
Reflections on Eight Years of Instrument Creation with

Machine Learning

Rebecca Fiebrink
University of the Arts London

 London, United Kingdom
r.fiebrink@arts.ac.uk

Laetitia Sonami
Center for Contemporary Music
Mills College, Oakland CA US

lsonami@mills.edu

ABSTRACT

Machine learning (ML) has been used to create mappings for digital
musical instruments for over twenty-five years, and numerous ML
toolkits have been developed for the NIME community. However,
little published work has studied how ML has been used in sustained
instrument building and performance practices. This paper examines

the experiences of instrument builder and performer Laetitia Sonami,
who has been using ML to build and refine her Spring Spyre
instrument since 2012. Using Sonami’s current practice as a case
study, this paper explores the utility, opportunities, and challenges
involved in using ML in practice over many years. This paper also
reports the perspective of Rebecca Fiebrink, the creator of the
Wekinator ML tool used by Sonami, revealing how her work with
Sonami has led to changes to the software and to her teaching. This

paper thus contributes a deeper understanding of the value of ML for
NIME practitioners, and it can inform design considerations for future
ML toolkits as well as NIME pedagogy. Further, it provides new
perspectives on familiar NIME conversations about mapping
strategies, expressivity, and control, informed by a dedicated practice
over many years.

Author Keywords

Machine learning, music composition, instrument design

CCS Concepts

• Applied computing → Arts and humanities →Performing arts;

• Computing methodologies→Machine learning

1. INTRODUCTION
Machine learning (ML) techniques are a core NIME research topic,
with “machine learning” appearing explicitly in the conference’s call
for papers since 2006. Members of today’s NIME community have
been using ML to create digital musical instruments (DMIs) since at
least 1991 [16], and numerous ML toolkits have been created for
NIME practitioners over the past decade (e.g., [3],[11],[12],[13],
[22]). Yet little published work has examined how ML has been used

in sustained instrument building and performance practices within our
community. Such reflection is necessary to fully understand the usage
and value of ML techniques, which in turn can inform the design of
future ML tools, NIME pedagogy, and artistic practice. Further, at a
time when the creative use of ML has seen sudden and surging interest
among computer scientists (e.g., workshops on Machine Learning for
Creativity and Design at NeurIPS [17]), arts organisations (e.g., [1]),
and the popular press (e.g., [19]), we believe that NIME practitioners

who already have years of practice with ML should contribute to the

wider conversation about the utility and consequences of employing

ML in creative work.
 This paper therefore closely examines the experiences of instrument
builder and performer Laetitia Sonami, who has been using ML to
build and refine her Spring Spyre instrument since 2012. Prior to
making the Spring Spyre, Sonami created the lady’s glove [23] and
performed with it regularly from 1991 to 2014. Using Sonami’s
current practice as a case study, we explore questions such as: What
aesthetic and experiential qualities can ML facilitate during the

processes of instrument building, composition, and performance?
How do the challenges and opportunities presented by the use of ML
to build instrument mappings differ from those present when building
instruments using programming alone, without ML? How,
specifically, can ML be employed to build a sustainable instrument
with sufficient flexibility and complexity to support continued
engagement over a period of many years?
 This paper additionally provides a first-hand account from

Wekinator creator Rebecca Fiebrink, whose collaborative design work
with Sonami has informed numerous refinements to the Wekinator
software. The paper concludes with a discussion connecting our first-
hand accounts to each other and to concerns of the broader NIME
community. We reflect on topics such as the utility of ML for NIME,
the design of mapping and instrument-building tools, open challenges
for improving NIME pedagogy and practices with ML, and the value
of engaging in cross-disciplinary collaborations and sharing the
knowledge gained from them.

2. BACKGROUND
ML has been used to create new musical instruments and interfaces
since at least the early 1990s, when Lee, Freed and Wessel employed
neural networks to control sound synthesis [16]. Around that time, Fels
and Hinton [6] also performed early experiments using neural

networks to control speech synthesis using a sensor glove.
 Since then, NIME researchers have created numerous toolkits to
facilitate the use of ML in instrument building, particularly to support
parameter mapping—i.e., to define the functions that compute
synthesis control parameter values from gestural or other input values,
as described in [14]. Examples of general-purpose ML tools for music
include Wekinator [11], Gesture Recognition Toolkit [13], and ml.lib
[3]. The above tools employ a supervised learning approach—using

classification, regression, and/or dynamic time warping algorithms—
to facilitate mapping from performer actions to music or sound control
parameters. Typically, an instrument designer begins by creating a set
of training examples consisting of example performer actions (e.g.,
positions or motions sensed with sensors) paired with example sounds
(e.g., values of synthesis parameters). A learning algorithm is trained
on these examples, which builds a model of the relationship between
performer actions and music or sound parameter values. This model

can be used in live performance, where it computes new parameter
values in response to a performer’s current actions. Typically, such
tools also support an “interactive machine learning” [5] approach, in
which instrument creators can quickly and iteratively refine models by

