
URack: Modular audio-visual composition with Unity and
VCV Rack

Matthew Hughes
Animal Logic Academy,

University of Technology Sydney
Australia

matthew.d.hughes@student.uts.edu.au

Andrew Johnston
Animal Logic Academy,

University of Technology Sydney
Australia

andrew.johnston@uts.edu.au

ABSTRACT

This demonstration presents URack, a custom-built audio-
visual composition and performance environment that com-
bines the Unity video-game engine with the VCV Rack soft-
ware modular synthesiser. In alternative cross-modal solu-
tions, a compromise is likely made in either the sonic or vi-
sual output, or the consistency and intuitiveness of the com-
position environment. By integrating control mechanisms
for graphics inside VCV Rack, the music-making metaphors
used to build a ‘patch’ are extended into the visual domain.
Users familiar with modular synthesizers are immediately
able to start building high-fidelity graphics using the same
‘control voltages’ regularly used to compose sound. With-
out needing to interact with two separate development envi-
ronments, languages or metaphorical domains, users are en-
couraged to freely, creatively and enjoyably construct their
own highly-integrated audio-visual instruments.

This demonstration will showcase the construction of an
audio-visual patch using URack, focusing on the integration
of flexible GPU particle systems present in Unity with the
vast library of creative audio composition modules inside
VCV.

Author Keywords

audio-visual, audio-visual composition, modular synthesis,
real-time graphics, game engine

CCS Concepts

•Applied computing→ Sound and music computing; •Human-

centered computing → Interactive systems and tools;

1. AUDIO-VISUAL SOFTWARE SYSTEMS
A common method for creating audio-visual art with soft-
ware is to construct the system using a multimedia pro-
gramming environment such as Max [3] or Pd [8]. These are
graphical environments in which applications are ‘patched’
together by drawing connections between independent nodes.
Component libraries allow practitioners to combine audio
and graphical development in the same environment, achiev-
ing a high level of integration between the sound and the
visuals.

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

Environments like these typically have their roots in sound-
sculpting, and often lack graphical fidelity and flexibility
compared to alternative environments focused on graphics.
Tight coupling between the audio and visual faculties is im-
portant for creating a convincing multi-modal work, so some
forego higher-fidelity for a greater level of integration and
immediacy [10].
Artists who desire more depth in graphics often create

their own visual engines using creative coding libraries such
as OpenFrameworks and Cinder [7, 2], and use these to
accompany separate audio engines. This approach however,
requires an advanced programming skill set.
Alternatively, video game engines offer artists a high fi-

delity, real-time graphics pipeline and feature-rich tooling.
Engines such as Unity [9] and Unreal [5] provide high-level
control over meshes, lighting, physics, particle systems, fluid
and cloth simulations, with huge communities (and corpo-
rations) furthering the state-of-the-art in these technologies
and their interfaces.
Audio-visual artworks that utilise video game engines for

graphics typically don’t use the game engine for audio as
well. The maturity of environments like Max and DAWs
like Ableton Live, with greater focus on sound manipula-
tion make them far better candidates for being creative with
audio than anything built into a game engine itself. There-
fore, it is common for this software to be used as an audio
backbone bound to a game engine handling the graphics. A
common way to unify the two engines is with a (local area
or internal) network connection, as demonstrated in [4], and
often through use of the Open Sound Control (OSC) pro-
tocol [6].
However, approaches that rely on combining separate sound

and graphical engines often require the user to program in
two distinct environments—fragmenting the creative pro-
cess with the use of multiple languages or contrasting com-
positional metaphors.

2. WEARING TWO CAPS
A system with a separated sound and graphical engine forces
the artist to split their process into its modalities and al-
ternate between composing for both. The artist must put
on their ‘programmers cap’ to make meaningful changes to
the visual world, and reason about their composition within
the metaphorical systems present in their graphical engine.
Then they can switch to their audio engine, put on their
‘audio-production cap’, and reason about their composition
using musical metaphors.
Some solutions attempt to bridge this gap, pushing for

high-quality composition of both modalities within the same
environment. [1] embeds the ‘Chuck’ audio programming
language inside Unity, in order to streamline the composers
workflow: Unity and Chuck code can share memory and

321



Figure 1: URack’s ‘Mirage-2000’ module projects a sequence of images onto a point-cloud that can be morphed and mangled.

events, and be edited within the same text editor (albeit in
two different languages). [7] abstracts the control of a fluid
simulation built in OpenFrameworks behind a series of cus-
tom Pure Data modules, opening it up for interfacing within
Pd. These projects are similar in intent to URack, but their
interfaces are geared towards creative-coders rather than
uninitiated artists.

