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ABSTRACT

We present Spire Muse, a co-creative musical agent that engages in different kinds of 

interactive behaviors. The software utilizes corpora of solo instrumental performances 

encoded as self-organized maps and outputs slices of the corpora as concatenated, 

remodeled audio sequences. Transitions between behaviors can be automated, and the 

interface enables the negotiation of these transitions through feedback buttons that 

signal approval, force reversions to previous behaviors, or request change. Musical 

responses are embedded in a pre-trained latent space, emergent in the interaction, 

and influenced through the weighting of rhythmic, spectral, harmonic, and melodic 

features. The training and run-time modules utilize a modified version of the MASOM 

agent architecture.

Our model stimulates spontaneous creativity and reduces the need for the user to 

sustain analytical mind frames, thereby optimizing flow. The agent traverses a system 

autonomy axis ranging from reactive to proactive, which includes the behaviors of 

shadowing, mirroring, and coupling. A fourth behavior—negotiation—is emergent from 

the interface between agent and user. The synergy of corpora, interactive modes, and 

influences induces musical responses along a musical similarity axis from converging 

to diverging. We share preliminary observations from experiments with the agent and 

discuss design challenges and future prospects.

Author Keywords

Musical agents, interactive music systems, machine learning, co-creativity 

CCS Concepts

•Applied computing → Sound and music computing; Performing arts; 

•Computing methodologies → Machine learning;

Introduction
All music creation starts with a spire. It could be a phrase; a sound object; a 

rhythmical pattern. Musicians—inspired by its sound, respire life into compositions by 

improvising around the idea, adding layers, growing complexity. Seemingly, the music 

takes a life of its own—it aspires to grow. For song-writing duos or small musical 

groups, ideas for music compositions often emerge in contexts of improvisational 

interactions between the musicians—so-called jams. A typical scenario would be a 
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musician presenting a new idea to fellow musicians at a rehearsal, followed by a jam 

session to “see what ideas pop out”. 

Modeled on this, Spire Muse is a virtual musical partner that stimulates creativity and 

optimizes flow—a state where one becomes so immersed in an activity that everything 

else loses importance [1]. We adopt the term musical agent defined as autonomous 

software agents that tackle musical tasks [2]. Obtaining and maintaining flow requires 

an environment that provides flexibility while supporting an associative cognitive 

process combined with internalized actions. In collaborative contexts, this, in turn, 

hinges upon interaction dynamics, i.e. the spontaneous shifting of interactive modes 

and style of turn-taking that occurs between agents when engaged in creative 

activity [3].

Creativity has no universal, agreed-upon definition. Historically, creativity has moved 

from being viewed as an inscrutable divine force—off-grounds from scientific inquiry—

to being conceived of as an emergent process in the context of complex and distributed 

systems of interactions, with unpredictable outcomes and moment-to-moment 

contingency [4]. The fields of human-computer interaction (HCI) and artificial 

intelligence (AI) have also cultivated differing perspectives on creativity. In HCI, a 

widely adopted term is creativity support tools (CST) [5], denoting digital tools that are 

designed to support human creativity. Researchers studying creativity from the side of 

AI and machine learning tend to focus on computational creativity (CC), i.e. systems 

that generate artifacts that are judged by unbiased users to be creative [6]. The 

acknowledgment of creativity as an emergent property of interaction rather than an 

agential quality has led to a conflation of these concepts: Co-creativity occurs in 

collaborative contexts where both human and computational agents contribute to a 

process or product deemed creative [7].

We have focused on designing a co-creative system that realizes the concept of a 

virtual jam partner. Hence, the computational agent is seen as a collaborator as 

opposed to a tool or a creator, and we aim to place the human and computational 

agents in a tight interactive loop where each has the capacity to modify the behavior of 

the other [8].

Jamming to Grow Music
In musical collaborative contexts, jamming may be an efficient method to get from a 

basic musical idea to larger formal structures. An apt metaphor is thinking of a 

musical phrase as an elementary kernel. Interactions may “fertilize” this kernel and 
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larger forms can “grow” from it. This notion led to the concept of a musical agent that 

supports session-based musical brainstorming. Musical form may emerge from the 

interaction, but events like this are mostly context-dependent and cannot be rule-

driven.

