
suitable tasks in digital audio.

1.2 General-Purpose GPU Computing
GPGPU computing is the use of the GPU, originally in-
tended for rendering graphics, for general computation [8].
For a long time, GPU architectures combined with the avail-
able software APIs, required general compute problems to

202



Requirement Recommended Limit

Sample Rate 96000 44100
Latency 10ms 20ms
Jitter ±1ms ±3ms

Table 1: Real-time audio requirements.

be mapped into the graphics domain. This non-trivial map-
ping was often not practical and was mostly only pursued
by academics. Over time, GPGPU software standards and
APIs were proposed and have been developed with great
success. Owens et al. [12] cover the development of GPGPU
from its origins where Mark Harris first coined the term
GPGPU, to the mature development environments avail-
able today that are under continuous development in both
industry and academia.

1.3 Real-time Processing
Real-time processing is the requirement for a program to
meet a set of performance requirements consistently for a
particular application. Requirements vary between applica-
tions, where variable amounts of data need to be processed
within a fixed and inflexible time frame. In the case of real-
time audio, a consistent number of audio samples needs to
be produced every second. The real-time requirement in
audio is very strict, as even a few missed samples or delays
results in instantly noticeable ‘glitches’. Latency is a term
used in various fields to describe the delay between the ini-
tiation of an event to its conclusion. Within the context of
this work, we focus on the time taken for a buffer of audio
samples to be dispatched and returned from the CPU to the
GPU. Although this avoids necessary stages in digital audio,
like the operating system and sound devices, restricting this
measurement isolates the GPU overhead specifically. If the
latency is too high in a real-time, interactive application,
it will often detriment performance. The other impacting
factor for real-time audio is known as jitter. In this work,
jitter will refer to the variation in latency between consec-
utive buffers dispatched to the GPU.

The standard requirements surrounding real-time audio
has long been debated. In this paper, the real-time require-
ments discussed in [7] and [6] are used. These are shown in
Table 1.

2. TECHNIQUES
In this section, the general techniques used in the design of
GPGPU applications are briefly covered. These are impor-
tant concepts or optimizations which help to maximize the
benefits of using the GPU.

2.1 Buffering
Buffering is an important technique used to reduce the com-
munication overhead considerably between the CPU and
GPU. It works by requesting the GPU to execute and gener-
ate a variable sized buffer of audio samples each time, rather
than a single sample. Figure 1 visualizes buffer transfers to
and from the GPU for computation.

The ideal buffer size for GPU dispatch is an extremely
important factor in the performance within real-time appli-
cations. This paper aims to explore the limits for the range
of buffer sizes that work within the constraints of real-time
audio.

2.2 Unified Memory
Discrete GPUs are independent devices typically included in
a system as an extra peripheral. Therefore, discrete GPUs

Figure 1: Buffers of N samples are dispatched to

GPU and returned to CPU.

have their own local memory and communicate with the
CPU over system buses, shown in Figure 2. System buses
take time to transfer data and introduce unavoidable la-
tency, irrespective of the data size.

Figure 2: CPU to GPU memory accesses across

system bus into respective device’s memory.

Unified memory is a single addressable memory space ac-
cessible by separate processors, shown in Figure 3. This
means the overhead of transferring over the system bus is
avoided. Integrated GPUs take advantage of this technol-
ogy and share a memory space with the CPU. This allows
fast memory transfers between CPU and integrated GPU
by default, which is an important perspective to consider
for this paper.

Figure 3: CPU and GPU memory accesses using

shared, unified memory.

2.3 Pinned Memory
Pinned memory, or page-locked memory is a special type
of memory that is located within the CPU host memory
and GPU memory at the same time. Changes in the host
memory can take effect in the GPU memory which can be
accessed by the GPU for computation. In essence, pinning
memory removes any extra step in copying data between
CPU and GPU. Although this memory is typically faster
to use, it is a limited resources. ([10] - 3.2.4) Therefore, it
is advised to use for small amounts of data that need to be
frequently transferred between CPU and GPU.

