MINDMIX: Mapping brain activity to congruent audio mixing
features

Duncan Williams

Acoustics Research Centre
University of Salford, Manchester UK
d.a.h.wiliams@salford.ac.uk

ABSTRACT

Brain-computer interfacing (BCI) offers novel methods to facilitate
participation in audio engineering, providing access for individuals
who might otherwise be unable to take part (either due to lack of
training, or physical disability). This paper describes the development
of'a BCI system for conscious, or ‘active’, control of parameters on an
audio mixer by generation of synchronous MIDI Machine Control
messages. The mapping between neurophysiological cues and audio
parameter must be intuitive for a neophyte audience (i.e., one without
prior training or the physical skills developed by professional audio
engineers when working with tactile interfaces). The prototype is
dubbed MINDMIX (a portmanteau of ‘mind’ and ‘mixer’),
combining discrete and many-to-many mappings of audio mixer
parameters and BCI  control signals measured via
Electronecephalograph (EEG). In future, specific evaluation of
discrete mappings would be useful for iterative system design.
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1. INTRODUCTION

Brain-computer interfacing (BCI) can be used to adapt various
neurophysiological measurement techniques to the control of a wide
range of applications, for example gaming [1]. Music can have a huge
impact on our day-to-day lives, and is increasingly being correlated
with mental health and wellbeing [2]. In such contexts, music has been
shown to reduce stress, improve athletic performance, aid
mindfullness, and increase concentration. There is a large potential
user base for music amongst people who might otherwise be unable to
engage in music making activities via traditional means (either due to
lack of training, or physical disability), who might benefit from
biophysiologically-informed computer aided interaction with music.
BCI hardware is becoming increasingly affordable and accessible,
giving rise to music specific applications in the emerging field of brain-
computer music interfacing, (BCMI) [3], [4]. There are many reasons
why audio engineers prefer tactile control of mixing processes [5],
which partially explains the significant interest, and progress being
made in the field of haptic augmentation in audio and musical
instrument design [6], [7]. There is a distinction to be made between

-l remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright

1 The Electroencephalogram (EEG) is a device for measuring electrical activity across the brain
via electrodes placed across the scalp [10]. In the case of the instrument described here, the
standard 10/20 arrangement was used to determine electrode placement [11].
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active and passive BCI control. Active control means that the user
must be able to take a clear agency over the resulting actions, for
example, by imagining a movement and seeing a direct correlation in
the resulting system behaviour. Passive control would include
detection of control signals which are not directly controllable by the
end user (for example, heart rate, or galvanic skin response for
emotional state estimation). Beyond encouraging inclusivity and
participation through facilitating access to audio engineering processes
via linear mapping strategies, the potential to harness unconscious
processes (passive control) suggests that augmented audio
engineering, for example, individually adaptive, responsive, or
context-dependent remixing, may be a possibility. Such technology
could be married together with the significant advances in music
information retrieval (MIR), non-linear music creation [8], and
context-adaptive music selection in the future.

2. BACKGROUND & PREVIOUS WORK

BCI is gradually becoming more established, but hamessing this
technology for music making, or controlling more general interactions
with music (for example, using brainwaves to select music playlists
autonomously) is less common and something of an emerging field.

Significant progress towards functional Brain-Computer Music
Interfacing, or BCMI, was made in the 1990’s, for example Biomuse
[9] which mapped low-level neuroelectric and myoelectric signals to
the generation of MIDI data in real-time. Beyond music composition
tasks, some specific work has attempted to hamess the
electroencephalogram, (EEG)' and related signals in an audio
engineering context. For example, Miranda et al. attempted to create a
control signal for volume automation in a basic audio mixer using a
simple metric from EEG, the amplitude of alpha and beta waves [12].
This work attempted to use BCI to control the amplitude of two
separate audio faders in a virtual (digital audio workstation) mixer.
Beta frequencies are more often associated with active states of mind,
but the process of actively mixing audio requires both attention and
precise control. Therefore, this choice of parameters is somewhat
incongruous for the end-use application: Becoming ‘calmer’ is not
analogous to any mixer property, nor generally adaptable to the task of
mixing a range of musical material, though specific musical examples
might be more relevant - for example, in a case where a calmer state
of mind would cause the level of active or energetic music to lower,
and raise the level of calmer sounding music. Other work harnessing
existing BCI metrics and adapting them for musical control includes
use of the P300, ERP, or ‘oddball’ paradigm [13], measurement of
specific frequency bands (activity in alpha, beta, gamma, or mu) [14],
[15], steady-state visually evoked potential (SSVEP) [16], [17], and
measures of asymmetry [11], [18], all via EEG.

