
Beholden to our tools: negotiating with technology while
sketching digital instruments

Andrew McPherson
Centre for Digital Music

Queen Mary University of London
London, UK

a.mcpherson@qmul.ac.uk

Giacomo Lepri
Centre for Digital Music

Queen Mary University of London
London, UK

g.lepri@qmul.ac.uk

ABSTRACT

Digital musical instrument design is often presented as an
open-ended creative process in which technology is adopted
and adapted to serve the musical will of the designer. The
real-time music programming languages powering many new
instruments often provide access to audio manipulation at
a low level, theoretically allowing the creation of any sonic
structure from primitive operations. As a result, designers
may assume that these seemingly omnipotent tools are pli-
able vehicles for the expression of musical ideas. We present
the outcomes of a compositional game in which sound de-
signers were invited to create simple instruments using com-
mon sensors and the Pure Data programming language. We
report on the patterns and structures that often emerged
during the exercise, arguing that designers respond strongly
to suggestions offered by the tools they use. We discuss the
idea that current music programming languages may be as
culturally loaded as the communities of practice that pro-
duce and use them. Instrument making is then best viewed
as a protracted negotiation between designer and tools.

Author Keywords

Design, music programming language, aesthetic influence,
idiomaticity, Pure Data

CCS Concepts

•Applied computing → Sound and music computing;

Performing arts; •Human-centered computing → HCI

theory, concepts and models;

1. INTRODUCTION
Most contemporary music programming languages are Tur-
ing complete,1 meaning that they are theoretically capable
of representing any possible sonic outcome. In contrast to
the MIDI synthesisers of the 1980’s and early 1990’s where
limited computational power resulted in constrained sound
design palettes and relatively coarse granularity of control,
modern digital tools allow easy manipulation of audio at the

1Turing completeness is a construct of computability theory
which means that a language can be used to simulate any
Turing machine, or more informally, that it can be used to
represent the same set of possible computations as every
other Turing-complete language.

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

sample level. In principle such openness of expression ought
to lead to rapidly diversifying musical ideas. Why, then, do
we find so many recurrent patterns in NIME practice?
Teachers of musical interaction design will be familiar

with the tendency of beginning students to create theremin-
like instruments [7] or to use touch sensor boards to arrange
arbitrary objects into rudimentary keyboards [6]. Attendees
of NIME concerts will encounter a recognisable prevailing
(though by no means universal) aesthetic, often including
drones, textured noise or manipulated samples. If technol-
ogy opens up the possibility to produce any imaginable sonic
interaction, what explains this clustering? Do NIME works
of 2020 sound similar to the interactive music pieces of the
1980’s and 1990’s? If not, to what extent is the change
explained by cultural shifts versus changes in underlying
technology?
This paper examines the ways in which digital musical

systems are non-neutral mediators of creative thought. Al-
though a tool may theoretically be capable of anything,
it will still have certain idiomatic patterns, making some
structures and concepts easier or more obvious to the de-
signer than others [13, 16]. While the aesthetic influence of
tools has long been discussed [11], this paper seeks a more
specific accounting of the idiomatic patterns of particular
tools commonly used in NIME design. Specifically, we re-
port on a compositional game in which sound designers were
asked to sketch simple instruments with common electronic
sensors and the Pure Data (Pd) programming language [20].
By examining the recurrent patterns of the resulting instru-
ments, we begin to reveal the latent influence of these tools.
We conclude by arguing for a fuller accounting within NIME
of the central role of tools in shaping our creative processes,
suggesting that instrument design should be viewed as a
process of negotiation between designer and tools.

2. TECHNOLOGY AND VALUES
Historian of technology Melvin Kranzberg famously wrote:
“Technology is neither good nor bad; nor is it neutral” [9].
The role of technology as a non-neutral mediator of human
perception and actual has been explored by many philoso-
phers [8, 14, 23, 24]. Madeleine Akrich proposes that de-
signers embed values in their technologies as “a script out
of which the future history of the object will develop” [1].
These scripts may be obvious or subtle, and the user of
the tool may not even be aware of their influence [11].
Thor Magnusson writes that “instruments are actors: they
teach, adapt, explain, direct, suggest, entice. Instruments
are impregnated with knowledge expressed as music the-
ory ... they explain the world” [12]. Such directivity is
equally true of music notation [13] and music programming
languages [18].
McPherson and Tahiroğlu consider these influences through

the lens of idiomaticity : “patterns of instruments or lan-

434



Figure 1: Setup of the compositional game, one sta-

tion per participant, facing one another. Each par-

ticipant independently sketches simple instruments

using common sensors, Bela and Pd.