3. IMPLEMENTATIONS
This paper explores the different methods of utilizing the
GPU within application software. Performance is heavily
dependant on the software API used. OpenCL and CUDA
are two of the most widely used methods for GPGPU. All
performance tests in this paper will be implemented using
both methods for comparison.

3.1 OpenCL
The Open Computing Language (OpenCL) [4] is an open-
standard, cross-platform, heterogeneous programming frame-
work. It provides a single abstract programming model
that developers adhere to. Hardware vendors that sup-
port OpenCL translate the abstract model to match the

203



particular architecture of their devices. OpenCL currently
has support ranging from FPGA, DSP and, of interest to
this study, GPUs. OpenCL version 1.2 was used across the
benchmarking results collected here, as the lowest denomi-
nator supported by NVIDIA, AMD and Intel.

3.2 CUDA
CUDA [14] is NVIDIA’s propriety, parallel computing plat-
form for supporting their own GPUs for general compute.
CUDA is widely used, including in research and academic
studies. In research applications, it can be acceptable to
constrain to specific hardware, as is the case with CUDA.
However, in industry and commercial environments, this be-
comes more problematic, as applications implemented using
CUDA would not be compatible with machines that have
AMD GPUs.

4. BENCHMARK METHODOLOGY
In this section, the benchmarking methodology and tests are
described. The system specifications are outlined briefly.
The general performance benchmarks are listed, which ex-
pose results for GPGPU tests in general. After these, the
real-time digital audio tests are defined. These tests aim
to identify the limits on the buffer size for example cases,
that are representative of typical real-time audio processing
scenarios. Harris in [5] explains how to accurately bench-
mark CUDA applications, OpenCL specific profiling is cov-
ered in [15]. The methodology followed here uses CPU
timers for measuring overall times and vendor specific pro-
filing tools for measuring isolated parts of the process. The
benchmarking suite is open source and available at https:

//github.com/Harri-Renney/ThereAndBackAgain-NIME

4.1 System Specifications
The specifications for the system on which the benchmark-
ing has been performed for this study is shown in Table
2. Various systems, with hardware from different vendors
have been chosen in order to observe the performance in
general. The systems include discrete GPUs from AMD
and NVIDIA, along with an integrated Intel GPU. Inte-
grated GPUs are closely coupled to the CPU and usually
have very fast data transfers between them, using faster
memory buses and unified memory space. Discrete GPUs
typically communicate over slower memory buses across the
motherboard and therefore have a larger initial overhead.
However, the trade off is that discrete GPUs are usually
much more powerful than integrated GPUs.

4.2 Test Format
The general format of the benchmark tests follows the pseudo
code below.

1 void test() {
2 prepareTest(hostVariables, deviceVariables);
3

4 if(isWarmup) {
5 runTest();
6 }
7 for(int i = 0; i != numRepeats; ++i) {
8 startTime = timestamp();
9 runTest();

10 endTime = timestamp();
11 }
12 checkTestResults(testResults);
13 cleanup(hostVariables, deviceVariables);
14 }

To begin each test, all preparations and initializing of
host and device variables are made. Further, kernel code
is prepared if necessary. Both CUDA and OpenCL take
considerably longer running kernels and data transfers for

the first time. This is as preparations and optimizations
are made to increase performance of subsequent execution.
For this reason, a warm-up variable has been added to the
benchmarks controlling whether a warm-up run executes
before profiling starts. The test runs begin by timestamp-
ing either side of the test. When the tests are complete, the
results are checked to ensure the processing done by the
GPU is correct. Using the GPU requires memory alloca-
tions which the programmer must manually manage. So to
finish the test, all associated memory is deallocated.

4.3 Microbenchmarks
This section lists the microbenchmarking tests covered in
this paper. The suite includes further tests that are not
described here; we intend to explore these in future work.

• null kernel - A minimal test to measure the threshold
overhead to execute an empty program on the GPU.