237

providing new examples, for instance to correct a model’s mistakes or
introduce new sounds.
 Recent research on the use of ML in instrument design has
developed further variations on this standard supervised learning
framework in order to account for the specific design needs of

instrument builders and gestural interaction designers. For instance,
Françoise et al. [12] designed the XMM toolkit to support creators
designing temporal and multimodal gesture-sound mappings. Scurto
et al. [22] developed and evaluated deep reinforcement learning
techniques that aim to aid sound designers in exploring sound
parameter spaces. Scurto and Fiebrink [21] developed a “grab-and-
play” mapping method for very quickly creating a mapping that
accommodates a performer’s physical abilities or preferences, and

Parke-Wolfe, Scurto, and Fiebrink [18] deployed it in an ML tool for
music therapists and teachers working with children with disabilities.
 Despite the frequency with which new ML systems or approaches
appear in the NIME literature, the literature has few examples of
research interrogating the experiences of people using such systems
over long periods of time. Yet work that has engaged deeply with users
has led to surprising insights. For instance, Fiebrink and collaborators
[7][10] used several months of participatory design workshops and

interviews with composers employing an early version of Wekinator
to develop an initial understanding of how ML may be useful in
instrument design. They found, for instance, that ML was useful in
reducing barriers to design exploration, privileging the gesture-sound
relationship rather than requiring composers to think about their work
in terms of the programming code or underlying mathematics, and
inviting play [10]. Parke-Wolfe, Scurto, and Fiebrink [18] discovered
that a music teacher and music therapist who worked with ML over a

period of nearly a year enjoyed using ML-based mapping generation
not only because it made instrument design accessible to non-
programmers, but also because it enabled them to create interactions
that supported children in exercising agency, encouraged movement
and listening, and supported social aims such as increased participation
in group music-making. Yet to our knowledge, no published work has
investigated how composers or performers have engaged with ML
over longer periods. Do the benefits to the design process suggested
by the preliminary work above (e.g., [10]) persist? What other benefits

and challenges arise when ML becomes a key part of one’s practice?
What characteristics of ML tools may help or hinder such practice?
How do the answers to these questions suggest we may support
students learning about the potential value and practicalities of using
ML in their work?

3. MOTIVATION AND METHOD
As an instrument builder/composer/performer using ML in music-
making (Sonami) and a researcher/software developer creating the
ML tool for this music-making (Fiebrink), we believe our experiences
with ML over the past eight years are of value in addressing the
questions above. A pioneer in our community, Sonami has been
building and performing with new digital instruments since 1991,
when she created the lady’s glove [23] (see also description in [2]). The

lady’s glove is an elegant, elbow-length black Lycra glove capable of
sensing a variety of characteristics of hand shape and motion. Over the
past three decades, Sonami has frequently performed with the lady’s
glove at international venues such as Ars Electronica, the Interlink
Festival, and NIME 2014 (as a keynote speaker/performer). Since
2012, Sonami has been using Wekinator [11] to build and perform
with a new instrument, the Spring Spyre (Figure 1). Sonami has
performed her own work with Spring Spyre in over 50 performances,

as well as performing work by composer Eliane Radigue. These
performances include solo works as well as improvisation with other
musicians. Sonami has a unique insight into the value and challenges
of ML; we know of no other creator who has used ML so extensively
in instrument design or performance.

Fiebrink is the creator of the Wekinator software used by Sonami,
and she has designed and taught creative machine learning classes at

Goldsmiths University of London and online on the Kadenze platform
[15]. As described in Section 5, her discussions with Sonami have
driven a number of design changes to the software over the past eight
years, and they have also informed her teaching practice.
 Our aim in the following sections is to reveal aspects of our
experiences with ML that are of interest to the broader NIME

community, as motivated in the previous section. Given the personal
and specific nature of these experiences, a conventional academic
approach to describing them (i.e., an ostensibly objective,
dispassionate, third-person account) seems inappropriate. We believe
that first-hand accounts of our experiences can more appropriately
reflect their subjectivity, their complexity, and their grounding in our
own practices and goals. Therefore, we present Sections 4 and 5 below
as first-hand accounts written independently in response to a set of

questions, derived using the following process: We frequently hold
informal discussions about our practice during self-generated
residencies, and through these discussions we identified a set of issues
we felt were most relevant and interesting to the NIME community.
We then collaboratively generated and refined two sets of interview
questions that engaged with these issues—one set for Sonami and one
for Fiebrink—and we each independently responded in writing to our
assigned questions. Sections 4 and 5 contain the final interview

questions as well as each respondent’s answers in her own words, with
light collaborative edits for clarity. In Section 6, we return to a more
conventional academic tone for a discussion informed by our
reflections on the interview responses and their connections to some
broader concerns of the NIME community.