Improvisation is a key factor in such open-ended creative interaction. A significant 

number of proposed models for improvised musical interaction revolve around 

interactive strategies focused on iterative phases of “pulling together” and “pushing 

apart”. Wilson and MacDonald [9] shed light on how improvising musicians regularly 

evaluate whether they should maintain or change what they are doing. A change can 

be either an initiative (something new) or a response (to what another musician is 

doing), and three emergent response categories are adoption, augmentation, and 

contrast. Borgo [10] describes how forms emerge in collective improvisation through 

positive feedback—a mutual reinforcement of a particular idea, and how interest is 

simultaneously maintained through negative feedback—an exploration of new ideas 

diverging from the current one.

Similar concepts are prevalent in models for co-creative systems. Dubnov and 

Assayag [11] introduce a flow model where improvisation occurs along the axes of 

replication, recombination, and innovation. Beyls [12] presents a model for human-

machine interaction where the system’s behavior follows from the competition 

between the opposing forces of expression (output generated irrespective of or 

contrasting to current context) and integration (output that is complementary to the 

prevailing context and contributes to its further existence). Canonne and Garnier [13] 

invoke a model for collective free improvisation where strategies range from 

stabilization (attempts to converge to a “collective sequence”) to densification 

(deliberately creating complexity to provoke a transition). In this apparent 

terminological jungle, we propose that these concepts in essence are musical 

strategies that may be grouped along a musical similarity axis ranging from converging

 to diverging, as depicted in Figure 1.
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These strategies inform us how agents—human or computational—relate to each other 

musically. However, the driving force behind the interaction dynamics is not accounted 

for. In interactions between humans, the distinction between actions and decision-

making is barely noticeable—they are intrinsically interwoven. In HCI, however, the 

human user often acts as a substitute for the computational agent’s lack of decision-

making capabilities. Most software interfaces are essentially a submission of decision-

making power to the human user. An effect is that the user may become preoccupied 

with handling this aspect of the interaction to the detriment of co-creativity. A 

dimension is missing—the navigation between interactive behaviors of the system. For 

our purposes, we adopt four categories of behaviors for interactive music systems from 

Blackwell et al. [14]:

Figure 1

Musical strategies mapped onto the musical similarity axis.

Shadowing involves a synchronous following of what the user is doing, mapped into 

a different domain. Despite lacking autonomy, the appearance of coherence can have 

a strong effect on the user and may lead to the generation of novelty through its 

interactive affordances.

Mirroring occurs when stylistic information or musical content is extracted from the 

user’s input and reflected back in novel ways. While taking lead from the user, this 

mode clearly demonstrates participation and can contribute to a form of 

collaborative creativity through the opening up of new possibilities.
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We regard negotiation as the “meeting space” where the musical agent trades decision-

making with the human user. We place the shadowing, mirroring, and coupling 

behaviors along a system autonomy axis ranging from reactive to proactive. 

Negotiation happens when the system switches between these three behaviors, either 

autonomously or through manipulation by the user. Whereas the other three modes are 

embedded in the software itself, negotiation is a type of behavior that emerges from 

how the computational and human agents interact and influence each other. It is an 

interface-layer behavior and requires the sharing of decision-making. For this reason, 

negotiation does not map directly onto the autonomy axis and is placed above the 

other behaviors in Figure 2.

Coupling refers to an interactive mode driven primarily by its own internal 

generative routines, which are perturbed in various ways by information coming 

from the user. Coupling tends to refer to a situation in which the system can clearly 

be left to lead, possibly to the detriment of the sense of participation.

Negotiation is a more sophisticated behavior. A system that negotiates constructs an 

expectation of the collective musical output and attempts to achieve this global 

target by modifying its output.

Figure 2

Interactive behaviors mapped onto the system autonomy axis.
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In Figure 3, we have combined the axes of musical similarity and system autonomy in a 

two-dimensional diagram. We acknowledge that these axes are somewhat loosely 

correlated, but tending toward parallelity. We illustrate this by displaying the 

interactive behaviors diagonally. Behaviors that are more reactive also tend to 

generate converging musical results, and vice versa, proactive behavior will tend 

toward diverging musical output.

Related Work
The history of musical agents is predated by the wider notion of interactive music 

systems, defined by Rowe as “those whose behavior changes in response to musical 

input” [15]. The degree of autonomy in interactive music systems is correlated with 

several distinct phases in their decades-long development. An early step from purely 

reactive sound systems toward interactivity happened with the construction of CEMS 

(Coordinated Electronic Music Studio) in the late 1960s. Founder Joel Chadabe 

Figure 3

The similarity and autonomy axes combined.
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described playing the system as “like conversing with a clever friend who was never 

boring but always responsive” [16]. In the 1970s, a group of experimental artists 

known as The League of Automatic Composers used affordable interlinked 

microcomputers in a series of concerts spun around the concept of “letting the 

network play” [17]—an early example of live electronic music performance.