• cpu to gpu to cpu - A bidirectional test measuring the
round-trip transfer time between CPU and GPU.

• complex buffer processing - Applies a triangular smooth-
ing operation ([11] - P.g 34. Smoothing) to the in-
put signal and returns ’smoothed’ buffers to CPU.
Involves bidirectional transfers and multiple memory
accesses in the kernel.

• simple buffer synthesis - Generation of a sinusoidal sig-
nal at a given frequency, generating sine values that fill
the buffer length in parallel. This operation involves
only unidirectional memory transfers from the GPU
to the CPU, returning synthesised sample buffers.

• complex buffer synthesis - The complex buffer synthe-
sis is an application that has a challenging amount of
computation, bidirectional CPU-GPU transfers and
involves memory management. An application which
meets these requirements is a finite-difference time-
domain physical model synthesizer [18]. For the full
details of the design and implementation, see [13].

Each of the tests are implemented in OpenCL and CUDA.
Furthermore, each test is implemented using standard mem-
ory buffers and pinned memory. All tests have their to-
tal times and specific details measured over 10,000 repeti-
tions. From these repeated results, the average, minimum
and maximum buffer times are calculated, along with the
maximum and average jitter. The results of the warm-up
runs have been recorded and are available in the results
database.

4.4 Real-time Digital Audio Tests
The audio buffer size is an extremely important factor for
achieving real-time performance with GPU acceleration. This
section outlines the real-time tests that aim to identify the
limits for the buffer size in the unidirectional and bidirec-
tional cases.

To measure real-time performance, the following limits
(Described in Section 1.3) must be satisfied:

1. The maximum acceptable latency for each buffer will
be 20ms, though the recommended 10ms is preferred.

2. The target sample rate of 44.1KHz should be satis-
fied within the other limits, though the recommended
96KHz is preferred.

3. The deviation, or jitter, between each buffer gener-
ated should not be greater than ±3ms, though the
recommended range ±1ms is preferred.

An enumeration of buffer sizes will be applied in each test
to find an approximate range of values the buffer size can
comfortably operate in. These tests will be conducted for

204

https://github.com/Harri-Renney/ThereAndBackAgain-NIME
https://github.com/Harri-Renney/ThereAndBackAgain-NIME


Specification Mid-range Laptop High-end AMD High-end NVIDIA GeForce High-End NVIDIA Titan

CPU Intel Core i7-8550U Intel Core it-9800X Intel Core it-9800X Intel Core it-9800X
Integrated GPU Intel UHD Graphics 620 None None None
Discrete GPU AMD Radeon 530 Radeon Pro WX 7100 GeForce RTX 2080 Ti Titan RTX
CPU RAM 8GB 32GB 32GB 32GB

Table 2: Hardware specification used for benchmarking

unidirectional and bidirectional cases. The tables 3 and 4
in the results Section 5 highlights values in green if in the
recommended limit, orange if in the maximum limits and
red if outside of the limits.

4.4.1 Total Time

Here is proposed an equation for total execution time in a
GPGPU environment to formalise the overhead and limita-
tions:

ttotal(x) = ttran(x) + c(x) + g(x) (1)

Where:

• t_total(x) = The total execution time of x samples
for a GPGPU application.

• t_tran(x) = The transfer time for x samples between
CPU & GPU.

• c(x) = The function of processing executed on the
CPU.

• g(x) = The function of processing executed on the
GPU.

• x = The number of samples in the buffer/vector to be
processed.