guages which are particularly easy or natural to execute
in comparison to others” [16]. On traditional instruments,
musical patterns which naturally fit the movements of the
body often disproportionately appear in improvisation [5,
21]. We suggest that similarly, patterns which are idiomatic
to a digital tool will also disproportionately appear in the
objects and systems created with that tool. Importantly,
we do not argue for technological determinism; the back-
ground and aesthetic outlook of the designer is also ex-
tremely important. In design fiction activities where no
functional technology is involved, participants of different
musical backgrounds express widely varied musical values
through their artefacts [10]. Still, in the engagement with
any tool, we should question what patterns they suggest,
how we recognise them, and how to account for this influ-
ence in the design of our instruments.

Previous work [4] has considered digital musical instru-
ment design as a form of bricolage practice, building on Vall-
g̊arda et al.’s account of interaction design: “the bricoleur
does not plan ahead but develops the project in-situ with
concerns of interaction, physical form, and behavior pat-
tern not being hierarchically ordered a priori. Thus, the
bricolage is the result of careful negotiations in the making”
[22]. In this study, we aim to observe the patterns of in-situ
exploration and negotiation.

3. INSTRUMENT DESIGN GAME
To explore the patterns that emerge through the influence
of tools, we created a music-technological game involving
the design of simple instruments. The study was conceived
as a game in which music technology practitioners were in-
vited to “compose” a simple instrument. Participants were
given a breadboard containing 3 sensors commonly used in
DMI design: a pushbutton, a potentiometer (with knob at-
tached) and a force sensing resistor (FSR). The sensors were
prewired to a Bela board [17], using a digital input for the
button and (16-bit) analog inputs for the other two sensors.
We provided our participants with headphones so that they
could listen to their work without disturbing each other.

The activity involved making instruments using the Pure
Data programming language. The workflow involved creat-

ing Pd patches on a computer and uploading them to the
Bela board where they could be tested. As the focus of
the activity was on sketching the code, participants used
the sensors on the breadboard rather than considering how
they might be integrated into physical objects.

3.1 Activity Structure
The compositional exercise involved two participants at a
time. The activity took place in a quiet and isolated stu-
dio. Two independent workstations were prepared, one for
each participant: a computer, a Bela with three connected
sensors and a pair of headphones (Figure 1).
We introduced the study as a playful activity, explaining

that we were not interested in testing their music program-
ming skills but rather in observing the collaborative process.
However, even if we did not aim to study collaboration, we
used this pretense to both push away design pressure and
compositional anxiety and emphasise the playful connota-
tion of our study (i.e. there is no a right way to do it).
The game was characterised by a fast pace: various short
tasks quickly take over forcing the musician to start making
without overthinking.
We borrowed this approach from the work of Andersen

on Magic Machine workshop in which participants build
“magical machines” starting with a “prompt” activity (in
our case the collaboration excuse) and they are encouraged
to “think with the hand” [3]. The activity was structure
based on the following steps:

• Step 1 (10 min) - the facilitator invites both partic-
ipants to design a simple audio algorithm to be con-
trolled by one of the sensor available sensors (drawn
at random).

• Step 2 (10 min) – participants are asked to sit on the
other side of the table taking the place of the other
person. They are then are asked to start a new Pd
project and start a new sound algorithm to be con-
trolled by one of the two remaining sensors available
at the workstation (drawn at random).

• Step 3 (10 min) - the participants swap places again,
and the facilitator invites participants to start a new
Pd project and work with the remaining sensor.

• Step 4 (15 min) – after a last swap, participants are
invited to gather in a new Pd patch the three algo-
rithms saved in the workstation they currently are.