4. SONAMI IN HER OWN WORDS

4.1 The Spring Spyre
Q: What is the history of the Spring Spyre? And what was

your motivation for making it?

A: David Wessel and I experimented with machine learning and the
lady’s glove in the mid 90’s. The training was done with Michael Lee’s

software running on Max, and the synthesis models on the SGI. While
exciting, the system was complex and not suitable for easy
manipulation and touring. I stayed with my intricate web of mapping
(without ML) till meeting Rebecca Fiebrink at Princeton in
2010. Rebecca demonstrated the early stages of her Wekinator.
Impressed by its ease of use and flexibility, I decided to build a new
instrument which would be based on this platform. I could have
implemented ML with the lady’s glove, but the mapping I had

elaborated in Max over twenty years, while unwieldy, was intrinsically
linked to the conception of pieces performed with the lady’s glove. As
for the lady’s glove, it had become a very fine instrument but it was
time to move on.

Figure 1: The Spring Spyre

238

Wanting to start from a blank slate and generate a new approach and
new imagination, just a few of the elements from the lady’s glove were
carried over to the Spring Spyre. I wanted to improve the likelihood of
unpredictable events, which I learnt to cherish in the lady’s glove when
they occurred. I wanted to retain some interdependence of inputs (in

the lady’s glove, one muscle of one finger, when moved, will affect
other muscles in other fingers).

Aside from these, I was looking for more complex inputs and opted
for a partially chaotic system which would “fight” the intention of ML
and not learn (!). I ultimately used thin springs attached to audio
pickups. These would allow for movement of the springs to continue
after having been activated by my hands, as opposed to the paradigm
of the lady’s glove in which hand movement is tightly mapped to the

sound: less theatricality and yet more mystery, the audience (and
myself) having somehow lessened our expectation/anxiety of a
correlation between gestures and sounds. Or maybe I had grown tired
of justifying the gestures…Everything else relied on the discovery of
this new form of mapping and its musical implications.

Q: What is the current implementation of Spring Spyre—its

hardware, software, synthesis, and use of ML?

A: The current design, which I have now experimented with for eight

years, comprises of three thin springs attached to three audio pickups
(hacked from cheap reverb tanks). These are anchored to a metal
wheel found in a surplus store which itself is anchored to a modified
Roland PC1600 controller. This older controller provides sturdiness as
well as sixteen decent faders and buttons to mix the various synthesis
and control the feature extraction. While I originally intended to attach
the pick-ups and springs to any structure I could find, I settled for the
past three years on one design so to focus on the instrument.

 The audio signals generated when touching the springs are sent to
Max/MSP for feature extraction (Figure 2). The audio from each
spring is analyzed using 5 biquad filters following 5 prescribed
frequencies which can be adjusted based on the spring setup (those
though rarely vary as I use the same setup). This provides 15 control
values—the instantaneous signal amplitude of each filter output,
sampled at a rate specified in the Max/MSP patch, for each of the three
springs. I also use the sum of amplitude for each spring’s filters, for a
total of 18 control values. (The biquads turned out to be much more

efficient and flexible than the FFT I had started with.)
 These 18 values are sent to Wekinator as inputs [i.e., “features”]
to drive its machine learning models [specifically, a set of multilayer
perceptron neural networks, one network per synthesis parameter].
Wekinator uses these to control various synthesis methods in real time.

Currently most of the synthesis is done with Miller Puckette’s phase-
aligned formant (PAF) synthesis algorithm [20]. Different pieces use
different numbers of PAF objects as well as other synthesis methods.
Rather than having all three springs control all synthesis objects,
features from each spring or a combination of springs can be assigned

to individual synthesis objects (Figure 2). This kind of flexibility is
important.

Q: How do you play the Spring Spyre? What kind of music

do you make with it?

