Interactive Mobile Musical Application using
faust2smartphone

WENG Ruolun
Shanghai Conservatory of Music
20 Fenyang Road, Shanghai, China
allen1991shcm@gmail.com

ABSTRACT

We introduce faust2smartphone, a tool to generate an edit-ready
project for musical mobile application, which connects Faust
programming language and mobile application’s development. It is
an extended implementation of faust2api. Faust DSP objects can be
easily embedded as a high level API so that the developers can
access various functions and elements across different mobile
platforms. This paper provides several modes and technical details
on the structures and implementation of this system as well as some
applications and future directions for this tool.

Author Keywords

faust, musical mobile application, motion processing

CCS Concepts

* Applied computing — Sound and music computing;
Performing arts; *Software and its engineering — Software
notations and tools — Development frameworks and
environments — Application specific development
environments

1. BACKGROUND

Mobile devices are increasingly used as musical instruments in the
context of interactive performances and installations. Current real-
time audio or DSP (Digital Signal Processing) API (Application
Programming Interface) provided by common development
environments are written in different programming languages and
not easily approachable by composers and sound engineers of
interactive electronic music.

We introduce faust2smartphone, a tool to generate editable musical
mobile application projects using the Faust programming language.
faust2smartphone works as an extension of faust2api. Faust DSP
objects can be easily embedded as a high level API so that
developers can access various functions and elements across
different mobile platforms.

1.1 Faust and faust2api

Faust!"! (Functional Audio Stream) is a functional programming
language for sound synthesis and audio processing with a strong
focus on the design of synthesizers, musical instruments, audio
effects, etc. Faust targets high-performance signal processing
applications and audio plug-ins for a variety of platforms and
standards. The core component of Faust is its compiler. It allows to
"translate" any Faust DSP specification to a wide range of non-
domain specific languages such as C++, C, JAVA, JavaScript,
LLVM bit code, WebAssembly, etc. In this regard, Faust can be seen
as an alternative to C++ but is much simpler and intuitive to learn.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

Thanks to a wrapping system called "architectures," codes generated
by Faust can be easily compiled into a wide variety of objects
ranging from audio plug-ins to standalone applications or
smartphone and web apps, etc. If you are the users of other
programming languages such as Csound, Max, PureData,
SuperCollider, and SOUL, Faust also provides the bridge linking to
them.

faust2api'?, is a tool to generate custom DSP engines for Android
and iOS using the Faust programming language. Faust DSP objects
can easily be turned into MIDI-controllable polyphonic synthesizers
or audio effects with built-in sensors support, etc. The various
elements of the DSP engine can be accessed through a high-level
API, made uniform across platforms and languages. At its highest
level, faust2api is a command line program taking a Faust code as its
main argument and generating a package containing a series of files
implementing the DSP engine. Various flags can be used to
customize the API. The only required flag is the target platform.
The goal of the faust2api is to provide a tool to easily generate
custom APIs based on one or several Faust objects. On one hand,
Faust DSP libraries implement hundreds of open source DSP
algorithms that can be turned into C++, C, JAVA, JavaScript and
LLVM bit code and embedded in your applications. On the other
hand, Faust C++ libraries can carry out a wide range of tasks going
from connecting Faust DSP objects to a specific audio engine
(CoreAudio, OpenSL/ES, Alsa, JACK, etc.) or adding MIDI and
polyphony support, sensor data handling, etc. to the same object.
Most major Faust targets are supported: iOS, Android, OSX
CoreAudio, ALSA, JACK, PortAudio, RTAudio, openFrameworks,
JUCE.

1.2 Why using faust2smartphone

The Faust architectures and faust2api allow us to focus more on
sound design in Faust. The Faust distribution already comes with a
comprehensive series of tools to generate mobile applications such
as faust2ios, faust2android, and faust2smartkeyb, so why we create
anew one?