3. VCV RACK
VCV Rack is a software modular synthesiser. Function-
ally, it is similar to environments like Max and Pd; mod-
ules inside VCV are ‘patched’ together using virtual cables,
however its core metaphor is one based on the ‘Eurorack’
modular synthesis paradigm, ultimatley making it an inter-
face geared more for electronic musicians than creative pro-
grammers. A patch in VCV is built by combining together
modules from many different manufacturers—each with dis-
tinct design aesthetics and interaction mindsets that make
them more comparable to ‘instruments’ than programming
objects.

4. URACK
URack is a custom-built software solution that combines
the feature-packed, flexibly deployed Unity game engine
with the modular music-making metaphors of VCV Rack.
Users familiar with modular synthesis are able to create
high-fidelity visuals by making use of the graphics-oriented
modules that ship with URack. Conversely, users familiar
with programming Unity are able to integrate sound de-
sign in their existing scenes by utilising the URack API for
Unity.

Comparing it with a similarly integrated audio-visual com-
position environment like Max with Jitter, URack offers an
overall higher-level interface, allowing artists to compose
works using the metaphor of a modular ‘instrument’, as
opposed to a programming environment. URack also ex-
poses the benefits of working with a game-engine, including
higher-fidelity simulations and straightforward deployment
to a wider range of devices (such as smartphones and XR
headsets).

The communication between VCV Rack and Unity works
using Open Sound Control (OSC) over a UDP network con-
nection. When OSC messages are received at the Unity in-
stance, any publicly exposed script property or VFX-Graph
property that is addressed by VCV will be updated on the
next frame. Modules can target any number of Unity in-
stances at different network addresses, allowing one module
inside Rack to manipulate graphics on a number of presen-
tation devices simultaneously. A synchronised scene can be
displayed on multiple computers and projectors, and at the

same time inside an XR headset, for example.
URack modules comply with the Eurorack ‘voltage stan-

dards’ (10 volts peak-to-peak), meaning any module that
outputs voltage in VCV is now able to control Unity. Users
have access to the constantly growing library of thousands
of VCV modules, and are able to utilise LFOs, sequencers,
other complex modulation sources and even audio signals
to control visual systems.
Additionally, URack includes tools and an API for Unity

developers that makes it easy to convert existing game-
engine components into new modules. Using a python script,
‘front-panel’ designs in the form of vector graphics files can
be converted into functioning URack modules without need-
ing to write any VCV Rack plugin or OSC networking code.
This demonstration will showcase URack inside VCV,

focusing on how this approach allows audio-visual artists
to reason about graphical manipulation using sound-design
metaphors, while relieving the friction present when an artist
must alternate between separate compositional environments
for each modality.

5. REFERENCES
[1] J. Atherton and G. Wang. Chunity: Integrated

Audiovisual Programming in Unity. In Proceedings of

the International Conference on New Interfaces for

Musical Expression, Virginia, US, 2018.

[2] N. N. Correia. Prototyping audiovisual performance
tools: A hackathon approach. In Proceedings of the

International Conference on New Interfaces for

Musical Expression, Baton Rouge, US, 2015.

[3] Cycling 74. Max/MSP. https://cycling74.com.

[4] A. Dolphin. Compositional applications of a game
engine: Creative practical applications in sound art
and music composition. In Proceesings of the IEEE

Consumer Electronic Society’s Games Innovation

Conference, London, UK, 2009. IEEE.

[5] Epic Games. Unreal. https://unrealengine.com.

[6] R. K. Hamilton. UDKOSC: An immersive musical
environment. In Proceedings of the International

Computer Music Conference, Huddersfield, UK, 2011.

[7] A. Johnston. Fluid simulation as full body
audio-visual instrument. In Proceedings of the

International Conference on New Interfaces for

Musical Expression, page 5, Daejeon, Korea, 2013.

[8] Miller Puckette. Pure Data. https://puredata.info.

[9] Unity Technologies. Unity. https://unity.com.

[10] G. Wakefield and W. Smith. Cosm : A toolkit for
composing immersive audio-visual worlds of agency
and autonomy. In Proceedings of the International

Computer Music Conference, Huddersfeld, UK, 2011.

322