A: Now that the structure of the instrument is temporarily settled on,
most of the work comes in refining the models for the control of the
synthesis. While I may keep some models from piece to piece, I do
introduce new ones or keep modifying previous ones. This is the core

of the composition and requires a lot of patience and attention. While
ML allows for fast experiments in mapping which is invaluable, the
work resides in refining the synthesis so it will respond in rich and
unexpected ways. The springs are “live;” they oscillate in various ways
and slowly die. How does the synthesis respond to these various
behaviors?
 The unpredictability I referred to earlier depends on how “wide” the
machine learning is. If I feed the system training examples whose

sounds encompass wide changes based on how I touch the springs, the
trained models will move through all these points in unpredictable
ways as the springs settle to a resting place. If I give it training
examples with narrower changes, the sound will just oscillate slightly
as I move the springs. I can thus easily scale the instrument between
predictable and unpredictable results by changing how I train. I refer
to these variations as the “synthesis terrain”, a nod to David Wessel’s
“Timbre space”. This “predictability index” is very easily modified

and unique to ML.
 One interesting use I discovered is that I can train the system with
wide points, and when the sounds move through interesting synthesis
terrains in performance, I can manually “freeze” the values of some of
the inputs that Max/MSP sends to Wekinator, for instance updating
just three or four features per spring, thus honing in on a particular
aspect of the synthesis. My gestures then have a narrower and more
subtle effect on the sound. I can also freeze all the input values if I want
to stay on a particular state. I use the buttons on the PC1600 to do this.

This forces me to listen very actively during the performance so I can
“catch” the sounds. This active listening is challenging, exciting and is
new. This is the main difference in the actual live performance using
the Spring Spyre. While the lady’s glove required a very focused
attention to keep track of how my gestures would affect the thirty
sensors attached to the arm, the mapping would be fixed as to how the
sounds would be affected by the gestures. This is a very exciting part
of ML: the ability to move across synthesis terrains, discover new

sounds, and refine the control in live performance.

4.2 ML as Creation Tool
Q: How do you think about machine learning as a tool? Do

you think of it essentially as a mapping tool, or do you think

of it as something with independent intelligence or agency?
A: I wish I could say I approach ML as having independent
intelligence or agency, but I essentially use it as a mapping technique
and it is part of a system. It cannot be dissociated from the hardware

(the springs and pickups) and the software (Max/MSP). These three
components define the instrument. The instrument does have agency
and identity.
 This is why I can say that it took eight years to get to a point when I
started to understand “what the instrument wants”. Only recently has
it become more of an “exchange” between the instrument and me, the
performer. Not just forcing my intentions onto it, but letting it inform
the composition and performance. Still much work remains in my

explorations with ML and its application to musical performance. It is
an open system which allows for continuous exploration in sound
synthesis, expressivity and adaptability.

Figure 2: Example of a typical architecture for a Spring

Spyre piece (synthesis, mapping, and signal routing may

change between pieces)

239

Q: Can you say more about how you think about mapping in

your instruments and compositions? How does ML impact

on the task of creating a mapping?

A: Mapping is the backbone of a composition. While it has been
argued that in electronic instruments, controllers, sound generators and

links (mappings) are independent units, I believe those to be tightly
correlated. The choice of control inputs dictates the gestures, hence
possible mappings and resulting musical events. While people using
more standard controllers such as faders and buttons might apply
control as an afterthought, mapping strategies have been an essential
component in elaborating pieces with the lady’s glove and now with
the Spring Spyre. Mapping bridges the physical world to the sonic
world. ML offers a way to easily configure mappings with a wide

variety of behaviors, thus allowing the composer to focus on the
sounds and compositions. I cannot envision at this point in time any
other ways to map.

Q: Do you use ML as a tool to build instruments, pieces, or

both? How do you think about these when using ML?

A: Pieces are defined by the instrument. If you were to write for the
piano you would not compose for the flute. Pieces for the lady’s glove
could only be performed with the lady’s glove. Pieces for the Spring
Spyre can only be performed with the Spring Spyre. I am not interested
in the universality of the instrument.
 Each piece varies, based on the models the ML was trained on. ML
makes it easy. I may go through hundreds of models before settling to
a particular “palette” for a particular piece.
 The performance of the piece can be well defined in advance (as is

the case of the piece composed with Eliane Radigue, OCCAM IX), or
more improvisatory if the models used are expansive, as explained
earlier.

Q: What are some of the challenges you encounter in

working with ML?

