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ABSTRACT

The basic role of DJs is creating a seamless sequence of music tracks. In order to make
the DJ mix a single continuous audio stream, DJs control various audio effects on a D]
mixer system particularly in the transition region between one track and the next track
and modify the audio signals in terms of volume, timbre, tempo, and other musical
elements. There have been research efforts to imitate the D] mixing techniques but
they are mainly rule-based approaches based on domain knowledge. In this paper, we
propose a method to analyze the D] mixer control from real-world D] mixes toward a
data-driven approach to imitate the D] performance. Specifically, we estimate the
mixing gain trajectories between the two tracks using sub-band analysis with
constrained convex optimization. We evaluate the method by reconstructing the
original tracks using the two source tracks and the gain estimate, and show that the
proposed method outperforms the linear crossfading as a baseline and the single-band
analysis. A listening test from the survey of 14 participants also confirms that our
proposed method is superior among them. A web demo is available at this link.
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Introduction

A D] mix is a sequence of music tracks that are arranged to flow seamlessly by a Disc
Jockey (D]) mainly in the context of electronic dance music. The role of DJs includes
not only selecting the tracks and deciding the play order as a music curator but also
making two consecutive tracks crossfade naturally or artistically as a performer. To
make seamless transition from one track to another, DJs use dedicated mixer systems
that allow them to control the musical characteristics of each track.

There have been significant research efforts to mimic DJs as a music curator, which is

While the playlist generation research has been studied mainly in a data-driven way
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using user listening history or curated playlists, most prior arts in automatic DJs have
used rule-based methods that capitalize domain knowledge rather than data-driven
methods that learn from information extracted from real-world D] mixes. Some
previous studies attempted to analyze D] mixes for potential use in automatic D].
However, they are limited to track-level information such as track identification [12]
[13][14] or mix segmentation [15][16]. A few studies introduced methods to analyze D]J
mixes but they used artificially generated datasets [17][18].

A recent study collected 1,557 real-world D] mixes and 13,728 tracks played in the
mixes, and conducted large-scale mix-to-track subsequence alignment to extract the
musical actions from DJs [19]. From the mix-to-track subsequence alignment, they
estimated cue points that indicate the start and end positions of the tracks as a musical
decision of professional DJs. Using the cue points, in turn, they located the transition
region where two consecutive tracks crossfade. Through statistical analysis of the
alignment, cue points and transition regions, they showed that 1) DJs tend not to
change tempo/key of original tracks much, 2) DJs take care of musical structures when
they make transitions, and 3) D]Js select similar cue points. However, this study focused
on musicological analysis using beat-level audio features and the statistical results are
not directly applicable to automatic D].
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Figure 1

A screenshot of web demo based on three-band analysis results. The top and
bottom spectrograms are of original tracks, which are mixed by a DJ in the DJ mix
shown as a spectrogram at the middle. The colored lines can explain how the D)

adjusted each sub-band gain of the previous/next track over time using a

crossfader and three-band EQs. As the example audio is being played, the EQ

knobs on the right side are changed according to the extracted EQ value at the
current time position which is indicated by the vertical white line.

In this paper, we take a deep dive into the transition region in the DJ mix to extract D]
mixer control. DJs modify volume, timbre or even tempo on a D] mixer system when
they switch one track to another. The transition region is the period that DJs use their
skills significantly to make the mix seamless and creative. In order to extract the
actions from DJs, we reverse-engineer the transition region using sub-band analysis
with constrained convex optimization. Figure 1 visualizes a result example of the sub-
band analysis. The optimization is performed by minimizing the distance between D]
mixes and mixed tracks with sub-band gains. We evaluate the accuracy of the sub-band
gain trajectories by reconstructing the original mix using the two source tracks and
the estimated gain trajectories. For quantitative evaluation, we compute the
reconstruction errors, comparing the proposed method to a linear crossfading and the
previous approach based on a single band analysis. From the best method of each
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transition region, we also analyze how often DJs control the audio effect between
crossfader and EQs. Furthermore, we recruit 14 participants and conducted a listening
test for qualitative evaluation. The results show that our approach is superior in both
objective and subjective tests.

Transition Analysis Methods

In this section, we describe two transition analysis methods which extract temporal
gain trajectories that explain how D]Js control the D] mixer system. First, we describe
single-band analysis which assume D]Js used a single crossfader, which is firstly
proposed in [17]. Then, we extend the method to sub-band analysis, which assumes D]Js
use three-band EQs along with the faders.