4.4.2 Baseline Limits

The baseline limits will be the time for the minimum trans-
fer and null kernel execution for different buffer sizes. From
here, a limit involving variable computation can be derived.
Taking Equation 1 and assuming c() or g() are negligible,
the baseline overhead is defined as:

ttotal(x) = ttrans(x) (2)

4.4.3 Kernel Computation Limits

Once the baseline limit has been measured, the kernel com-
putation time can be calculated. By subtracting the base-
line ttrans(x) from the full Equation 1, the total compu-
tation time tcomp(x) remains, see Equation 3. If the CPU
compute time c(x) is not considered, just the GPU com-
pute time g(x) remains. By considering this Equation 3
and the baseline overhead Equation 2, an understanding of
GPGPU becomes more clear. The baseline overhead serves
as an initial cost to be considered. From here, the compu-
tation cost involved can be increased within the limits of
the application.

tcomp(x) = c(x) + g(x) = ttotal(x) − ttrans(x) (3)

5. RESULTS
As is to be expected, due to all the permutations of configu-
rations, a lot of results have been collected. In this section,
we analyse particular highlights of the results, in areas con-
sidered most relevant within the audio domain. A collection
of all results for those interested can be found at:
https://muses-dmi.github.io/benchmarking/benchmarking_

database_there_and_back_again.
The results considered here have been collected following

a conservative approach. This means after every API call
to the GPU, an explicit synchronization is made between
the CPU and GPU. Further, pinned memory in OpenCL is
mapped and unmapped to ensure it is defined even though
on many systems this is not necessary. This is important to

GeForce2080_cl GeForce2080_cuda

Buffer Length Total Time Average Latency Max Jitter Total Time Average Latency Max Jitter
1 6133.319 0.139 0.741 5676.300 0.128 1.032
2 3053.499 0.138 0.796 2838.170 0.128 0.725
4 1518.143 0.137 0.336 1412.804 0.128 0.669
8 751.078 0.136 0.166 708.566 0.128 0.632
16 378.847 0.137 0.156 378.930 0.137 0.743
32 190.267 0.1375 0.199 183.560 0.133 0.622
64 96.077 0.139 0.170 95.619 0.138 0.646
128 48.746 0.141 0.183 51.526 0.149 0.612
256 24.731 0.142 0.217 27.137 0.156 0.337
512 12.663 0.145 0.192 29.270 0.336 0.474
1024 6.348 0.144 0.164 16.507 0.375 0.490
2048 3.110 0.141 0.152 7.866 0.357 0.340
4096 1.606 0.146 0.166 3.816 0.346 0.496
8192 0.907 0.151 0.158 1.375 0.229 0.251
16384 0.498 0.166 0.160 0.706 0.235 0.264
32768 0.368 0.184 0.186 0.508 0.254 0.252

Table 3: Baseline bidirectional real-time test.

keep in mind and trivial modifications to the tests would im-
prove performance further. By taking this approach, more
confidence can be given to the results knowing that they
can be improved.

5.1 Minimum GPU Overhead
The minimum GPU overhead involved for the different buffer
sizes is a key factor for many applications. If the over-
head alone exceeds the requirements, then the GPU will
not be appropriate for the task. This means the minimum
overhead is a good foundational position to start. The re-
sults for executing the null kernel test were 0.002051ms

on the Radeon 530, 0.000455ms on the UHD, 0.009392ms

on Geforce 2080, 0.011468ms on Titan. These are impres-
sively small times, but only execute empty kernels, avoiding
critical stages transferring data and processing or synthe-
sis. With the bare minimum results established, the bidi-
rectional baseline test which involves round-trip memory
transfers and execution of the null kernel is shown in Table
3. The tests operates at a sample rate of 44.1KHz 1 with
measurements taken to calculate the total time to process
44100 samples and the latency and jitter per buffer. These
results show that even for a round-trip data transfer with
no processing, certain smaller buffer ranges are not prac-
tical. Buffer sizes 1, 2 and 4 all have total times above a
second for 44100 samples. Therefore, for applications that
require single or very smaller buffer sizes, discrete GPUs
will not perform sufficiently and the CPU would be the
better option. Using Equation 2, the transfer time can be
used to demonstrate the minimum GPU overhead at each
buffer size. For example, a buffer of 128 is ttotal(128) =
ttrans(128) = 0.141295ms

5.2 Standard vs Pinned
Figure 4 plots the round-trip data transfer from CPU to
GPU and back to the CPU for various buffer lengths in
OpenCL, with no kernel executed on the GPU. The solid
coloured lines indicate the standard buffer allocation and
transfer approach, while the dashed coloured lines repre-
sent the pinned buffer memory approach. For all the dis-
crete GPUs, it seems that the pinned memory approach per-
forms better in this test. The smallest difference seen for the
GeForce2080 is still ±0.04 and largest for the Radeon530 is

1Results for higher sample rates of 48KHz and 96KHz can
be found in the results database.