A: The main challenge is the lack of available synthesis methods
which could take advantage of the ability to control large numbers of
parameters in real time. For years limitations were dictated by the
availability of affordable A/Ds and interfaces. ML can now allow
many input controls to be targeted to many synthesis parameters. You
can for instance have 80 inputs, all modified in real time, control the
synthesis. But what synthesis currently allows for such dynamic
control? People have suggested physical models, but models are

fragile, and easily break when controls go off range. We need more
research to allow for complex synthesis now. This is very frustrating.
 I also encounter practical challenges working with Wekinator. For
instance, one current challenge is the inability to bundle trained models
and export them to different pieces [the software currently only
supports exporting and loading individual models, one at a time]. Each
spring for instance may control one synthesis engine, thus 6 inputs and
8 outputs, trained many numbers of times. I’d like to be able to bundle
them, call them one “instrument”, and move them to another piece to

supply the initial space of inputs and outputs.
 Also, as I’ve started teaching Wekinator for the design of
instruments and control systems, I still encounter what I consider
misunderstandings. The focus on applying ML to precise,
independent, and predictable control of individual parameters in
prepared compositions is prevalent. I think most often musicians apply
control and mapping strategies after they have composed their pieces
and resist opening up their compositions to allow these to interfere,

influence or even hijack their original plan. This seems to be a poor
application of ML but the desire for control still prevails over the desire
to explore new forms of expressivity.

5. FIEBRINK IN HER OWN WORDS
Q: Describe how you have worked with Laetitia over the

past eight years.
A: I gave Laetitia a demo of the first version of Wekinator in 2010. I
was delighted when, a short time later, she expressed an interest in
using ML to build a new instrument and shared with me some of the

physical prototypes of what would become the Spring Spyre. I
observed her experiment with a variety of physical configurations and
feature extraction methods until she landed on the audio pickups with
biquad filters, which seemed to get her enough information to train
some very interesting models. Since then, we try to spend time

together at least a couple of times a year, with long walks discussing
our work and hacking sessions trying out new ideas. During these,
we’ve had innumerable discussions about how she is using Wekinator
(both the practicalities of its use and the aesthetic aims of her work),
what she has found frustrating or confusing in the software, and what
new features she would like to see implemented. When I redesigned
Wekinator from the ground up in 2013, I started by showing her paper
prototypes of the new user interface I envisioned, and she was the first

user to try it out. Since then, many of the new features I’ve
implemented have been driven by her ideas.

Q: What have you learned from working with Laetitia?

What has most surprised you?

A: I’ve learned to see ML less and less as something whose value for
instrument building lies primarily in its ability to build accurate models
from training examples (the way a computer scientist would
conventionally see it), and more as a technique that is wonderful for

supporting richer modes of interaction with computers during both
performance and instrument building. The composers in my first
Wekinator participatory design workshops in 2009 planted the seeds
of this way of thinking (e.g., see [10]), but my discussions with Laetitia
over the last eight years have really cemented my understanding of
how ML can be used to create complex mappings that couldn’t be built
using programming. And this has pushed me to design tools that better
support that type of use in practice.

 I was initially very surprised by Laetitia’s conviction around making
an instrument that didn’t prioritise control in a conventional sense.
Spring Spyre is not an instrument that you play using a specific,
practiced set of gestures in order to achieve a precise sequence of
sounds. Yet this doesn’t mean she wants complete chaos, or to be
surprised all the time. There is a complex balance at play, in which
Laetitia precisely specifies some things—such as which springs drive
which synthesis modules—and somewhat less precisely specifies
others—such as the width or scope of these synthesis terrains.

Together, these yield an interface that allows freedom to explore
spaces that are new and surprising, while also likely to be engaging
and relevant.
 Because of this, I now think about “mapping” in instrument design
as the process of creating a new interactive world—ideally one that
invites exploration and discovery; this is quite different from the way
it is sometimes discussed in the NIME literature as primarily a set of
engineering choices that together impact on controllability,

learnability, ergonomics, etc. (e.g., see [14]). By extension, I believe
that many of the criticisms of the notion of “mapping” (e.g., Chadabe’s
[4] view that mappings are one-directional, simplistic, and control-
focused) have limited applicability, as mapping can alternatively
become a dynamic and deeply engaging activity, in which the
computer becomes a creative partner of sorts. I’ve written previously
[8] about how tools for instrument design that support such activity
can be viewed as “meta-instruments,” and my work with Laetitia

strongly informed that writing.

Q: What changes have you made to Wekinator in response

to your collaborations with Laetitia?

