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ABSTRACT 

Machine learning (ML) has been used to create mappings for digital 
musical instruments for over twenty-five years, and numerous ML 
toolkits have been developed for the NIME community. However, 
little published work has studied how ML has been used in sustained 
instrument building and performance practices. This paper examines 

the experiences of instrument builder and performer Laetitia Sonami, 
who has been using ML to build and refine her Spring Spyre 
instrument since 2012. Using Sonami’s current practice as a case 
study, this paper explores the utility, opportunities, and challenges 
involved in using ML in practice over many years. This paper also 
reports the perspective of Rebecca Fiebrink, the creator of the 
Wekinator ML tool used by Sonami, revealing how her work with 
Sonami has led to changes to the software and to her teaching. This 

paper thus contributes a deeper understanding of the value of ML for 
NIME practitioners, and it can inform design considerations for future 
ML toolkits as well as NIME pedagogy. Further, it provides new 
perspectives on familiar NIME conversations about mapping 
strategies, expressivity, and control, informed by a dedicated practice 
over many years. 
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1. INTRODUCTION 
Machine learning (ML) techniques are a core NIME research topic, 
with “machine learning” appearing explicitly in the conference’s call 
for papers since 2006. Members of today’s NIME community have 
been using ML to create digital musical instruments (DMIs) since at 
least 1991 [16], and numerous ML toolkits have been created for 
NIME practitioners over the past decade (e.g., [3],[11],[12],[13],  
[22]). Yet little published work has examined how ML has been used 

in sustained instrument building and performance practices within our 
community. Such reflection is necessary to fully understand the usage 
and value of ML techniques, which in turn can inform the design of 
future ML tools, NIME pedagogy, and artistic practice. Further, at a 
time when the creative use of ML has seen sudden and surging interest 
among computer scientists (e.g., workshops on Machine Learning for 
Creativity and Design at NeurIPS [17]), arts organisations (e.g., [1]), 
and the popular press (e.g., [19]), we believe that NIME practitioners 

who already have years of practice with ML should contribute to the 

wider conversation about the utility and consequences of employing 

ML in creative work. 
 This paper therefore closely examines the experiences of instrument 
builder and performer Laetitia Sonami, who has been using ML to 
build and refine her Spring Spyre instrument since 2012. Prior to 
making the Spring Spyre, Sonami created the lady’s glove [23] and 
performed with it regularly from 1991 to 2014. Using Sonami’s 
current practice as a case study, we explore questions such as: What 
aesthetic and experiential qualities can ML facilitate during the 

processes of instrument building, composition, and performance? 
How do the challenges and opportunities presented by the use of ML 
to build instrument mappings differ from those present when building 
instruments using programming alone, without ML? How, 
specifically, can ML be employed to build a sustainable instrument 
with sufficient flexibility and complexity to support continued 
engagement over a period of many years? 
 This paper additionally provides a first-hand account from 

Wekinator creator Rebecca Fiebrink, whose collaborative design work 
with Sonami has informed numerous refinements to the Wekinator 
software. The paper concludes with a discussion connecting our first-
hand accounts to each other and to concerns of the broader NIME 
community. We reflect on topics such as the utility of ML for NIME, 
the design of mapping and instrument-building tools, open challenges 
for improving NIME pedagogy and practices with ML, and the value 
of engaging in cross-disciplinary collaborations and sharing the 
knowledge gained from them. 

2. BACKGROUND 
ML has been used to create new musical instruments and interfaces 
since at least the early 1990s, when Lee, Freed and Wessel employed 
neural networks to control sound synthesis [16]. Around that time, Fels 
and Hinton [6] also performed early experiments using neural 

networks to control speech synthesis using a sensor glove. 
 Since then, NIME researchers have created numerous toolkits to 
facilitate the use of ML in instrument building, particularly to support 
parameter mapping—i.e., to define the functions that compute 
synthesis control parameter values from gestural or other input values, 
as described in [14]. Examples of general-purpose ML tools for music 
include Wekinator [11], Gesture Recognition Toolkit [13], and ml.lib 
[3]. The above tools employ a supervised learning approach—using 