At this point each musician is able to play an instru-
ment featuring the three sensors, each controlling different
sound designs which have been alternatively developed by
both players. The facilitator asks participants to review the
overall code, eventually modifying / improving it according
to either aesthetic or technical concerns. The game finishes
with a“performance” in which participants briefly introduce
the assembled instruments through a practical demonstra-
tion. It is important to notice that during the game, musi-
cians are not able to listen to what the other is doing (due to
the use of headphones). In the end, the participants come
together in a semi-structured discussion of the musical and
technical implications of their work, their design process
and aesthetic choices.
We ran two different versions of the study, each following

the same structure but with a difference in the first step. In
the second version of the game, musicians randomly selected
two sensors to start with. In the first step of second version
of the exercise musicians could composed audio processes
that could be controlled by two sensors (thus resulting in
one fewer step overall).

435



Figure 2: Left: harmonically-related sine and sawtooth oscillators whose frequency is controlled by the

potentiometer. Right: two clusters of 4 sine oscillators which are crossfaded with the FSR. Visual layout of

the patches is participants’ original wherever possible, with minor adjustments for space.

3.2 Participants
The workshops involved 14 music technologists (7 pairs):
10M, 4F, aged 23-37. 4 pairs played the first version of the
game (one sensor at a time) and 3 pairs played the second
version (starting with 2 sensors). 8 participants identified
as professional musicians and 6 as amateur musicians. All
participants played an instrument (including 7 guitar/bass,
6 electronics/DAWs, 1 vocalist). 11 identified as active mu-
sicians for more than 15 years. 7 participants are currently
active as live performers, in contexts ranging from classical
to experimental electronic music; 7 are music producers,
including electronic and film music.

13 of the 14 participants had formal training in sound
design. 8 participants had formal training in Pd; of the
remainder, 4 have beginner-level proficiency with Pd and
2 have used a similar language such as Max/MSP. Partic-
ipants self-rated their Pd expertise on a 1-5 scale (5 being
most proficient): level 1 (1 participant); 2 (2 participants);
3 (5 participants); 4 (5 participants); 5 (1 participant).

3.3 Data Collection and Analysis
At each step, the Pd patches were saved. Participants also
completed a survey and interviews following the activity.
For this paper, our analysis focuses on the Pd patches cre-
ated in Steps 1 and 2 of the process, reflecting heir initial
encounters with either one or two sensors prior to sharing
and refining their ideas. For each patch, we annotated a
brief summary of its function and analysed the use of com-
mon Pd objects and data processing structures. Given the
short time frame of the activity and the basic materials, we
expected the resulting Pd patches to be relatively simple.
Our interest is in what kind of simple patches result, which
can reveal idiomatic patterns of the language and sensors.

4. OUTCOMES
14 simple instruments were created in each of Steps 1 and
2 of the activity, for a total of 28 patches. The patches in-
volved either one or two sensors each and showed a variety of
design patterns. Considering number of objects as a proxy
for patch complexity, the median number of Pd boxes per
instrument was 14.5 (range 6-43) in Step 1 and 12.5 (range
5-30) in Step 2.2 The sonic profile of the instruments tends
toward continuous drones over intermittent or percussive
events, especially when the potentiometer or FSR are used,
with a tendency toward low-frequency sound sources.

4.1 Sound Sources
2This count included all boxes connected to the given sen-
sor(s) including debugging objects, number and message
boxes, but excluding any extraneous unconnected objects.

Only three Pd objects were responsible for the original sound
in every case: osc~ (sine wave oscillator); phasor~ (simple
0-1 sawtooth oscillator with no antialiasing); and noise~

(white noise). In Step 1, 10 patches used osc~ as a sound
source (range 1 to 3 copies), 7 used phasor~ (range 1 to 6
copies) and 1 used noise~. 4 patches used more than one
of these sources simultaneously. In Step 2, 6 patches used
osc~, 5 used phasor~ and 4 used noise~, with only 1 patch
using two sources simultaneously. No patch in Steps 1 or 2
used samples, wavetables or any other sound sources.

Low-frequency oscillators (below 200Hz) were commonly
used, especially with phasor~. 12 patches across the two
steps used multiple oscillators (of either the same or differ-
ent types) either summed into a chorus effect or multiplied
together in a form of AM intermodulation. Only one of
these patches used FM modulation.