A: I began this line of research thinking that my observations of
composers working with Wekinator would suggest new types of ML
algorithms to better support them. However, the truth is that the biggest

payoffs for improving composers’ experiences have come from re-
thinking the design of the user interfaces around the ML. In response
to Laetitia’s needs for greater flexibility, control, and ease of use of
ML, I’ve made a large number of changes to the software in the last
eight years. I’ve made it easier to define and change feature selection
architectures, for instance specifying which springs impact on which

240

synthesis modules. I’ve added a lot of infrastructure to support long
periods of evolution, experimentation, and archiving of creative
projects, for instance making it easier to save and load trained models
and to share models between projects (though as Laetitia has noted,
this could still be improved by supporting “bundling” of models to

reflect how a composer may think about groups of models as
conceptual units). I’ve made it easy to “undo” and “redo” changes to
models’ training, to support more flexible and low-cost exploration of
different mappings. I’ve also made it easier to reduce the CPU load by
turning unused models “off” until they’re needed, and by minimizing
GUI CPU use.
 The first version of Wekinator allowed OSC communication with
feature extractors and sound synthesis modules in any language, but

Wekinator was built partly with ChucK [24] and it privileged ChucK
integrations: it included several built-in feature extractors in ChucK
(for audio and HID devices) and provided ChucK programmers with
a light-weight API for implementing new synthesis modules. This
made it very easy for new users to experiment with audio and HID
inputs, and made it simpler for ChucK programmers to connect to
Wekinator, but at the cost of making the whole program more
conceptually complex for everyone. I simplified Wekinator 2.0

(released in 2015) by removing native ChucK components so that all
feature extractors and synthesis modules had to communicate using
OSC in the same way. I then worked with Laetitia to design a new API
for OSC control of Wekinator, which now provides simple but
powerful ways to integrate Wekinator with work in Max or other
environments that can send and receive OSC. This not only allows full
control over the ML process from the same environment in which
synthesis is happening, but it also supports more complex musical

structures: for instance, a composer can transition to a new section of
a piece (with a new mapping) by sending Wekinator an OSC message
triggering the loading of a specific new set of trained models.
 While many of these changes may be uninteresting from a research
point of view, they’re driven by my realization that, at the end of the
day, I want to support work in which ML isn’t “the point” of an
instrument. ML cannot be merely a gimmick if someone is going to
use it in their work for years; it has to actually be useful. And ensuring
a creator can use ML seamlessly (or at least relatively painlessly)

within their creative process is paramount, even though it can take a
lot of time to build ML tools that do this well.
 It’s also important to mention that I would have never understood
the need for all these specific changes to Wekinator based on my own
intuition, or using observations of casual users in a workshop setting.
It’s only by observing the software’s use by Laetitia and other
intensive users (such as my university students using Wekinator to
implement complex music and art projects over the length of a term or

longer) that I’ve been able to identify and prioritise such
improvements.

Q: How has your work with Laetitia impacted how you teach

interface design and creative machine learning?

A: I’ve now taught over 100 undergraduate and masters students in

term-long creative machine learning courses, and I’ve had several
thousand students in my online course [15]. The biggest impact of
working with Laetitia has been on my choices about what to teach
them. The set of knowledge that musicians and artists need to do work
like Laetitia’s is very different from what a typical computer science
ML course is likely to cover. Rather than deep knowledge of how
algorithms work or how to compare different models’ accuracy, for
instance, students need to be able to reason about how changes to
features and training examples are likely to change a model’s behavior.

They need to be able to reason about how they might use such actions
to “debug” a trained model when it is not giving them useful music or
interaction possibilities. They need to be able to design effective
architectures—good feature extractors and feature processing (e.g.,
normalization), choices about which features influence which models,
and choices about how model outputs influence music or artistic
parameters.

 Furthermore, I try to expose students to the full scope of how ML
can be useful in creative practice. Similar to Laetitia’s experience, I
find it is common for students to initially want to design interfaces that
yield precise and simplistic control (e.g., I wave my hand one way and
trigger one sound; I wave it another way and trigger a different sound).

While ML can support such interfaces (and can sometimes make them
easier to build than programming, especially if analysis of video or
many sensors is involved), such interfaces do not often enable new
types of music nor new modes of engagement between musicians and
sound. It is sometimes challenging to convince students to consider
that other types of interaction may be worth exploring, but having
toolkits that make such exploration easier does help.