Related research challenges include increased speed of
classification, for example by machine learning techniques [19] or
accuracy of the interface [20]. Generally these are challenges related



to the type of data processing employed, either statistical data
reduction or noise reduction and artefact removal techniques in other
measurement paradigms, such as functional magnetic resonance
imaging (fMRI) [21].

In the case of music mixing, there are many application-specific
goals that need to be considered in order for the BCMI system to best
serve its intended use. In, for example, a music therapy context, one
advantage of a BCMI system is that it might be used by a person with
no a priori experience or musical training, in order to engage in music
production in context. However, in order to do this the BCMI must be
capable of performing music which is well correlated with the signal
being analysed as a control signal (e.g., BCI parameters mapped
according to constraints of melody, harmony, rhythm, or genre) yet
also allows the user enough degrees of freedom to feel that they are
truly the agent of their performance. Therefore criteria for the
specification of a suitable BCMI system must include consideration of
both agency and conformity to production rules.

There is a marked difference between systems for controlling music
directly by means of BCL and systems for sonification or musification
of brainwave data (typically EEG), [22], [23]. Sonification is a
process whereby data is directly presented by auditory means (for
example, an alarm, telephone ring, etc.) [24]. In terms of brain-
computer music applications, sonification of EEG has become
common [22], [23], [25] with many existing mappings being used.
Mapping is particularly important in the design of such systems, as the
range of controls available (even in hybrid systems) is still minimal in
comparison to the spread of possible actions involved in music
making. An overview of different types of music mapping from
complex biomedical data and subsequent evaluation strategies, is
given in [26]. An overview of specific mapping techniques for digital
instrument design is given in [27]. Various combinations of mapping
strategies exist, including one-to-one, one-to-many, and many-to-
many combinations [28]. It is in the mapping stage that a system for
controlling audio mixing functionality derives success through utility
(or lack thereof in the case of ineffective mapping). Work to establish
correlation between such parameters and plausible brain signals is
beyond the scope of this paper, but would likely be well received by
the applied BCI community as part of a research road map.

As mentioned above, previous attempts to use BCI to control
audio mixing parameters have been designed solely to use alpha and
beta activity to control the amplitude of two separate faders. Our
approach is radically different in design and implementation. For the
prototype under evaluation here, control metrics and mappings were
selected with the intention that they would be congruent between
operator and operation.

2.1 EEG Metrics

Several metrics for extracting meaningful control data from EEG are
common in BCI systems. The P300 ERP (Event Related Potential, or
‘oddball’ paradigm ) has been used to allow active control over note
selection for real-time sound synthesis [29], [30]. Such methods are
not dissimilar to ERP spelling systems, e.g., [31], [32], which are now
increasingly common in the BCI world, though adapted to musical
notes rather than text input. Stimulus-responsive input measures, for
example, the SSVEP? [16], have been adapted to real-time score
selection [34]. Active control by means of Mu frequency rhythm and
motor imagery are also becoming popular as control signals for
various applications, including avatar movement in virtual reality,
operation of spelling devices, and neuroprostheses [15], [32]. The
challenge, then, is in devising and evaluating mappings which are most
suited to task-specific control — in this case, audio engineering
processes, more specifically, mixing processes. MINDMIX control
mappings were selected according to this philosophy. For example,
once a particular channel has been selected, left or right motor imagery

2 SSVEP is a response to visual stimulation at a given frequency and integer multiples thereof,
measurable in the visual cortex. For a detailed explanation of the signal characteristics under
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can be actively engaged to adjust the panorama of an audio source to
move a sound image between left and right loudspeakers in a 2-
channel stereo configuration. This is a many-many mapping wherein
the channel is first selected by means of SSVEP, then the pan control
selected by ERP, before the pan value is adjusted according to Mu L/R
balance.