These early interactive “composing systems” were embedded in analog hardware. The 

MIDI protocol paved way for in-the-box interactive music systems in the mid-1980s. 

Music Mouse [18], M and Jam Factory [19] were among the first commercially 

available interactive music systems for general use. They were like intelligent 

instruments that produced formal musical structures in real-time, controlled by the 

user. Some of the first accompanying systems that users could play together with as 

duo partners came with Oscar [20], Voyager [21], and Cypher [15] in the late 1980s. A 

few years later, improvisation systems making use of learned models instead of rules 

emerged. GenJam [22] used genetic algorithms to “breed” stylistically appropriate jazz 

solos to be played over predetermined sections of jazz standards. The Reactive 

Accompanist [23] provided chord accompaniment of unfamiliar melodies using 

subsumption architecture methodology. With Band-out-of-the-Box (BoB) [24], the 

human user traded four-bar solos in the style of blues/jazz with the machine agent. The 

agent utilized unsupervised machine learning techniques to adapt to the musical sense 

of its user. The Continuator [25] produced musical continuations to phrases introduced 

by users with the help of Markov models, allowing for a stylistically coherent back-and-

forth interaction.

OMax [26] pioneered the use of Factor Oracles (FO) for music purposes. FO is a finite 

state automaton that efficiently learns internal relationships between components of a 

string, originally developed as a technique for string matching and compression [27]. 

The input is sliced and categorized according to an “alphabet” of events. Inside the FO, 

the input is represented as a string of events, with forward links (the original next 

state), suffix links (pointers to previous substrings recognized as matching the next 

substring), and forward jumps (pointers to future substrings recognized as matching 

the next substring). Thus, the FO reassembles the events in a manner that claims to 

yield a stylistic reinjection of the original sequence. OMax has spurred the 

development of several other FO-based systems, including Audio Oracle [28], 

PyOracle [29], Somax [30], and Improtek [31]. Our implementation of MASOM [32], 

which will be presented in further detail in the next section, also includes FO within its 

architecture.
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Implementation of the Interactive Model
The Spire Muse musical agent builds upon MASOM (Musical Agent based on Self-

Organising Maps) and is implemented in the Max graphical programming 

environment [32]. Our version of the agent architecture utilizes MuBu [33], PiPo [34], 

factorOracle [35], the Audio Influencer patcher from the Somax library [30], the 

zsa.dist object from Zsa.Descriptors [36] and the ml.som and ml.kdtree objects from 

the ml.* machine learning toolkit [37].

MASOM was originally designed to be used for electroacoustic and electronic music 

performance. This has resulted in several works featuring improvised noise music, 

acousmatic music, live electronics together with instrumental performers, and 

audiovisual installations [38]. MASOM has also been reimagined as a gibberish 

language agent relying on a latent space of syllables collected from the audio of 

speakers of several languages [39]. We have redesigned MASOM’s training module to 

optimize it for instrumental input and implemented novel interactive modes in the run-

time modules. In the following, we provide an overview of the musical agent’s 

architecture and an ancillary interface as implemented in Spire Muse. We focus mainly 

on new features. For more details, readers can refer to previous papers about MASOM.

Training

The learning module constructs a latent space of musical events with varying 

durations. The duration range is adjustable—for our main experiments with an 

acoustic guitar corpus, we used a minimum length of 200 milliseconds and a maximum 

length of 3 seconds. The first stage of the learning process is the slicing of the audio in 

the source folder (the corpus). Onsets are calculated by measuring loudness 

transients, signifying new sonic events.

In the next step, each audio slice is labeled with a feature vector. Through 

experimentation, we found that using large FFT window and hop sizes (8192/512) 

yielded more reliable melodic and harmonic data. In all, there are 55 dimensions. The 

first is duration. The remaining dimensions are the mean and standard deviation of 

loudness (2), mel frequency cepstrum coefficients (MFCC) (26), fundamental frequency

 (2), and chroma (24). The chroma features (pitch histograms featuring the 12 notes in 

the chromatic scale) were added to strengthen the musical agent’s capability to orient 

itself harmonically as well as melodically. The inclusion of chroma features serves two 

functions. Firstly, it reinforces the melodic classification of slices containing one note. 