Figure 2 shows two examples of the use of multiple os-
cillators. In Figure 2a, a sine and sawtooth are related by
octaves and the frequency is controlled with the knob. This
patch also contains some nonfunctional elements (such as
the slider), which was fairly common in these short experi-
mental exercises. In Figure 2b, the FSR crossfades between
two clusters of 4 sine oscillators whose frequencies are fixed.

Filtering was used in 1 patch in Step 1 and 4 patches in
Step 2. In 4 of 5 cases, the filter was used on a noise source;
in the fifth case it was used on a 300Hz sawtooth. Filter
types used included hip~ (high pass), lop~ (low pass), vcf~
(band pass) and bob~ (Moog nonlinear filter emulation).

Amplitude envelopes were occasionally used on the sound
sources, most often in association with the button where the
line object was used to extend the transitions between on
and off states (Figure 3a). Another approach to enveloping
is shown in Figure 3b where the knob controls the interval
of high-frequency“pings” generated with the vline~ object.

4.2 Use of Controls
In general, the controls had straightforward relationships
to common audio parameters. The most common use of
controls was as frequency adjustment. 9 patches in Step 1
and 7 patches in Step 2 included frequency control of either
oscillators or filters. By contrast, amplitude control (either
continuous or on/off) was included in 5 patches in Step 1
and 5 patches in Step 2. More uncommon controls included
resetting the phase of a low-frequency oscillator, triggering
envelopes, controlling the rate of a repetitive event, and
controlling filter Q (1 patch each). The first of these (phase
reset) is shown in Figure 4, where the designer comments
that the output is designed to become increasingly annoying
until the performer resets it with the button.

436



Figure 3: Use of envelopes. Top: line segment pro-

vides gradual fade in and out with button press.

Bottom: potentiometer controls rate of a repetitive

envelope.

Potentiometer: Of the 10 patches to use the poten-
tiometer, 7 used it as a frequency adjustment, always as a
continuous range and never as discrete steps. In 2 cases it
was an amplitude control, and in the final case it controlled
the rate of repetitive events.

FSR: Of the 12 patches to use the FSR, 6 used it to
control frequency (an oscillator in 4 cases, a filter in 2 cases),
5 patches used it to control amplitude. One patch used it to
control both frequency and amplitude. One further patch
appears to be designed to control frequency although the
input is wired to the incorrect input of the oscillator for this
function. One patch compared the FSR value to a threshold
and triggered a noise burst when the threshold was crossed.

Button: Of the 12 patches to use the button, 6 turn the
sound on and off like a keyboard (though it serves an addi-
tional role in 2 of these patches). 1 further patch attempted
to use the button to enable and disable all sound produc-
tion although this did not work as intended. 3 patches used
the button to select new random frequencies for one or more
oscillators, 1 cycled through a series of harmonically-related
frequencies, 1 reset the phase of a low-frequency oscillator,
and 1 implemented an accumulator in which fast-paced but-
ton presses would slowly increase the Q of a filter.

4.2.1 Transfer functions

By convention the control data from each sensor is nor-
malised between 0 and 1 at the input from Bela. With

Figure 4: Atypical use of controls: button resets a

slowly-building process which produces an “annoy-

ing” sound.

the exception of some amplitude controls, nearly all patches
rescaled this range in some way. For the continuous sensors,
linear relationships between sensor and sound parameter
were by far the most common (12 out of 14 in Step 1, 9 out
of 12 in Step 2, with 2 of these inverting the range). Only 4
patches across the two steps incorporated a logarithmic re-
lationship, 3 of which used the mtof~ (MIDI-to-frequency)
object, even though both amplitude and frequency are typ-
ically perceived on logarithmic scales.

Nearly all patches used a memoryless control relationship
where the current value of the sensor manipulated a current
parameter value. Exceptions included a patch which had a
slowly building sound reset by the button, a patch involving
the accumulation of rapid button presses (both made by
the same designer; Figure 4), one use of a delayed control
signal in addition to its current value, and some use of line
segments to taper the edges of on/off controls.