We use faust2ios and faust2android in the framework of the
“SmartFaust” project to generate mobile applications with
standard Faust user interfaces (e.g., sliders, buttons, etc).
faust2smartkeyb is specifically designed to make smartphone-
based musical instruments with a keyboard interface. It also
requires the use of a specific metadata declaration to define the
keyboard information. The SmartKeyboard UI allows to
implement a wide range of controllers (basic keyboards,
isomorphic keyboards, pads, X/Y controllers, etc.) on a touch-
screen and can be configured directly in the Faust code. These
two sets of tools are relatively closed environments, faust2ios
and faust2android are more for general purposes, we take these
two frameworks as the fundamental projects for Faust mobile
applications, because they make it easy to quickly test your
Faust code with a basic controllable interface. faust2smartkeyb
is more oriented for the keyboard performance implementation.
On the other hand, these specificity makes the customization
and integration with other frameworks hard. faust2api is a

generic tool to generate a set of API files for different platforms
including mobile devices. However, it only creates a raw file
package with one C++ and one header file that needs to be re-
generated each time a new project is started from scratch.
Comparing the standard audio signal processing workflow in
JUCE and openFrameworks, faust2api help us to facilitate the
sound programming and keep the possibility to integrate other
third-party addons from their environments.

We wanted to extend the capabilities of faust2api by adding more
specific functions to facilitate the development of musical mobile
applications. In this paper, we present faust2smartphone which
provides the same features on iOS and Android (Windows phones
are not supported yet). For now, faust2smartphone is a separate
branch and maintained on Github. Normally it should work with the
latest version of the Faust official branch.

You can find all the source of this project on
https://github.com/RuolunWeng/faust2smartphone.git

2. OVERVIEW

Followed by the installation instruction of Faust and
faust2smarphone, you are ready to explore the function by
simply taping in your terminal “faust2smartphone -help” for
the details. As faust2smartphone is designed for iOS and
Android, “-ios, -iosmotion, -iosplugin” and “-android, -
androidmotion, -androidplugin” will guide you to the target. As
illustrated in Figure 1, faust2smartphone inherits from
faust2api, so almost all the options for mobile systems are
ready to be called, including: “-oscall/-oscalias” will activate
the OSC (Open Sound Control) interface; “-soundfile” to
active libsndfile support.

2.1 Simple Mode

When simple mode is used, faust2api is automatically called and
copies the generated files (e.g., DspFaust.cpp and DspFaust.h) to a
template XCode or Android Studio project. That is what we call an
“edit-ready” project, which bears the same name as the Faust code,
embeds the Faust audio DSP engine and is ready to be used. This

project is just a workplace to start, all the faust2api functions can be
used and custom interfaces can be designed.

2.2 Motion Mode

As illustrated in Figure 2, this special mode is based on motion.lib
and can be used as a platform to prototype musical applications
involving motion gestures. motion.lib uses the accelerometer,
gyroscope, and rotation matrix signals provided by smartphones as
an input. The output is the result of sensor’s processing. In this mode ,
we have two DSP engines:

* DspFaust, which is the same as in simple mode and that is used for
audio signal processing;

* DspFaustMotion, which is the pre-compiled engine for our motion
processing.

This is an engine modified from the simple DspFaust structure in
order to process motion rather than audio data, and hence is not
driven by the audio driver like CoreAudio in iOS. The engine runs
at the sample rate of DspFaust divided by the buffer size of the
DspFaust and a block size of 1. We think that this is enough for
motion. Using audio processing rate for the sensors seems too
expensive, that’s also why we don’t import motion.lib directly in the
Faust code.

How to retrieve the sensor values and get the corresponding result
from the DspFaustMotion engine? We decided to provide access to
the inputs and outputs of the motion engine, which means that we
can send the sensor’s value and get the result through two new
functions: setlnput() and getOutput().