Single-band Analysis

Let S € RT*F denote the power spectrogram of a transition region which has T frames
and F frequency bins, and g € R” denote a time-series vector for a track which
contains the gain value at each time frame. S is normalized by the minimum and
maximum levels so that it has a range of [0,1]. Let Sye», and g,,., denote the power
spectrogram and the gain vector of the previous track, and S,.,: and g,,.,, denote those
of the next track. Then, we define the power spectrogram of their mix S,,;, as follows:

Smia: — Spre’u ® gprev + Snewt ® Grert) (1)
where ® denotes the Hadamard product (or element-wise multiplication). The gain
vectors g,,., and g,,; are optimized so that S,,;, approximates the power spectrogram
of the original D] mix S;; through the following convex optimization that minimizes the
mean squared error (MSE) between S,,;, and Sy;

mini;nize TTlF(Smim _ de)z, (2)
subject to0 < g < 1, (3)
Agprev <0,Ag,.. >0,
Gprev T Gnext = 1-

We assume that S, and S, are aligned to S;; so that their beats are synchronous.
The gain values are forced to have a range of [0,1] by the first line of Eq. 3, and the
gain of the previous track g,,., always decreases and the gain of the next track g,,.,,
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always increases in the second line of Eq. 3. The sum of gains are always one by the
last line of Eq. 3 because we assume that DJs use constant power crossfaders.

Sub-band Analysis

The single-band analysis estimates the control of a single volume crossfader between
two tracks. In practice, the most commonly used setting in D] mixer systems is three-
band EQs and one fader for each track. DJs control the EQs and fader considering the
musical characteristics of each sub-band. In our sub-band analysis setup, we ignore
the fader as a variable to estimate because it can be approximated by adjusting the
three-band EQs simultaneously (also, adding the fader as a variable to the objective
function makes the optimization problem non-convex). Therefore, the estimate results
can be regarded as the lumped sub-band gains from the three-band EQs and faders.

The definition of the mixed power spectrogram in sub-band analysis is similar to Eq. 1
but the power spectrograms are mixed in each sub-band and the gain vectors are also
defined for each sub-band. Let i denote the index of a sub-band, and §* and g’ denote
the power spectrogram and gain vector of the i-th sub-band. Then, the mixed power
spectrogram for the i-th sub-band is defined as:

Smi:r; — Sprev © gprev + Snewt © gneaf;t' (4)
The convex optimization can be performed aggregating the MSE values over sub-
bands as follows:

N 1 - - (5)
- St . _ §i)?2
minimize —— % (S? .. i)

subject to 0 < g < 1, (6)
Agpre'v S 07 Agnemt Z 0.

We observed that the lower frequency bins generally have more energy than the
higher frequency bins and, as a result, the optimizer tend to focus on lower
frequencies bins. To solve this problem, we normalized S for each sub-band
spectrogram §° so that each sub-band has a range of [0,1] using the following
equation:

; o S’ (7)
Snorm T maxt7f(Sfij)S;)rev’S’ll‘Lext) )
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We call this normalization sub-band scaling. The denominator is the maximum peak as
a scalar value computed over time ¢ and frequency f of the three power spectrograms
so that their original relative energy differences are preserved.

Experiments

Dataset

We used the DJ mix dataset that contains metadata collected from 1001 Tracklistsl and
audio files downloaded separately using links to media services [19]. The number of
transitions were 20,756 in the dataset but we filtered out the transitions where the
previous and next tracks are not fully overlapping in the transition region. As a result,
we used 3,930 transition regions. The filtered transitions are from 1,216 D] mixes and
include 5,105 unique tracks.

Implementation

Before the transition analysis, we temporally aligned the tracks to the mixes using a
subsequence dynamic time warping (DTW) following the previous study [19] and then
applied the waveform similarity and overlap add (WSOLA) to the tracks so that the
tracks are time-scaled and synchronized to the mix on the same beats. We used
Librosa [20] for DTW and PyTSMod [21] for WSOLA. We detected the transition
regions from the result of the previous study [19] and sliced the power spectrogram of
the transition region with some margin to contain at least 140 beats.

All audio tracks have a sampling rate of 44,100Hz and mel-spectrograms with 128 mel
bins are used for the power spectrogram. We computed the spectrograms using
Librosa [20] with a hop size of 2,756 samples (16ms) and a window size of 5,512
samples (32ms). As a result, the gain vector have 16 elements (or frames) per second.
Following a popular D] mixer, we use three bands for sub-band analysis, of which low
and high cut-off frequencies are 180Hz and 3000Hz, respectively. We used CVXPY [22]

for convex optimization. The source code2 and the web demo3 in Figure 1 are available
at the links.