The range of tactile functions the MINDMIX prototype aims to
augment are as follows: Transport control (play, stop, fwd, rev), fader
select and level (individual channels, buss, and FX retumn),
potentiometer select and adjust (pan, parametric EQ), and channel
switching (solo, mute, insert, EQ in/out). Each of these parameters has
been mapped to a sequence of actively controllable metrics,
combining motor imagery (left and right), SSVEP, and ERP.

The MINDMIX prototype focusses solely on mixing (including
remixing, and post-production tasks), rather than on source capture or
recording. Therefore, there was no need to include functionality such
the various categories of record which a transport bar might exhibit in
a fully featured console or digital audio workstation.

3. SYSTEM OVERVIEW

Tables 1 and 2 show EEG metrics and mappings to parameters as
implemented in the prototype system. To demonstrate the application
of passive BCI measures (e.g., alpha, beta, and asymmetry), a master
FX send and return was also implemented under control of the relative
level between beta and alpha (greater level of alpha resulting in a
“wetter balance”, one with a higher ratio of effect to unaftfected signal).

Table 1 Mapping between EEG metric and generic mixer
control types

Mixer parameter EEG metric

Channel select SSVEP (specific frequency)

Switch select (e.g., select a ERP
rotary potentiometer, switch

on/off)

Adjust rotary potentiometer Motor imagery (left, right)

Adjust fader amplitude SSVEP duration

Transport control (play/stop) SSVEP and ERP

Combinations are accessed according to context (i.e., a channel is
selected before a specific parameter is chosen and then varied
according to motor imagery in the case of potentiometer, SSVEP
duration in the case of faders, and ERP in the case of switches). Two
common mixer parameters were not implemented in the pilot
mapping: EQ width (i.e., semi-parametric EQ only), and channel FX
send controls. Real-time input is analyzed and filtered, including
artefact removal to produce simple control signals. Control signals are
then mapped to mixer parameters; sent by Open Sound Control to
generate MIDI Machine Control. The signal flow is a feedback loop
comprising 16 channels EEG->data smoothing->semantic content
analysis -> classify ->route to mixer parameter->EEG, shown in
Figure 1.

Combinations of mappings (i.e., many-many mapping) allows for
a channel to be selected using SSVEP, followed by a potentiometer
(e.g., pan, or semi-parametric EQ frequency/gain) to be selected
according to ERP, before the value of the potentiometer itself is set
according to imagined motor imagery (i.e., left, or right). SSVEP
allows users to make a selection by focusing their gaze on a visual

analysis, the reader is referred to [16], [17], and to [33] for a review of use in various BCMI
platforms



stimulus oscillating at a given rate. As well as initial parameter
selection, SSVEP also allows for second level of control by mapping
the duration of the gaze with non-linear features, for example
amplitude, allowing for a degree of continuous control i.e., after
selecting a specific channel the duration of a user’s gaze can be used
to adjust the fader for the selected channel accordingly. A similar effect
could be achieved using eye-tracking in a hybrid system, using
duration of gaze as a secondary mapping for amplitude. The
parameters which are most useful for broad user participation in terms
of transport across the digital audio workstation are play, stop, select,
and various level parameters. It is important to consider the most
meaningful signal type for each parameter in the mapping; some of
these control signals have analogous actions in a mixer, for example,
motor cortex with transport controls (stop, go, fast forward, rewind),
and some have analogous parameters in music (SSVEP to non-linear
adjustment of amplitude via faders). However, partly due to the
infancy of the use of BCI for music making, the selection of these
combinations is necessarily somewhat arbitrary, and therefore
methods for evaluating the success of these mappings is necessary.

Table 2 many-many mappings for mixer parameters.