classification, regression, and/or dynamic time warping algorithms—
to facilitate mapping from performer actions to music or sound control 
parameters. Typically, an instrument designer begins by creating a set 
of training examples consisting of example performer actions (e.g., 
positions or motions sensed with sensors) paired with example sounds 
(e.g., values of synthesis parameters). A learning algorithm is trained 
on these examples, which builds a model of the relationship between 
performer actions and music or sound parameter values. This model 

can be used in live performance, where it computes new parameter 
values in response to a performer’s current actions. Typically, such 
tools also support an “interactive machine learning” [5] approach, in 
which instrument creators can quickly and iteratively refine models by 
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providing new examples, for instance to correct a model’s mistakes or 
introduce new sounds. 
 Recent research on the use of ML in instrument design has 
developed further variations on this standard supervised learning 
framework in order to account for the specific design needs of 

instrument builders and gestural interaction designers. For instance, 
Françoise et al. [12] designed the XMM toolkit to support creators 
designing temporal and multimodal gesture-sound mappings. Scurto 
et al.  [22] developed and evaluated deep reinforcement learning 
techniques that aim to aid sound designers in exploring sound 
parameter spaces. Scurto and Fiebrink [21] developed a “grab-and-
play” mapping method for very quickly creating a mapping that 
accommodates a performer’s physical abilities or preferences, and 

Parke-Wolfe, Scurto, and Fiebrink [18] deployed it in an ML tool for 
music therapists and teachers working with children with disabilities. 
 Despite the frequency with which new ML systems or approaches 
appear in the NIME literature, the literature has few examples of 
research interrogating the experiences of people using such systems 
over long periods of time. Yet work that has engaged deeply with users 
has led to surprising insights. For instance, Fiebrink and collaborators 
[7][10] used several months of participatory design workshops and 

interviews with composers employing an early version of Wekinator 
to develop an initial understanding of how ML may be useful in 
instrument design. They found, for instance, that ML was useful in 
reducing barriers to design exploration, privileging the gesture-sound 
relationship rather than requiring composers to think about their work 
in terms of the programming code or underlying mathematics, and 
inviting play [10].  Parke-Wolfe, Scurto, and Fiebrink [18] discovered 
that a music teacher and music therapist who worked with ML over a 

period of nearly a year enjoyed using ML-based mapping generation 
not only because it made instrument design accessible to non-
programmers, but also because it enabled them to create interactions 
that supported children in exercising agency, encouraged movement 
and listening, and supported social aims such as increased participation 
in group music-making. Yet to our knowledge, no published work has 
investigated how composers or performers have engaged with ML 
over longer periods. Do the benefits to the design process suggested 
by the preliminary work above (e.g., [10]) persist? What other benefits 

and challenges arise when ML becomes a key part of one’s practice? 
What characteristics of ML tools may help or hinder such practice? 
How do the answers to these questions suggest we may support 
students learning about the potential value and practicalities of using 
ML in their work? 

3. MOTIVATION AND METHOD 
As an instrument builder/composer/performer using ML in music-
making (Sonami) and a researcher/software developer creating the 
ML tool for this music-making (Fiebrink), we believe our experiences 
with ML over the past eight years are of value in addressing the 
questions above. A pioneer in our community, Sonami has been 
building and performing with new digital instruments since 1991, 
when she created the lady’s glove [23] (see also description in [2]). The 

lady’s glove is an elegant, elbow-length black Lycra glove capable of 
sensing a variety of characteristics of hand shape and motion. Over the 
past three decades, Sonami has frequently performed with the lady’s 
glove at international venues such as Ars Electronica, the Interlink 
Festival, and NIME 2014 (as a keynote speaker/performer). Since 
2012, Sonami has been using Wekinator [11] to build and perform 
with a new instrument, the Spring Spyre (Figure 1). Sonami has 
performed her own work with Spring Spyre in over 50 performances, 

as well as performing work by composer Eliane Radigue. These 
performances include solo works as well as improvisation with other 
musicians. Sonami has a unique insight into the value and challenges 
of ML; we know of no other creator who has used ML so extensively 
in instrument design or performance.  