Quantitative Evaluation

To evaluate the performance of the transition analysis methods, we reconstructed the
mixes using the analysis results and the original tracks, and compared the
reconstructed mixes to the original DJ mixes using root mean square error (RMSE)
between their log compressed spectrograms in decibel (dB) units. Also, the
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reconstruction error is computed for each sub-band. In case of the single-band
analysis, the reconstructed mix signal is generated multiplying the optimized gain
value to the track signals for each time frame. For the reconstruction of sub-band
analysis results, we implemented three-band EQs using the 2nd order digital
Butterworth filter and applied the EQs to the tracks using the optimized sub-band gain
values at each time frame. We also evaluated the effect of the sub-band scaling
method. As a baseline experiment, we also evaluate a method where two tracks
linearly crossfade over time to have a constant power without any optimization. Note
that the reconstruction is processed in the time domain using the original tracks and
the three-band EQs but the evaluation is processed in the time-frequency domain to
compute the RMSE of the spectrograms. We used the default parameters of Librosa to
compute the spectrograms for evaluation.

Explaining the Mixing Control of DJs

In real-world DJ mixing, DJs may control only the crossfader, both the EQs and faders
or their combinations. Thus, the best analysis method that minimizes the
reconstruction error can be different at each transition region. In fact, the best
analysis method may explain the DJs’ control action. For example, if the single-band
analysis has the lowest reconstruction error at a transition region, we can assume that
the D] made the transition using the crossfader only. On the other hand, if the sub-
band analysis has the lowest reconstruction error at a transition region, we can
assume that the DJ used the EQs as well. Therefore, we report the best of the three
compared methods and also count the number of having the lowest reconstruction

eITor.

Perceptual Evaluation

We also conducted a listening test recruiting 14 participants who enjoy listening to
music. For each trial, given a transition audio segment from a DJ mix, the participants
were asked to listen and select the most similar reconstructed audio among three
different methods. The three audio clips were reconstructed from the baseline method,
single-band analysis and sub-band analysis. The order of three methods are changed
for every trial, and the number of total trials were five for each subject and they were
selected randomly excluding the mixes with DJ voices. All audio tracks had a length of
48 seconds.

Results
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Reconstruction Error

Reconstruction error of transition analysis methods.

Table 1
Method RMSE (dB)

All Low Mid High
Linear 7.687 8.928 7.497 7.629
crossfading
(baseline)
Single-band 7.428 8.191 7.278 7.426
analysis [17]
Sub-band analysis 7.333 7.953 7.042 7.563
+sub-band scaling

6.895 7.904 6.798 6.741
The best of the 6.714 7.810 6.533 6.675

three methods

Table 1 shows the results of the reconstruction error measured by RMSE in dB. The
single-band analysis improves the baseline method, showing that the optimizing gains
of crossfader better reconstruct the original mix. The three-band analysis outperforms
the single-band analysis. With the sub-band scaling, the improvement is more
significant. We observed that high-band gains are not analyzed correctly without the
sub-band scaling because the high-band spectrograms have relatively lower energy
and thus they do not contribute to the loss of convex optimization. We also report the
best of the three methods, which achieves lower reconstruction errors than the sub-
analysis method. This result indicates that the best gain estimate depends on the type
of D] mixing control as discussed in Subsection 3.4 (Explaining the Mixing Control of
D]Js).
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Mixing Control Types
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Figure 2
The number of transitions where each of the methods
has the lowest reconstruction error.

Figure 2 shows the number of transitions where each of the methods has the lowest
reconstruction error. This indicates that DJs use the crossfader only in 28% of cases
and use EQs with faders in 72%. We also checked the transitions where the linear
crossfading has the lowest errors. We found that the transitions contain DJ voices or
beat tracking was not correctly performed, which made the two optimization methods
fail to estimate the gains.

Listening Test

The listening test result: the number of votes for the most similar reconstruction to
the original D] mix in the transition regions.

Table 2
Linear crossfading Single-band Sub-band (with scaling)
13 (18.6%) 10 (14.3%) 47 (67.1%)

The number of votes for the most similar reconstruction to the original D] mix is
summarized in Table 2 for each method. This result confirms that the sub-band
transition analysis reconstructs the original mix best. The linear crossfading and single-
band transition analysis methods have a similar number of votes. This indicates that
the difference in the RMSE in Table 2 is not discernible between the two methods.

Conclusions

We proposed a method to analyze the D] mixer control from real-world D] mixes. We
estimated the mixing gain trajectories using sub-band analysis with constrained
convex optimization. We evaluated the reverse-engineering method by reconstructing

10
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the original tracks and showed that the proposed method is superior in both
quantitative and qualitative tests. In addition, by finding the best estimate among the
compared methods, we predicted the mixing control type on the D] mixer systems. As
future work, we plan to use the estimated gain trajectory and mixing control type as
training data to model automatic D].
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