6. DISCUSSION
Sonami’s account in Section 4 reveals several ways in which ML can
be useful in long-term music and composition practices. Some of these
align with and expand on previous findings from shorter engagements
with users. For instance, work by Fiebrink et al. in 2010 [10] suggested
that providing access to surprise and discovery in mapping creation,

and that enabling creation of more complex mappings, were valuable
aspects of ML compared to designing mappings using programming
alone. Sonami’s answers above reveal how she has managed to sustain
these benefits in her work over many years: this includes the use of a
physically complex input system, feature extractors that succinctly
capture relevant information from this system (and which can be
adapted to different configurations of the input system), and synthesis
methods that provide access to a very wide variety of sounds under

different parameterizations.
 Further, Sonami has developed working strategies to better enable
her to create a wide variety of pieces and performance techniques with
the same physical setup. This includes manipulating the “predictability
index” of a given mapping through her strategy for training the ML,
intervening in the ML process in novel ways to achieve particular
musical results (e.g., temporarily “freezing” feature values), and
managing complexity within and across pieces by designing modular
signal flows (e.g., creating mappings that control individual synthesis

algorithms with a single spring, allowing modular mapping
components to be shared across pieces or swapped in and out over
sections of a piece).
 To support such a practice, ML tools must support flexible, low-
level control over a number of aspects of ML. As described above,
Sonami’s practice has required Wekinator to provide control not only
over the iterative re-training typical of interactive machine learning
approaches, but also over precise feature selection and signal routing,

as well as the saving, loading, and swapping of ML components
during composition and performance time. These actions clearly
support creative exploration during composition and the performance
of more musically complex works, but such actions are not typically
foregrounded in more general-purpose ML APIs or GUI-based tools
(which often assume that users’ efforts will be more focused on tuning
and comparing different learning algorithms).
 Sonami’s practice prioritises exploration, discovery, and navigating

varying degrees of predictability and control. In such a practice, the act
of creating a mapping is one of crafting sound and interaction spaces,
rather than designing a control paradigm. This suggests new
dimensions that might be considered in the design and evaluation of
new instruments and instrument creation tools: for instance, do they
enable effective manipulation of a “predictability index,” or make it
easy to discover engaging new “synthesis terrains”? We are excited to
see work in this vein by Scurto et al. [22], which explores algorithmic

and interactive techniques that are explicitly designed to support
exploration of new sounds.
 Sonami’s approach to using ML has implications for teaching, as
discussed by Fiebrink: if students are to use ML in similar ways to
build instruments, this demands particular knowledge about ML
practices, which is quite different from what is covered in a typical ML
class in a computer science department. Further, both of us have

241

frequently experienced difficulty encouraging students to move
beyond simplistic control paradigms in their work building new
creative interfaces. Fiebrink has advocated above for exposing
students to tools that make it easier for students to explore alternative
paradigms; while Wekinator is one such tool, one can envision many

other approaches, including simpler tools for making “many-to-many”
(see [14]) mappings without ML.
 Sonami has noted the paucity of synthesis methods that seem able to
take full advantage of the type of mappings offered by ML, in which a
potentially huge number of control parameters are simultaneously
adjusted, often using non-linear and many-to-many mappings,
providing access to a very wide space of potential sounds and sound
trajectories. We believe it is exciting to consider what type of new

synthesis algorithms might be constructed to exploit usage in
mappings created with ML.
 Finally, we note that just as there is little published literature
exploring how composers or performers have engaged with ML or
other NIME technologies over a period of many years, there is little
literature revealing how NIME technology creators have worked with
and been influenced by their users over such time periods. Fiebrink has
emphasized above the value of working with Sonami and observing

other users over time; these have led to new ways of thinking about the
value of her tools and to many tool improvements. We hope to see
other such creators engage in long-term collaborations or longitudinal
study of users’ experiences, and to see published work sharing how
insights from such collaborations influence their technology design.

7. CONCLUSION
In this paper, Laetitia Sonami has described her experiences using ML
as an instrument builder, composer, and performer. These experiences

illuminate some of the benefits, challenges, and working strategies that
may arise with the use of ML in instrument mapping creation over a
sustained period. Sonami’s discussion of her practice also reveals new
perspectives on familiar NIME conversations about mapping and
control. Rebecca Fiebrink has additionally described here how her
work with Sonami has changed her understanding of mappings and of
the utility of ML in instrument design, and led to concrete changes to
the Wekinator ML software and to her teaching. We have discussed

how these experiences can deepen understanding of the value of ML
for instrument creation, and how they can inform NIME research, tool
development, and pedagogy. Many of our insights in this domain have
been made possible through our long-term collaboration as an artist
and a technology creator, and we urge others in the NIME community
to engage in such collaborations as well as to find ways to reflect on
and share the knowledge emerging from them.