Fiebrink is the creator of the Wekinator software used by Sonami, 
and she has designed and taught creative machine learning classes at 

Goldsmiths University of London and online on the Kadenze platform 
[15]. As described in Section 5, her discussions with Sonami have 
driven a number of design changes to the software over the past eight 
years, and they have also informed her teaching practice. 
 Our aim in the following sections is to reveal aspects of our 
experiences with ML that are of interest to the broader NIME 

community, as motivated in the previous section. Given the personal 
and specific nature of these experiences, a conventional academic 
approach to describing them (i.e., an ostensibly objective, 
dispassionate, third-person account) seems inappropriate. We believe 
that first-hand accounts of our experiences can more appropriately 
reflect their subjectivity, their complexity, and their grounding in our 
own practices and goals. Therefore, we present Sections 4 and 5 below 
as first-hand accounts written independently in response to a set of 

questions, derived using the following process: We frequently hold 
informal discussions about our practice during self-generated 
residencies, and through these discussions we identified a set of issues 
we felt were most relevant and interesting to the NIME community. 
We then collaboratively generated and refined two sets of interview 
questions that engaged with these issues—one set for Sonami and one 
for Fiebrink—and we each independently responded in writing to our 
assigned questions. Sections 4 and 5 contain the final interview 

questions as well as each respondent’s answers in her own words, with 
light collaborative edits for clarity. In Section 6, we return to a more 
conventional academic tone for a discussion informed by our 
reflections on the interview responses and their connections to some 
broader concerns of the NIME community. 

4. SONAMI IN HER OWN WORDS 

4.1 The Spring Spyre 
Q: What is the history of the Spring Spyre? And what was 

your motivation for making it?  

A: David Wessel and I experimented with machine learning and the 
lady’s glove in the mid 90’s. The training was done with Michael Lee’s 

software running on Max, and the synthesis models on the SGI. While 
exciting, the system was complex and not suitable for easy 
manipulation and touring. I stayed with my intricate web of mapping 
(without ML) till meeting Rebecca Fiebrink at Princeton in 
2010. Rebecca demonstrated the early stages of her Wekinator. 
Impressed by its ease of use and flexibility, I decided to build a new 
instrument which would be based on this platform. I could have 
implemented ML with the lady’s glove, but the mapping I had 

elaborated in Max over twenty years, while unwieldy, was intrinsically 
linked to the conception of pieces performed with the lady’s glove. As 
for the lady’s glove, it had become a very fine instrument but it was 
time to move on. 

 
Figure 1: The Spring Spyre 
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Wanting to start from a blank slate and generate a new approach and 
new imagination, just a few of the elements from the lady’s glove were 
carried over to the Spring Spyre. I wanted to improve the likelihood of 
unpredictable events, which I learnt to cherish in the lady’s glove when 
they occurred. I wanted to retain some interdependence of inputs (in 

the lady’s glove, one muscle of one finger, when moved, will affect 
other muscles in other fingers). 

Aside from these, I was looking for more complex inputs and opted 
for a partially chaotic system which would “fight” the intention of ML 
and not learn (!). I ultimately used thin springs attached to audio 
pickups. These would allow for movement of the springs to continue 
after having been activated by my hands, as opposed to the paradigm 
of the lady’s glove in which hand movement is tightly mapped to the 

sound: less theatricality and yet more mystery, the audience (and 
myself) having somehow lessened our expectation/anxiety of a 
correlation between gestures and sounds. Or maybe I had grown tired 
of justifying the gestures…Everything else relied on the discovery of 
this new form of mapping and its musical implications. 

Q: What is the current implementation of Spring Spyre—its 

hardware, software, synthesis, and use of ML?  

A: The current design, which I have now experimented with for eight 

years, comprises of three thin springs attached to three audio pickups 
(hacked from cheap reverb tanks). These are anchored to a metal 
wheel found in a surplus store which itself is anchored to a modified 
Roland PC1600 controller. This older controller provides sturdiness as 
well as sixteen decent faders and buttons to mix the various synthesis 
and control the feature extraction. While I originally intended to attach 
the pick-ups and springs to any structure I could find, I settled for the 
past three years on one design so to focus on the instrument. 