Mixer parameter Many-many mapping

Channel volume SSVEP (select) and SSVEP

duration (gain)

Buss volume ERP (select) and SSVEP

duration (gain)

Master FX return volume Alpha/Beta balance

Channel pan SSVEP (channel select), ERP
(select pan), Motor imagery

(adjust left-right balance)

Channel EQ freq SSVEP (parameter select),
Motor imagery (adjust
frequency range low-high)

Channel EQ gain SSVEP (parameter select),

SSVEP duration (gain)

Channel insert in/out, EQ ERP

in/out, Solo

The system is implemented in OpenVibe with Max/MSP and
Reaper digital audio workstations. As described in the introduction,
our focus is on using relatively well-known metrics in a music control
context. Any number of statistical data reduction techniques might be
used in the signal analysis block - For details of previous studies using
principal component analysis for music measurement when analyzing
EEQG, the interested reader is referred to previous work in [4], [35]-
[37].

4. DISCUSSION AND FURTHER WORK

A number of paradigms for the evaluation of BCI systems exist,
however they often focus on technical or methodological details.
There is a tendency in BCI work to prioritise technical implementation
in research reporting, for example considering increased speed or
accuracy of a system, rather than the application itself. For the
purposes of this work, which combines existing techniques that have
already been well-documented in the BCI community, such
evaluations are less relevant. Instead we suggest that readers interested
in in-depth consideration of particular BCI techniques (typically
regarding issues of speed, accuracy, new technological
implementation etc.,) consider reviews offered in [38], [39] and most
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recently, [40]. Of most concern to the system presented here is the
appropriateness of the mapping and the relevance and usefulness of
the user interaction with the application. In the traditional audio
engineering domain, this would be comparable to evaluating decisions
such as whether, for example, a rotary potentiometer or a fader was
most appropriate for control of a discrete audio parameter.
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Fig. 1. Overview of signal flow and iterative evaluation process.

BCI offers (i) augmentation to listeners who might benefit from
context specific or adaptive audio - such as non-linear immersive audio
in the next generation of gaming and virtual reality — and (ii)
participation opportunities to those who might otherwise be unable to
take part in the possibilities for expression afforded by creative audio
engineering, including emotional contagion, communication, and
perhaps most importantly, interaction with others.

There is a serious argument to be made for the use of brain-computer
devices to assist access in terms of inclusion: users who might
otherwise be unable to enjoy audio engineering can potentially take
part using this technology. Significant advances have already been
made in the field of brain-computer music interfacing — might bio-
assisted audio engineering be able to take these advances to the next
level in terms of inclusive system design? Previous systems have
generally not successfully been able to integrate congruent design with
the sensing algorithms being used. One application adapting
neurophysiological cues to the control of audio mixer parameters has
been described here. As with any such application, the utility is
somewhat dependent on the complexity of the mappings, and the
number of meaningful, controllable features that might be extracted
from the EEG. These include overall signal amplitude, frequency
domain analysis derived amplitudes, and spatial distribution of both
properties at specific electrode placements on the scalp (for example,
denoting motor cortex activity, asymmetry and other spatial
distribution metrics) [18].

Evaluation strategies for BCI-to-audio mappings, in general, are not
universally agreed upon and remain a significant area for further work.
An exploration of rankings across different musical genres might be a
useful avenue for further work in evaluating this type of assistive
technology in a real-world context.

The use of musical stimuli to mediate or entrain the listeners’ brain
activity (i.e., neurofeedback) also remains a fertile area for research
activity [23], [36]. Neurofeedback is becoming increasingly common
in the design of brain-computer music interfacing for specific purposes
such as therapeutic applications. Similarly, a significant amount of
further work remains in quantifying listener responses to affectively-
charged music, and in measuring the impact on a given affective state



that music might have on an individual already in a given state.
Nevertheless, the possibility of developing affectively-responsive
audio applications, using cues from BCI technology suggests that
individual variability might in the future be mediated in ways that had
previously been thought impossible; for example, a mapping to
particular mix features which respond adaptively to the individual
whilst listening to a mix.

We may then, in the future, see systems adapted to more
generalizable portable mappings which that might be controlled by
EEG, using adaptive mappings derived by machine learning rather
than prescribed by the designers of such systems, for audio
engineering applications regardless of physical ability or previous
training, or even individually responsive mixes based on a listeners’
biosignals. Further work establishing plausible parameters for control
via brain signals, with consideration for congruence between the two,
would likely provide a welcome research road map for the applied BCI
community (including domains beyond sound and music computing)
in future.
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