Next question is how we check in the motion.lib which function the
Faust code wants to call and how to affect the right controller. The
first thing we need to do is a declaration in the metadata of the
controller:

tot=hslider (“tot[motion:ixp]”,0,0,1,0.01);

Faust code

faust2smartphone
Android Studio project
i0S Xcode project .
|| Android API
, (JAVA)
faust2api a .
i0S API — Faust API Motion API
(C++ Native) ¢
—| Faust JNI Motion JNI }—
Motion API Faust API
(C++ Native)
v o | _
-
Motion DSP Faust DSP > Faust DSP <+ Motion psp [
v v > I l
»
Motion engine Audio engine
Audio engine Motion engine
Budio in/out Audio in/out

Figure 1. Implementation of faust2smartphone

Smartphone

7

[e)
y-

—
X+ propagate sensor data

*Motion Motor: Faust API for the traitement of MOTION

DspFaustMotion.cpp

motion.lib update possible

DspFaustMotion.h
dspFaustMotion.propagateAcc

iOS / Android

faust2smartphone

dspFaustMotion.propagateGyr
*dspFaustMotion.sendInput(channel,value)

Motion Engine: Motion "Dummy Audio"
Drived by "Timer" at speed of SR/BS

Active the process needed
dspFaustMotion->setParam("MUTE",1);

*dspFaustMotion->getOutput(channel)
Change the corresponding controller

DspFaust.cpp

-soloios/soloandroid
[-0sc -cuemanager]

toto.dsp
DspFaust.h

syndax

motion.lib
input -> enable -> output

eg:process(brasG_x,brasG_y,brasG_z....)
= vgroup("Motion",

(brasG_cours(brasG_x,brasG_y,brasG_z)
: enable(checkbox("brasG_coursOn"))

syndax

toto.dsp
titi = hslider / checkbox / nentry

Mode MotionLib

https://github.com/RuolunWeng/faust2smartphone

update: Dec 2017

Audio Engine: iOS-CoreAudio
/ Android audio

eg:
tata = hslider("p1[motion:ixp]",0,0,1,0.01);
cue = nentry("cue",0,0,3,1);

touchGate = checkbox("touchgate");

*Audio Motor: Faust API for the traitement of AUDIO

Figure 2. Motion mode of faust2smartphone

where “motion” is the keyword, followed by which function you
want to call in the motion.lib.

By default, all the processes in motion.lib are muted to save CPU
consumption; only if the program detects that you call the function,
it will activate the corresponding process and affect this controller
with the result calculated. We have some other reserved keywords
declarations:

toto=checkbox (“touchgate”) ;
tata=nentry(“cue”,0,0,5,1);
tit=hslider (“screenx/screeny”,0,0,1,0.01);

This suite works with a sub-mode of motion mode, we call it
cueManager. We provide a simple interface for this mode to deal
with the code composed with different cues. To active cueManager,
you just need to add —cuemanager in the command line.

FaustTips:part1

— "

Reset setRef

-

Reset setRef o

- |ni H

Figure 3. Interface of faust2smartphone

2.3 Plugin Mode

This mode is not an audio VST plug-in generator. The idea is to have
an engine which uses Faust code to process non-audio signals, the
purpose is not to generate sound, but capture the signal digital value
as envelope follower to affect other digital processing like video or
lightening etc. The engine which is simplified version of
DspFaustMotion from the motion mode will be computed by a
simple timer, we can use the result for any parameter of post-
processing.

For example, if we want to use the amplitude of an oscillator to
control the alpha of the phone’s screen, the output of 0s.0sci(0.5) can
be connected to the alpha parameter. The user then needs to
configure this manually in the script using the methods we already
provide: render() and getOutput(), the template of plugin mode is a
simple example to get started.

3. APPLICATIONS

faust2smartphone has already been used in these productions:
“Audio Guide” is an application designed by Christophe Lebreton
and me for blind person to experience a special sound map in the
project created by GRAME and La Maison des Aveugles in Lyon.
Based on the sound processing generated by faust2smartphone, we
combine another framework in iOS, CoreLocation/CLBeacon for
the Beacon part, which allows Bluetooth devices to broadcast or
receive tiny and static pieces of data within short distances. Check
the introduction online: http://www.grame.fr/events/carte-sonore-
de-traces-en-traces.