 The audio signals generated when touching the springs are sent to 
Max/MSP for feature extraction (Figure 2). The audio from each 
spring is analyzed using 5 biquad filters following 5 prescribed 
frequencies which can be adjusted based on the spring setup (those 
though rarely vary as I use the same setup). This provides 15 control 
values—the instantaneous signal amplitude of each filter output, 
sampled at a rate specified in the Max/MSP patch, for each of the three 
springs. I also use the sum of amplitude for each spring’s filters, for a 
total of 18 control values. (The biquads turned out to be much more 

efficient and flexible than the FFT I had started with.) 
 These 18 values are sent to Wekinator as inputs [i.e., “features”] 
to drive its machine learning models [specifically, a set of multilayer 
perceptron neural networks, one network per synthesis parameter]. 
Wekinator uses these to control various synthesis methods in real time. 

Currently most of the synthesis is done with Miller Puckette’s phase-
aligned formant (PAF) synthesis algorithm [20]. Different pieces use 
different numbers of PAF objects as well as other synthesis methods. 
Rather than having all three springs control all synthesis objects, 
features from each spring or a combination of springs can be assigned 

to individual synthesis objects (Figure 2). This kind of flexibility is 
important. 

Q: How do you play the Spring Spyre? What kind of music 

do you make with it? 

A: Now that the structure of the instrument is temporarily settled on, 
most of the work comes in refining the models for the control of the 
synthesis. While I may keep some models from piece to piece, I do 
introduce new ones or keep modifying previous ones. This is the core 

of the composition and requires a lot of patience and attention. While 
ML allows for fast experiments in mapping which is invaluable, the 
work resides in refining the synthesis so it will respond in rich and 
unexpected ways. The springs are “live;” they oscillate in various ways 
and slowly die. How does the synthesis respond to these various 
behaviors? 
 The unpredictability I referred to earlier depends on how “wide” the 
machine learning is. If I feed the system training examples whose 

sounds encompass wide changes based on how I touch the springs, the 
trained models will move through all these points in unpredictable 
ways as the springs settle to a resting place. If I give it training 
examples with narrower changes, the sound will just oscillate slightly 
as I move the springs. I can thus easily scale the instrument between 
predictable and unpredictable results by changing how I train. I refer 
to these variations as the “synthesis terrain”, a nod to David Wessel’s 
“Timbre space”. This “predictability index” is very easily modified 

and unique to ML. 
 One interesting use I discovered is that I can train the system with 
wide points, and when the sounds move through interesting synthesis 
terrains in performance, I can manually “freeze” the values of some of 
the inputs that Max/MSP sends to Wekinator, for instance updating 
just three or four features per spring, thus honing in on a particular 
aspect of the synthesis. My gestures then have a narrower and more 
subtle effect on the sound. I can also freeze all the input values if I want 
to stay on a particular state. I use the buttons on the PC1600 to do this. 

This forces me to listen very actively during the performance so I can 
“catch” the sounds. This active listening is challenging, exciting and is 
new. This is the main difference in the actual live performance using 
the Spring Spyre. While the lady’s glove required a very focused 
attention to keep track of how my gestures would affect the thirty 
sensors attached to the arm, the mapping would be fixed as to how the 
sounds would be affected by the gestures. This is a very exciting part 
of ML: the ability to move across synthesis terrains, discover new 

sounds, and refine the control in live performance. 

4.2 ML as Creation Tool  
Q: How do you think about machine learning as a tool? Do 

you think of it essentially as a mapping tool, or do you think 

of it as something with independent intelligence or agency? 
A: I wish I could say I approach ML as having independent 
intelligence or agency, but I essentially use it as a mapping technique 
and it is part of a system. It cannot be dissociated from the hardware 

(the springs and pickups) and the software (Max/MSP). These three 
components define the instrument. The instrument does have agency 
and identity. 
 This is why I can say that it took eight years to get to a point when I 
started to understand “what the instrument wants”. Only recently has 
it become more of an “exchange” between the instrument and me, the 
performer. Not just forcing my intentions onto it, but letting it inform 
the composition and performance. Still much work remains in my 

explorations with ML and its application to musical performance. It is 
an open system which allows for continuous exploration in sound 
synthesis, expressivity and adaptability. 
 