205

https://muses-dmi.github.io/benchmarking/benchmarking_database_there_and_back_again
https://muses-dmi.github.io/benchmarking/benchmarking_database_there_and_back_again


Figure 4: Standard vs pinned bidirectional memory

transfers.

Figure 5: Integrated vs Discrete in bidirectional

synthesis.

±0.12. These are significant differences, though it is impor-
tant to consider no processing is involved in this test and
therefore the performance implications during computation
as a result of memory choice is avoided. For the integrated
Intel GPU, using the standard or pinned approach does
not impact performance. This is because the integrated
GPU shares its unified memory space with the CPU any-
way. OpenCL and CUDA possibly default either approach
to the same unified memory approach instead.

GeForce2080 Radeon7100

Buffer Length Total Time Average Latency Max Jitter Total Time Average Latency Max Jitter
1 6802.339 0.154 0.958 4372.550 0.099 0.469
2 3790.166 0.171 0.285 2339.507 0.106 0.476
4 2186.325 0.198 0.319 1459.335 0.132 0.387
8 1416.375 0.256 0.321 966.981 0.175 0.546
16 1049.813 0.380 0.395 674.703 0.244 0.617
32 659.516 0.478 0.757 553.152 0.401 0.858
64 478.657 0.693 0.899 508.541 0.737 1.114
128 410.979 1.191 1.178 465.922 1.350 1.544
256 389.878 2.253 2.410 392.696 2.269 2.572
512 373.748 4.295 6.064 370.717 4.261 4.526
1024 377.182 8.572 12.736 338.996 7.704 7.995
2048 363.365 16.516 16.854 309.835 14.083 14.946
4096 361.906 32.900 33.704 302.421 27.492 28.727
8192 393.858 65.643 66.226 322.224 53.704 54.844
16384 414.806 138.268 141.349 320.432 106.810 107.738
32768 570.743 285.371 286.467 427.697 213.848 215.347

Table 4: Physical model synthesizer bidirectional

real-time test.

5.3 Integrated vs Discrete
One of the biggest influences on the GPU overhead involved
is the type of hardware used. Here, the performance of
integrated and discrete GPUs are examined, highlighting
where each type of device performs better.

In Figure 5, the bidirectional physical model synthesis
is plotted. All the discrete graphics cards have been dis-
played as solid coloured lines, the integrated graphics card
tested is a dashed coloured line. The total time to compute
the 44.1KHz of samples has been shown on a logarithmic
scale to emphasize the subtle differences. For small buffer

Figure 6: OpenCL vs CUDA for triangular smooth-

ing on various buffer lengths measured in ms.

lengths, the overhead experienced by most of the discrete
GPUs heavily outweighs the benefits and the integrated
GPU performs better. However, once larger buffer lengths
are used and the transfer overhead reduced considerably,
the discrete GPUs take the lead by a large measure. This
is expected as physical model synthesis is computationally
expensive, and the discrete GPUs have higher computa-
tional performance than the integrated GPU. Note that the
discrete GPUs settle beneath the 1000ms threshold around
buffer length 16. Whilst the integrated GPU is not powerful
enough at any of the buffer lengths to successfully compute
in real-time.

5.4 OpenCL vs CUDA
The benchmarking paper [3] compares OpenCL and CUDA
in general. The paper concludes that for ’trivial’ tests they
have similar results and in more complicated ’non-trivial’
tasks, CUDA appeared to perform better. This section dis-
cusses the latest results in 2020 in the audio domain.