4.2.2 Instruments with two sensors

In Step 1, 6 of the 14 participants were assigned two sen-
sors to work with while the remaining 8 were assigned only
one. 5 of the 6 were randomly assigned the potentiome-
ter and button. While perhaps the most conventional use
of these two controls would be to control frequency with
the potentiometer and use the button to control (on/off)
amplitude, only one of the patches worked this way. One
patch inverted this relationship by using the potentiome-
ter to control amplitude and the button to select random
frequencies; 3 others used both controls to affect the same
parameter (both controlling frequency, or both controlling
amplitude). The final two-sensor patch used the FSR and
button; the FSR controlled frequency (with a sample-and-
hold through the button) while the button activated the
sound. This patch is shown in Figure 5.

4.3 Treatment of Pitch Material
23 of the 28 patches were based on audio-frequency oscil-
lators. Every use of the FSR and potentiometer to con-
trol frequency was continuous; no patch quantised contin-
uous sensor values to a musical scale. The random object
was used in 5 patches, always to control frequency, usually
updated with the button. One patch (Figure 5) stepped
through harmonically-related frequencies using the button.

10 patches included more than one audio-frequency os-
cillator (excluding FM synthesis). In these cases, the har-
monic language can be queried through the relationship be-
tween frequencies. In 2 cases, two oscillators had octave
relationships to one another; in 1 case, three oscillators had
a harmonic relationship (1x, 2x and 3x a base frequency).

437



Figure 5: The only patch involving pitch quantisa-

tion. Pressing the button activates the sound and

steps through harmonic multiples of a 220Hz fun-

damental frequency.

In 4 cases, the ratios between oscillators were complex (i.e.
no simple harmonic relationship), including one cluster of
6 low-frequency oscillators 1Hz apart. The remaining 3
cases involved random frequencies. Overall, the treatment
of pitch material shows an absence of any reference to mu-
sical scales (whether equal tempered or otherwise) though
some reference to the harmonic series can be found.

5. DISCUSSION
5.1 Idiomatic Patterns of Pd
In the preceding analysis of the prevalence of different con-
trol and sound production strategies, it is important to em-
phasise that this was not a study of a mapping toolkit which
permitted only a limited set of predefined relationship be-
tween sensors and sound. Rather, the Pd language could
in principle express nearly any control relationship, but de-
spite considerable variation in the finer details of sound de-
sign, we found that most control relationships fell into just
a few categories of sensors manipulating fundamental sonic
parameters (frequency, amplitude), usually in a linear, time-
invariant, 1-to-1 manner. It is equally notable what we did
not see in any of the instruments:

• Quantisation of pitch to a musical scale (other than
one patch using the button to step through the har-
monics of a 220Hz fundamental);

• Rhythmic patterns other than constant regular inter-
val metronomes;

• Step sequencers or other pattern sequencing of control
parameters (other than the above mentioned patch);

• Dynamic instantiation of synthesis processes, for ex-
ample increasing or decreasing the number of oscilla-
tors on the fly.

The above patterns would be simple and achievable within
10 minutes in other languages. Our observed design out-
comes align with the idiomatic patterns of dataflow lan-
guages like Pd and Max, as reported by the language cre-
ators in [16]. These languages are inspired by modular syn-
thesis paradigms and patches often feature static signal pro-
cessing graphs even as the data within the graph changes
dynamically. Dynamic instantiation is not natural to these
languages as it is to languages like SuperCollider or ChucK,
and time is frequently an implicit rather than explicit quan-
tity, perhaps explaining the lack of focus on rhythm.

In our ongoing research, we are repeating a similar exer-
cise in SuperCollider, with the intention to identify differ-
ences in their idiomatic patterns. Our first pair of partic-
ipants tended to design autonomous or ongoing sonic pat-
terns that were not necessarily controlled with the sensors
but rather influenced by them. Their focus was often on the
digital side of the system, with the language seemingly priv-
ileged over the physical affordances inherent to the sensors.
However, these observations might also relate to SuperCol-
lider’s different learning curve or that, compared to the vi-
sual immediacy of Pd, the first design steps might require
more planning, especially with limited time.