 
Figure 2: Example of a typical architecture for a Spring 

Spyre piece (synthesis, mapping, and signal routing may 

change between pieces) 
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Q: Can you say more about how you think about mapping in 

your instruments and compositions? How does ML impact 

on the task of creating a mapping? 

A: Mapping is the backbone of a composition. While it has been 
argued that in electronic instruments, controllers, sound generators and 

links (mappings) are independent units, I believe those to be tightly 
correlated. The choice of control inputs dictates the gestures, hence 
possible mappings and resulting musical events. While people using 
more standard controllers such as faders and buttons might apply 
control as an afterthought, mapping strategies have been an essential 
component in elaborating pieces with the lady’s glove and now with 
the Spring Spyre. Mapping bridges the physical world to the sonic 
world. ML offers a way to easily configure mappings with a wide 

variety of behaviors, thus allowing the composer to focus on the 
sounds and compositions. I cannot envision at this point in time any 
other ways to map. 

Q: Do you use ML as a tool to build instruments, pieces, or 

both? How do you think about these when using ML? 

A: Pieces are defined by the instrument. If you were to write for the 
piano you would not compose for the flute. Pieces for the lady’s glove 
could only be performed with the lady’s glove. Pieces for the Spring 
Spyre can only be performed with the Spring Spyre. I am not interested 
in the universality of the instrument. 
 Each piece varies, based on the models the ML was trained on. ML 
makes it easy. I may go through hundreds of models before settling to 
a particular “palette” for a particular piece. 
 The performance of the piece can be well defined in advance (as is 

the case of the piece composed with Eliane Radigue, OCCAM IX), or 
more improvisatory if the models used are expansive, as explained 
earlier. 

Q: What are some of the challenges you encounter in 

working with ML? 

A: The main challenge is the lack of available synthesis methods 
which could take advantage of the ability to control large numbers of 
parameters in real time. For years limitations were dictated by the 
availability of affordable A/Ds and interfaces. ML can now allow 
many input controls to be targeted to many synthesis parameters. You 
can for instance have 80 inputs, all modified in real time, control the 
synthesis. But what synthesis currently allows for such dynamic 
control? People have suggested physical models, but models are 

fragile, and easily break when controls go off range. We need more 
research to allow for complex synthesis now. This is very frustrating. 
 I also encounter practical challenges working with Wekinator. For 
instance, one current challenge is the inability to bundle trained models 
and export them to different pieces [the software currently only 
supports exporting and loading individual models, one at a time]. Each 
spring for instance may control one synthesis engine, thus 6 inputs and 
8 outputs, trained many numbers of times. I’d like to be able to bundle 
them, call them one “instrument”, and move them to another piece to 

supply the initial space of inputs and outputs. 
 Also, as I’ve started teaching Wekinator for the design of 
instruments and control systems, I still encounter what I consider 
misunderstandings. The focus on applying ML to precise, 
independent, and predictable control of individual parameters in 
prepared compositions is prevalent. I think most often musicians apply 
control and mapping strategies after they have composed their pieces 
and resist opening up their compositions to allow these to interfere, 

influence or even hijack their original plan. This seems to be a poor 
application of ML but the desire for control still prevails over the desire 
to explore new forms of expressivity. 

5. FIEBRINK IN HER OWN WORDS 
Q: Describe how you have worked with Laetitia over the 

past eight years. 
A: I gave Laetitia a demo of the first version of Wekinator in 2010. I 
was delighted when, a short time later, she expressed an interest in 
using ML to build a new instrument and shared with me some of the 

physical prototypes of what would become the Spring Spyre. I 
observed her experiment with a variety of physical configurations and 
feature extraction methods until she landed on the audio pickups with 
biquad filters, which seemed to get her enough information to train 
some very interesting models. Since then, we try to spend time 

together at least a couple of times a year, with long walks discussing 
our work and hacking sessions trying out new ideas. During these, 
we’ve had innumerable discussions about how she is using Wekinator 
(both the practicalities of its use and the aesthetic aims of her work), 
what she has found frustrating or confusing in the software, and what 
new features she would like to see implemented. When I redesigned 
Wekinator from the ground up in 2013, I started by showing her paper 
prototypes of the new user interface I envisioned, and she was the first 

user to try it out. Since then, many of the new features I’ve 
implemented have been driven by her ideas. 