8. ETHICAL STANDARDS
This work is unfunded. We are not aware of any potential conflicts of
interest.

9. REFERENCES
[1] Barbican. 2019. AI: More than human. Exhibit at the Barbican,

London UK, 16 May–26 Aug 2019.
https://www.barbican.org.uk/whats-on/2019/event/ai-
more-than-human

[2] B. Bongers. 2000. Physical interfaces in the electronic arts. In
M. M. Wanderley and M. Battier, eds., Trends in Gestural
Control of Music. IRCAM—Centre Pompidou. pp. 41–70.

[3] J. Bullock and A. Momeni. 2015. Ml.lib: Robust, cross-
platform, open-source machine learning for Max and Pure Data.
In Proc. NIME, 265–270.

[4] J. Chadabe. 2002. The limitations of mapping as a structural
descriptive in electronic instruments. In Proc. NIME.

[5] J. A. Fails and D. R. Olsen, Jr. 2003. Interactive machine
learning. In Proc. International Conference on Intelligent User
Interfaces (IUI ’03), 39–45.

[6] S. S. Fels and G. E. Hinton. 1995. Glove-Talk II: An adaptive
gesture-to-formant interface. In Proc. of the SIGCHI

Conference on Human Factors in Computing Systems, 456–
463.

[7] R. Fiebrink. 2011. Real-time human interaction with supervised
learning algorithms for music composition and performance.
PhD thesis, Princeton University, USA.

[8] R. Fiebrink. 2017. Machine learning as meta-instrument:
Human-machine partnerships shaping expressive instrumental
creation. In T. Bovermann et al., eds., Musical Instruments in

the 21st Century, 137–151. Springer.
[9] R. Fiebrink. 2019. Machine learning education for artists,

musicians, and other creative practitioners.” ACM Transactions
on Computing Education. Vol 19, No. 4, September 2019.

[10] R. Fiebrink, D. Trueman, C. Britt, M. Nagai, K. Kaczmarek, M.
Early, M. R. Daniel, A. Hege, and P. R. Cook. 2010. Toward
understanding human-computer interaction in composing the
instrument. In Proc. of the International Computer Music

Conference (ICMC).
[11] R. Fiebrink, D. Trueman, and P. R. Cook. 2009. A meta-

instrument for interactive, on-the-fly machine learning. In Proc.
NIME 2009.

[12] J. Françoise, N. Schnell, R. Borghesi, and F. Bevilacqua. 2014.
Probabilistic models for designing motion and sound
relationships. In Proc. NIME 2014.

[13] N. Gillian and J. A. Paradiso. 2014. The Gesture Recognition

Toolkit. The Journal of Machine Learning Research, 15 (1),
3483–3487.

[14] A. Hunt and M. M. Wanderley. 2002. Mapping performer
parameters to synthesis engines. Organised Sound, 7 (2), 97–
108.

[15] Kadenze, Inc. Machine learning for musicians and artists.
Online course taught by Rebecca Fiebrink.
https://www.kadenze.com/courses/machine-learning-for-
musicians-and-artists/info

[16] M. Lee, A. Freed, and D. Wessel. 1991. Real-time neural
network processing of gestural and acoustic signals. In Proc.
International Computer Music Conference (ICMC), 277–280.

[17] Machine learning for creativity and design. Workshop held at
the 2019 NeuIPS conference.
https://neurips2019creativity.github.io/

[18] S. T. Parke-Wolfe, H. Scurto, and R. Fiebrink. 2019. Sound
Control: Supporting custom musical interface design for

children with disabilities. In Proc. NIME.
[19] S. Paul-Choudhury. 2019. What will music be like in 20 years?

BBC Culture, 21 May 2019.
http://www.bbc.com/culture/story/20190521-what-will-music-
be-like-in-20-years

[20] M. Puckette. 1995. Formant-based audio synthesis using
nonlinear distortion. Journal of the Audio Engineering Society,
43 (1/2), 40–47.

[21] H. Scurto and R. Fiebrink. 2016. Grab-and-play mapping:
Creative machine learning approaches for musical inclusion and
exploration. In Proc. International Computer Music Conference
(ICMC).

[22] H. Scurto, B. Van Kerrebroeck, B. Caramiaux, and F.
Bevilacqua. 2019. Designing deep reinforcement learning for
human parameter exploration. arXiv:1907.00824.

[23] L. Sonami. “Lady’s glove.” http://sonami.net/ladys-glove/

[24] G. Wang and P. R. Cook. 2003. ChucK: A concurrent, on-the-
fly audio programming language. Proc. International Computer
Music Conference (ICMC).

242