Figure 6 plots the results for the complex buffer process-
ing test for different buffer lengths. This test applies a trian-
gular smoothing operation across the signal in the buffers.
OpenCL implementations are in solid coloured lines while
CUDA is shown in dashed coloured lines. It can be seen
that on the NVIDIA GPUs, the CUDA implementations
performed better for this kind of task. OpenCL is a defined
standard implemented by supporting vendors. Considering
NVIDIA develop CUDA themselves, it is possible that they
have put more effort into the development of CUDA in com-
parison to OpenCL. The difference is small, being around
±0.03ms, though this can make a significant difference un-
der certain circumstances.

5.5 Real-time Performance
The real time performance tests highlight the bidirectional
memory transfers for a physical model synthesizer on the
GPU. This test involves bidirectional memory transfers,
complex and heavy computation and multiple memory ac-
cesses from within the kernel. Demonstrating if the GPUs
can process a synthesizer like this within the real-time lim-
its will set a high boundary for the GPU environment to
prove itself. Table 4 shows the overall time to compute
44.1KHz of samples, the average latency of each buffer and
the maximum jitter observed in the test for the NVIDIA
GeForce 2080 and the Radeon 7100 in OpenCL. Both im-
plementations seem to have a peak performance around the
buffer lengths 2048 & 4096. However, at these sizes, the
latency exceeds the recommended 10ms. The best total
performance within the 10ms latency is 512 & 1024. Again
however, these buffers have a jitter above ±1ms. To avoid
this, a smaller buffer length of 32 or 64 could be used, which
still results in a comfortable half second total time for the

206



whole process to complete.
This test involves the minimal transfer overhead, and the

GPU processing. Referring to Equation 1, with buffer size
of 128, ttotal(128) = ttran(128) + c(128) + g(128). By con-
sidering the CPU function c() negligible and taking the pre-
viously calculated baseline, the equation values consists of
1.191245 = 0.141295 + 0 + g(128) and therefore approxi-
mately g(128) = 1.04995ms. This demonstrates that for a
modest buffer size, the minimal overhead is small in com-
parison to the complex processing that can take place on
the GPU. This leaves a lot of room for processing on the
GPU to take place, which supports the viability of the GPU
in a real-time environment.

6. CONCLUSION
This paper has presented a microbenchmarking suite aimed
at profiling GPU performance within digital audio. The
benchmarking suite has been used to gather a collection of
results across various hardware systems, using both OpenCL
and CUDA. From the results gathered, selected sections
were highlighted to explore the limitations involved when
working within the GPU environment. Buffer sizes dis-
patched to the GPU for processing is one of the key variables
impacting the performance. The general trend observed in
the results showed that smaller buffer sizes from 1 to 16
could not meet the sample rate requirement, while larger
buffer sizes as high as 32768 down to 512 exceeded limi-
tations for latency and jitter. When comparing different
GPU devices, the results showed that integrated GPUs have
a significantly smaller transfer overhead between CPU and
GPU, this is expected as they share unified memory. The
discrete GPUs had a larger initial overhead to transfer data,
but performed faster for more complex processing. This re-
inforces the idea that the integrated GPU is better suited for
lighter tasks with less overhead, while the discrete GPUs in-
clude a higher initial transfer overhead, but are significantly
more powerful. Therefore, assigning them more computa-
tionally expensive tasks is recommended. The microbench-
marks test results were also used to compare OpenCL and
CUDA on NVIDIA GPUs. On both of the GPUs tested,
CUDA appeared to consistently perform better, at least
3ms for the triangular smoothing test. It can be speculated
that OpenCL support by NIVIDIA is not as well devel-
oped as it could be, given that CUDA is their proprietary
GPGPU API. The performance benefit from using pinned
memory was highlighted, showing a clear advantage for its
use when compared with the standard approach. However,
performance on pinned memory is dependant on how it is
used and has a limited memory size.

7. ACKNOWLEDGMENTS
We would like to acknowledge the consistent support and
insight from colleagues in the Computer Science Research
Centre and Creative Technology Lab. Special thanks to
Sam Hunt, Nathan Renney and Corey Ford. This work was
supported by a grant from the HSA Foundation and the
UWE 50-50 PhD fund.