Q: What have you learned from working with Laetitia? 

What has most surprised you? 

A: I’ve learned to see ML less and less as something whose value for 
instrument building lies primarily in its ability to build accurate models 
from training examples (the way a computer scientist would 
conventionally see it), and more as a technique that is wonderful for 

supporting richer modes of interaction with computers during both 
performance and instrument building. The composers in my first 
Wekinator participatory design workshops in 2009 planted the seeds 
of this way of thinking (e.g., see [10]), but my discussions with Laetitia 
over the last eight years have really cemented my understanding of 
how ML can be used to create complex mappings that couldn’t be built 
using programming. And this has pushed me to design tools that better 
support that type of use in practice. 

 I was initially very surprised by Laetitia’s conviction around making 
an instrument that didn’t prioritise control in a conventional sense. 
Spring Spyre is not an instrument that you play using a specific, 
practiced set of gestures in order to achieve a precise sequence of 
sounds. Yet this doesn’t mean she wants complete chaos, or to be 
surprised all the time. There is a complex balance at play, in which 
Laetitia precisely specifies some things—such as which springs drive 
which synthesis modules—and somewhat less precisely specifies 
others—such as the width or scope of these synthesis terrains. 

Together, these yield an interface that allows freedom to explore 
spaces that are new and surprising, while also likely to be engaging 
and relevant.  
 Because of this, I now think about “mapping” in instrument design 
as the process of creating a new interactive world—ideally one that 
invites exploration and discovery; this is quite different from the way 
it is sometimes discussed in the NIME literature as primarily a set of 
engineering choices that together impact on controllability, 

learnability, ergonomics, etc. (e.g., see [14]). By extension, I believe 
that many of the criticisms of the notion of “mapping” (e.g., Chadabe’s 
[4] view that mappings are one-directional, simplistic, and control-
focused) have limited applicability, as mapping can alternatively 
become a dynamic and deeply engaging activity, in which the 
computer becomes a creative partner of sorts. I’ve written previously 
[8] about how tools for instrument design that support such activity 
can be viewed as “meta-instruments,” and my work with Laetitia 

strongly informed that writing. 

Q: What changes have you made to Wekinator in response 

to your collaborations with Laetitia? 

A: I began this line of research thinking that my observations of 
composers working with Wekinator would suggest new types of ML 
algorithms to better support them. However, the truth is that the biggest 

payoffs for improving composers’ experiences have come from re-
thinking the design of the user interfaces around the ML. In response 
to Laetitia’s needs for greater flexibility, control, and ease of use of 
ML, I’ve made a large number of changes to the software in the last 
eight years. I’ve made it easier to define and change feature selection 
architectures, for instance specifying which springs impact on which 
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synthesis modules. I’ve added a lot of infrastructure to support long 
periods of evolution, experimentation, and archiving of creative 
projects, for instance making it easier to save and load trained models 
and to share models between projects (though as Laetitia has noted, 
this could still be improved by supporting “bundling” of models to 

reflect how a composer may think about groups of models as 
conceptual units). I’ve made it easy to “undo” and “redo” changes to 
models’ training, to support more flexible and low-cost exploration of 
different mappings. I’ve also made it easier to reduce the CPU load by 
turning unused models “off” until they’re needed, and by minimizing 
GUI CPU use. 
 The first version of Wekinator allowed OSC communication with 
feature extractors and sound synthesis modules in any language, but 

Wekinator was built partly with ChucK [24] and it privileged ChucK 
integrations: it included several built-in feature extractors in ChucK 
(for audio and HID devices) and provided ChucK programmers with 
a light-weight API for implementing new synthesis modules. This 
made it very easy for new users to experiment with audio and HID 
inputs, and made it simpler for ChucK programmers to connect to 
Wekinator, but at the cost of making the whole program more 
conceptually complex for everyone. I simplified Wekinator 2.0 