5.2 Elemental Sounds
Although audio synthesis is manipulated at a much lower
level in Pd and other languages than in MIDI-based equip-
ment of previous decades, we also do not see the complexity
of sound design that might have gone into those earlier tools.
Instead, we see the fundamental elements of sound synthesis
(sine and sawtooth oscillators, white noise, filters) appear-
ing straightforwardly in the final output. While this partly
reflects starting from a blank patch with limited time, son-
ically similar results can often be found in more developed
NIME instruments, suggesting that the technology might
be exerting an aesthetic influence.
Pd creator Miller Puckette writes that the Max/Pd family

of languages “goes to great lengths to avoid a stylistic bias
on the musician’s output.” [19]. In a 2019 email interview
in [15], Puckette writes that an “important feature might
be Pd’s low-level primitives (phasor, but no band-limited
sawtooth generator, for instance) - which is intended to en-
courage users to develop their own ‘sound’ rather than guide
them.” In practice, none of our participants used phasor~ as
a lookup to a wavetable, as it might have been intended, and
all of them used it as a sawtooth despite the lack of band-
limiting. This may show the influence of immediacy and
convenience even where tools are intended to be assembled
into more complex structures. We suggest that continuous
pitch spaces, linear mappings and pure waveforms are just
as stylistically loaded as any MIDI sequencer.

5.3 The Influence of Background
The 14 participants come from a variety of musical back-
grounds, with widely varying experience in instrumental
training and music technology. In previous work using a
design fiction exercise [10], we found that a designer’s mu-
sical values led to widely differing types of (non-functional)
artefact. Thus the level of consistency across the simple
instruments in this activity is notable. It is unlikely that
each person’s abstract musical intentions would lead them
to simple oscillators with linear frequency controls; rather,
we are seeing a strong influence from the technology.
It is beyond the scope of this paper to compare the result-

ing designs to the background of individual participants, but
this would be interesting in future work. However, a perusal
of new musical instruments on crowdfunding websites [15]
and designs on YouTube from communities engaged with
more popular music styles may show quite different sonic
characteristics from NIME instruments even though these
instruments often use some of the same digital technologies.

5.4 Limited Time, Increased Influence
Our musical game was deliberately time-limited and highly
constrained in its physical materials. We do not propose
that the instruments created reflect what any of the design-
ers would do in a longer and more open-ended situation.
It may be that certain kinds of sounds and control strate-
gies are simply not achievable from first principles within

438



10 minutes. In fact, this underlines our thesis about the
idiomatic patterns of the tools. In a language like Super-
Collider, creating musical scales, rhythmic patterns, or dy-
namic numbers of sound sources might be implemented in
seconds with a single line of code. That certain patterns
recur in the work of several designers with varied musical
backgrounds shows the aesthetic influence of the tools.

We do not endorse a technological-determinist viewpoint
of instrument design. Although the tools contain hidden
scripts and offer aesthetic suggestions [1, 11], personal back-
ground and aesthetic priorities still play a strong role in the
outcomes. In a few cases in our exercise, designers explained
to us that they chose a particular approach to deliberately
avoid what they felt would be the most obvious thing to do
with the technology. For example, one participant reported
in a comment written within a patch: “I wasn’t sure what
to do with the knob. but I didn’t want to use it to control
a sound parameter (it would have been trivial) So I tried to
use it to control a musical parameter: rhythm”.

6. CONCLUSION
Designers sketching simple instruments using a limited palette
of sensors with the Pd programming language approached
the task with creativity and style. Within the diversity of
individual outcomes we saw frequently recurrent patterns
in musical language and the use of controls, which appear
to reflect the idiomatic patterns of the tools.

We propose that instrument design is best viewed as a
dialog or negotiation between designer and tool. In any ne-
gotiation, both parties give up something in order to gain
something else that they want. In this case, the designer
may temper some of their abstract ideas to create what is
perceived to be feasible with the available tools, time and
skills. Just as an improvising pianist may reach for chords
that fit easily under the hand, the idiomatic patterns of the
tool will suggest certain ideas which can then be accepted,
rejected or modified by the designer. The influence of the
language in turn puts the focus on the designer of that lan-
guage, who is responsible for shaping its scripts and em-
bedded values [1, 11, 16]. The tool creator may in turn
be influenced by their own communities of practice and use
of technology. In this way, the identity of any musical in-
strument emerges out of a process of recursive inscription
from successive generations of musicians and technologists.
Paraphrasing Günther Anders [2], the uses and purposes of
a device are nothing more than the possibilities made avail-
able by the technology itself. Each tool generates its own
purposes and scopes, and not the other way around.