A brand new creation named “Virtual Rhizome” at 2018 Biennale
of Music in Lyon, created by Vincent-Raphaél Carinola and
Christophe Lebreton, a solo performer armed by two smartphones,
is diving into a virtual sound architecture that he must dispense and
that changes every moment. We use the motion mode in
faust2smartphone, with an interface modified from the cueManager
sub mode. You can check a video clip online:
https://www.youtube.com/watch?v=cGZB44K19YO0.

“sfPivoine” is a mobile application which I created for a participative
performance selected by International Computer Music Conference
(ICMC) 2018, “Pivone, for Pipa, Electronic music, Kunqu Opera
and Smartphones of public”’. The spectators could have an
immersive and augmented experience with their participations. This
application merges the project generated by faust2smartphone and
the simple audio-visual part using some animation and AR
(Augmented Reality). The application is both available at App Store
and Google Play.

All of these projects are still maintained and envolving based
on the previous feedback. “Audio Guide” is becoming the
general experience option in the residence for the blind. Every
year, the residents will update the content of the app with their
new sound creation. An “open-day” in each July will also
welcome the public for a special event. “Virtuel Rhizome”
became one of the reference projects of mobile musical
applications, implemented for its related sound installation,
also generalised under the concept called “Smart Hand
Computer” by Christophe Lebreton. “sfPivoine” keeps the trend
of download activity by attacting many chinese culture lovers.
With the positive impacts, there are also some critical options
on the perfomance with smartphone, like the mixing with
chinese opera and traditionnal instrument. They help us to keep
in mind that we should always justify our choice of the
application, technical frame must serve the global idea
smoothly.

4. FUTURE WORKS

Elaborating the documentation of faust2smartphone is the essential
task for the next step. In order to well guide people to use the project,
we will also enrich the examples and instructions.

For the people who is interesting for the development of motion.lib,
which is used in the motion mode, they are welcome to cooperate
with us for the new functions based on the sensors etc.

Since there are many other frameworks, programming languages
and Web development, more and more adapt to the mobile
environment, how to identify or merge with them to make a more
flexible project is also our goal.

For the applications, we will try to finish the performance version
and publish them in the app store. Last but not least, we still need
more user cases to test the workflow.

5. ACKNOWLEDGEMENT

Special thanks to Mr. LEBRETON Christophe, Mr. LETZ Stephane,
Mr. ORLAREY Yann, Mr. POTTIER Laurent for their supports
during the research.

The paper is also based on the speech of the 1* International Faust
Conference, which is held in Mainz of Germany in 2018.

6. REFERENCES

[1] Faust Website: http://faust.grame.fr/

[2] R.Michon, J. Smith, S. Letz, C. Chafe and Y. Orlarey,"
faust2api: a Comprehensive API Generator for Android and
i0S," in Proceedings of the Linux Audio Conference (LAC-
17), Saint-Etienne, France, 2017.

[3] R.Michon, J. O. Smith, C. Chafe, M. Wright and G.
Wang, "Nuance: Adding Multi-Touch Force Detection to
the iPad," in Proceedings of the Sound and Music
Computing Conference (SMC-16), Hamburg, Germany,
2016.

[4] R.Michon, J. O. Smith and Y. Orlarey, "MobileFaust: a Set
of Tools to Make Musical Mobile Applications with the Faust
Programming Language," in Proceedings of the Inter-

(5]

6]

national Conference on New Interfaces for Musical
Expression, Baton Rouge, USA, 2015.

R. Michon, "Faust2android: a Faust Architecture for
Android," in Proceedings of the 16th International Conference
on Digital Audio Effects (DAFx-2013), National University
of Ireland, Maynooth, Ireland, Sept. 2-5, 2013.

Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP
Programming”, Delatour: Paris, France, 2009.