(released in 2015) by removing native ChucK components so that all 
feature extractors and synthesis modules had to communicate using 
OSC in the same way. I then worked with Laetitia to design a new API 
for OSC control of Wekinator, which now provides simple but 
powerful ways to integrate Wekinator with work in Max or other 
environments that can send and receive OSC. This not only allows full 
control over the ML process from the same environment in which 
synthesis is happening, but it also supports more complex musical 

structures: for instance, a composer can transition to a new section of 
a piece (with a new mapping) by sending Wekinator an OSC message 
triggering the loading of a specific new set of trained models. 
 While many of these changes may be uninteresting from a research 
point of view, they’re driven by my realization that, at the end of the 
day, I want to support work in which ML isn’t “the point” of an 
instrument. ML cannot be merely a gimmick if someone is going to 
use it in their work for years; it has to actually be useful. And ensuring 
a creator can use ML seamlessly (or at least relatively painlessly) 

within their creative process is paramount, even though it can take a 
lot of time to build ML tools that do this well. 
 It’s also important to mention that I would have never understood 
the need for all these specific changes to Wekinator based on my own 
intuition, or using observations of casual users in a workshop setting. 
It’s only by observing the software’s use by Laetitia and other 
intensive users (such as my university students using Wekinator to 
implement complex music and art projects over the length of a term or 

longer) that I’ve been able to identify and prioritise such 
improvements. 

Q: How has your work with Laetitia impacted how you teach 

interface design and creative machine learning? 

A: I’ve now taught over 100 undergraduate and masters students in 

term-long creative machine learning courses, and I’ve had several 
thousand students in my online course [15]. The biggest impact of 
working with Laetitia has been on my choices about what to teach 
them. The set of knowledge that musicians and artists need to do work 
like Laetitia’s is very different from what a typical computer science 
ML course is likely to cover. Rather than deep knowledge of how 
algorithms work or how to compare different models’ accuracy, for 
instance, students need to be able to reason about how changes to 
features and training examples are likely to change a model’s behavior. 

They need to be able to reason about how they might use such actions 
to “debug” a trained model when it is not giving them useful music or 
interaction possibilities. They need to be able to design effective 
architectures—good feature extractors and feature processing (e.g., 
normalization), choices about which features influence which models, 
and choices about how model outputs influence music or artistic 
parameters. 

 Furthermore, I try to expose students to the full scope of how ML 
can be useful in creative practice. Similar to Laetitia’s experience, I 
find it is common for students to initially want to design interfaces that 
yield precise and simplistic control (e.g., I wave my hand one way and 
trigger one sound; I wave it another way and trigger a different sound). 

While ML can support such interfaces (and can sometimes make them 
easier to build than programming, especially if analysis of video or 
many sensors is involved), such interfaces do not often enable new 
types of music nor new modes of engagement between musicians and 
sound. It is sometimes challenging to convince students to consider 
that other types of interaction may be worth exploring, but having 
toolkits that make such exploration easier does help. 

6. DISCUSSION 
Sonami’s account in Section 4 reveals several ways in which ML can 
be useful in long-term music and composition practices. Some of these 
align with and expand on previous findings from shorter engagements 
with users. For instance, work by Fiebrink et al.  in 2010 [10] suggested 
that providing access to surprise and discovery in mapping creation, 

and that enabling creation of more complex mappings, were valuable 
aspects of ML compared to designing mappings using programming 
alone. Sonami’s answers above reveal how she has managed to sustain 
these benefits in her work over many years: this includes the use of a 
physically complex input system, feature extractors that succinctly 
capture relevant information from this system (and which can be 
adapted to different configurations of the input system), and synthesis 
methods that provide access to a very wide variety of sounds under 