On this basis, we encourage NIME tool and language cre-
ators to embrace, even accentuate, the non-neutrality of
their tools. Memorable electronic instruments have often
been those with notable limitations or eccentricities: con-
sider the influence of the TR-808 on hip hop, or the Com-
modore 64 on chiptunes. However, just as the 1990’s saw the
creation of dozens of similar-sounding General MIDI sound
banks, the current era features a proliferation of graphical
DSP toolkits similar to Max or Pd, typically re-implementing
the same canonical operations. Future designers who forego
the search for an idealised all-powerful platform in favour
of making deliberately limited or idiosyncratic tools could
instigate exciting new creative negotiations.

7. ACKNOWLEDGMENTS
This work was funded by EPSRC under grants EP/N005112
(Design for Virtuosity) and EP/L01632X/1 (Centre for Doc-
toral Training in Media and Arts Technology).

8. REFERENCES
[1] M. Akrich. The de-scription of technical objects. In

W. E. Bijker and J. Law, editors, Shaping technology

- Building Society: Studies in Sociotechnical Change.
MIT Press, 1992.

[2] G. Anders. Die Antiquiertheit des Menschen: Über

die Zerstörung des Lebens im Zeitalter der dritten

industriellen Revolution. 1956.

[3] K. Andersen and R. Wakkary. The magic machine
workshops: making personal design knowledge. In
Proc. CHI, 2019.

[4] J. Armitage and A. McPherson. Bricolage in a hybrid
digital lutherie context: a workshop study. In Proc.

AudioMostly, 2019.

[5] J. De Souza. Music at hand: Instruments, bodies, and

cognition. Oxford University Press, 2017.

[6] E. I. Dolan. Toward a musicology of interfaces.
Keyboard Perspectives, V:1–12, 2013.

[7] T. Igoe. Physical computing’s greatest hits (and
misses). Online: https://www.tigoe.com/blog/
category/physicalcomputing/176/, 2008.

[8] D. Ihde. Technology and the lifeworld: From garden to

earth. Indiana University Press, 1990.

[9] M. Kranzberg. Technology and history: “Kranzberg’s
laws”. Technology and culture, 27(3):544–560, 1986.

[10] G. Lepri and A. McPherson. Making up instruments:
Design fiction for value discovery in communities of
musical practice. In Proc. DIS, 2019.

[11] T. Magnusson. Of epistemic tools: Musical
instruments as cognitive extensions. Organised Sound,
14(2):168–176, 2009.

[12] T. Magnusson. Ergomimesis: towards a language
describing instrumental transductions. In Proc. ICLI,
2018.

[13] T. Magnusson. Sonic writing: technologies of

material, symbolic, and signal inscriptions.
Bloomsbury Academic, 2019.

[14] M. McLuhan. Understanding media: The extensions

of man. MIT press, 1994.

[15] A. McPherson, F. Morreale, and J. Harrison. Musical
instruments for novices: Comparing nime, hci and
crowdfunding approaches. In New Directions in Music

and Human-Computer Interaction, pages 179–212.
Springer, 2019.

[16] A. McPherson and K. Tahiroglu. Idiomatic patterns
and aesthetic influence in computer music languages.
Organised Sound, 25(1), 2020.

[17] A. McPherson and V. Zappi. An environment for
Submillisecond-Latency audio and sensor processing
on BeagleBone black. In Proc. AES Convention, 2015.

[18] C. Nash. The cognitive dimensions of music notations.
In Proc. TENOR, 2015.

[19] M. Puckette. Max at seventeen. Computer Music

Journal, 26(4):31–43, 2002.

[20] M. S. Puckette. Pure data. In Proc. ICMC, 1997.

[21] D. Sudnow. Ways of the hand: The organization of

improvised conduct. MIT Press, 1993.

[22] A. Vallg̊arda and Y. Fernaeus. Interaction design as a
bricolage practice. In Proc. TEI, 2015.

[23] Y. Van Den Eede. In between us: On the
transparency and opacity of technological mediation.
Foundations of Science, 16(2-3):139–159, 2011.

[24] P.-P. Verbeek. Beyond interaction: a short
introduction to mediation theory. interactions,
22(3):26–31, 2015.

439