8. REFERENCES
[1] J. A. Belloch, B. Bank, L. Savioja, A. Gonzalez, and

V. Välimäki. Multi-channel iir filtering of audio
signals using a gpu. In 2014 IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6692–6696. IEEE, 2014.

[2] D. Creasey. Audio Processes: Musical Analysis,
Modification, Synthesis, and Control. Routledge, 2016.

[3] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith,
P. C. Roth, K. Spafford, V. Tipparaju, and J. S.
Vetter. The scalable heterogeneous computing (shoc)
benchmark suite. In Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics
Processing Units, pages 63–74. ACM, 2010.

[4] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and
D. Schaa. Heterogeneous computing with openCL:
revised openCL 1. Newnes, 2012.

[5] M. Harris. How to implement performance metrics in
cuda c/c++. https://devblogs.nvidia.com/

how-implement-performance-metrics-cuda-cc/l,
2019. Accessed: 2012-10-07.

[6] R. H. Jack, A. Mehrabi, T. Stockman, and
A. McPherson. Action-sound latency and the
perceived quality of digital musical instruments:
Comparing professional percussionists and amateur
musicians. Music Perception: An Interdisciplinary
Journal, 36(1):109–128, 2018.

[7] D. Lavry. Sampling theory for digital audio. Lavry
Engineering, Inc. Available online: http://www.
lavryengineering. com/documents/Sampling_Theory.
pdf (checked 24.5. 2010), 2004.

[8] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn,
M. Houston, J. Owens, M. Segal, M. Papakipos, and
I. Buck. Gpgpu: general-purpose computation on
graphics hardware. In Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 208.
ACM, 2006.

[9] P. Mistry, Y. Ukidave, D. Schaa, and D. Kaeli. Valar:
a benchmark suite to study the dynamic behavior of
heterogeneous systems. In Proceedings of the 6th
Workshop on General Purpose Processor Using
Graphics Processing Units, pages 54–65. ACM, 2013.

[10] C. Nvidia. Nvidia cuda c programming guide. Nvidia
Corporation, 120(18):8, 2011.

[11] T. O’Haver. A pragmatic introduction to signal
processing. University of Maryland at College Park,
1997.

[12] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey
of general-purpose computation on graphics
hardware. In Computer graphics forum, volume 26,
pages 80–113. Wiley Online Library, 2007.

[13] H. Renney, B. R. Gaster, and T. Mitchell. Opencl vs:
Accelerated finite-difference digital synthesis. 2019.

[14] J. Sanders and E. Kandrot. CUDA by example: an
introduction to general-purpose GPU programming,
portable documents. Addison-Wesley Professional,
2010.

[15] M. Scarpino. Opencl in action: how to accelerate
graphics and computations. 2011.

[16] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s journal,
30(3):202–210, 2005.

[17] P.-Y. Tsai, T.-M. Wang, and A. Su. Gpu-based
spectral model synthesis for real-time sound
rendering. In Proceedings of the 13th International
Conference on Digital Audio Effects, Graz, pages 1–5,
2010.

[18] V. Zappi, A. Allen, and S. Fels. Shader-based physical
modelling for the design of massive digital musical
instruments. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
page 145, 2017.

207

https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/l
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/l

	Introduction
	Digital Audio
	General-Purpose GPU Computing
	Real-time Processing

	Techniques
	Buffering
	Unified Memory
	Pinned Memory

	Implementations
	OpenCL
	CUDA

	Benchmark Methodology
	System Specifications
	Test Format
	Microbenchmarks
	Real-time Digital Audio Tests
	Total Time
	Baseline Limits
	Kernel Computation Limits


	Results
	Minimum GPU Overhead
	Standard vs Pinned
	Integrated vs Discrete
	OpenCL vs CUDA
	Real-time Performance

	Conclusion
	Acknowledgments
	References