different parameterizations.  
 Further, Sonami has developed working strategies to better enable 
her to create a wide variety of pieces and performance techniques with 
the same physical setup. This includes manipulating the “predictability 
index” of a given mapping through her strategy for training the ML, 
intervening in the ML process in novel ways to achieve particular 
musical results (e.g., temporarily “freezing” feature values), and 
managing complexity within and across pieces by designing modular 
signal flows (e.g., creating mappings that control individual synthesis 

algorithms with a single spring, allowing modular mapping 
components to be shared across pieces or swapped in and out over 
sections of a piece).  
 To support such a practice, ML tools must support flexible, low-
level control over a number of aspects of ML. As described above, 
Sonami’s practice has required Wekinator to provide control not only 
over the iterative re-training typical of interactive machine learning 
approaches, but also over precise feature selection and signal routing, 

as well as the saving, loading, and swapping of ML components 
during composition and performance time. These actions clearly 
support creative exploration during composition and the performance 
of more musically complex works, but such actions are not typically 
foregrounded in more general-purpose ML APIs or GUI-based tools 
(which often assume that users’ efforts will be more focused on tuning 
and comparing different learning algorithms). 
  Sonami’s practice prioritises exploration, discovery, and navigating 

varying degrees of predictability and control. In such a practice, the act 
of creating a mapping is one of crafting sound and interaction spaces, 
rather than designing a control paradigm. This suggests new 
dimensions that might be considered in the design and evaluation of 
new instruments and instrument creation tools: for instance, do they 
enable effective manipulation of a “predictability index,” or make it 
easy to discover engaging new “synthesis terrains”? We are excited to 
see work in this vein by Scurto et al. [22], which explores algorithmic 

and interactive techniques that are explicitly designed to support 
exploration of new sounds. 
 Sonami’s approach to using ML has implications for teaching, as 
discussed by Fiebrink: if students are to use ML in similar ways to 
build instruments, this demands particular knowledge about ML 
practices, which is quite different from what is covered in a typical ML 
class in a computer science department. Further, both of us have 
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frequently experienced difficulty encouraging students to move 
beyond simplistic control paradigms in their work building new 
creative interfaces. Fiebrink has advocated above for exposing 
students to tools that make it easier for students to explore alternative 
paradigms; while Wekinator is one such tool, one can envision many 

other approaches, including simpler tools for making “many-to-many” 
(see [14]) mappings without ML.  
 Sonami has noted the paucity of synthesis methods that seem able to 
take full advantage of the type of mappings offered by ML, in which a 
potentially huge number of control parameters are simultaneously 
adjusted, often using non-linear and many-to-many mappings, 
providing access to a very wide space of potential sounds and sound 
trajectories. We believe it is exciting to consider what type of new 

synthesis algorithms might be constructed to exploit usage in 
mappings created with ML. 
 Finally, we note that just as there is little published literature 
exploring how composers or performers have engaged with ML or 
other NIME technologies over a period of many years, there is little 
literature revealing how NIME technology creators have worked with 
and been influenced by their users over such time periods. Fiebrink has 
emphasized above the value of working with Sonami and observing 

other users over time; these have led to new ways of thinking about the 
value of her tools and to many tool improvements. We hope to see 
other such creators engage in long-term collaborations or longitudinal 
study of users’ experiences, and to see published work sharing how 
insights from such collaborations influence their technology design. 

7. CONCLUSION 
In this paper, Laetitia Sonami has described her experiences using ML 
as an instrument builder, composer, and performer. These experiences 

illuminate some of the benefits, challenges, and working strategies that 
may arise with the use of ML in instrument mapping creation over a 
sustained period. Sonami’s discussion of her practice also reveals new 
perspectives on familiar NIME conversations about mapping and 
control. Rebecca Fiebrink has additionally described here how her 
work with Sonami has changed her understanding of mappings and of 
the utility of ML in instrument design, and led to concrete changes to 
the Wekinator ML software and to her teaching. We have discussed 

how these experiences can deepen understanding of the value of ML 
for instrument creation, and how they can inform NIME research, tool 
development, and pedagogy. Many of our insights in this domain have 
been made possible through our long-term collaboration as an artist 
and a technology creator, and we urge others in the NIME community 
to engage in such collaborations as well as to find ways to reflect on 
and share the knowledge emerging from them. 
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