Equally important, it minimizes pitch errors introduced in slices containing several 
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notes. The average pitch of two or more notes yields a single pitch that is musically out 

of context. However, the chroma features are discrete and can reveal the presence of 

several notes within one slice. Hence, there is a better chance for slices with similar 

harmonic content to be clustered together in the self-organizing map, even in cases 

where the derived pitch misrepresents the tonality.

A significant new inclusion in the training module is the extraction of chroma 

transition matrices from longer segments of the songs in the corpora. To achieve this, 

the chroma features are first discretized. The most dominant chroma features per 

vector are classified as ones, the rest as zeros. The threshold is set at 0.4 (the range is 

0.0 to 1.0). With this discretization, the transformed vector essentially becomes a 

standard pitch class vector (see Table 1). Using a 20-slice long window with a hop size 

of four slices, the numbers of transitions between each pitch class are saved in 12x12 

matrices with markers that signify song and slice indices per matrix. This is a 

convenient way to encode longer-term harmonic dynamics. In run-time, these matrices 

are looked up by the automation algorithm, detailed later.

Table 1

A self-organizing map (SOM) is a type of artificial neural network that utilizes 

unsupervised learning to map high-dimensional feature vectors onto a two-dimensional 

topological grid [40]. Given a set of n-dimensional feature vectors, the learning 

algorithm organizes these vectors such that the resulting two-dimensional feature 

space is qualitatively aligned with the input. Each coordinate in the SOM, called a 

node, is a feature vector that represents approximations of a varying number of input 

vectors. On average, the number of nodes created is approximately one-sixth the size 

of the number of audio slices. After the SOM has been created, each audio slice is 

assigned to a node based on a best matching unit function (BMU). Hence, similar slices 

are clustered together at these nodes.

In the next step, the tempo for each song in the corpus is derived from a Python script 

via OSC. The tempo makes the generative playback in run-time more aligned with the 

Chroma vector Becomes

Single note 0.11 0.78 0.15 0.21 0.19 0.27 

0.31 0.14 0.39 0.18 0.12 0.26

0 1 0 0 0 0 0 0 0 0 0 0

Multiple notes/ multiphonics 0.65 0.09 0.23 0.13 0.41 0.29 

0.17 0.59 0.22 0.19 0.08 0.14

1 0 0 0 1 0 0 1 0 0 0 0
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song’s original tempo. For songs that are not tempo-based, the script will still attribute 

a perceived tempo. Although redundant, forcing a grid on atemporal material does not 

seem to have a negative impact—only minor time adjustments are made. Therefore, 

the grid is used for all material, and there is no need to create a dichotomy in the 

training process.

The final part of the training is a procedure where each song in the corpus gets 

encoded as a sequence of SOM nodes, using the BMU function. This is a lossy 

encoding, because many different audio slices may be represented by one SOM node. 

We find this memory compression and subsequent sequence modeling to be a good 

metaphor for the way musicians internalize musical events through rehearsal, and how 

such internalized events may be activated in unpredictable ways through association 

when interacting with other musicians. In jamming contexts, musicians feed off each 

other’s creative initiatives and take turns in following and leading. This constitutes a 

highly complex network of contingencies, where small deviations from expected 

musical trajectories may affect the interaction dynamics decisively. Our aim has been 

to model this combination of discernible stylistic residue from past performances and 

mutable interaction dynamics.

Influence parameters

In run-time, the machine listening algorithm continuously segments the user’s input 

stream into slices with durations that correspond to the ones in the corpus. We extract 

the same set of features from the input slices as those in the feature vector during 

offline training. The listening module can be directed to give some groups of features 

more weight than others, and this alters the subsequent matching algorithms 

considerably. The four influence parameters are rhythmic, spectral, melodic, and 

harmonic. The rhythmic parameter weights the duration feature. Setting the rhythmic 

parameter high and the rest low will make the agent search for material in the corpus 

that follows the timing of the input closely, but disregards the other features. The 

spectral parameter weights the MFCC features. The melodic parameter focuses on the 

fundamental frequency, and the harmonic parameter weights the chroma features. The 

influences can be set with sliders, so any combination of relative influence is possible.

Interactive Modes

Shadowing mode is the baseline behavior of the musical agent. The signal and data 

flows are depicted in Figure 4. In shadowing mode, the agent responds reactively and 

outputs the closest matching audio slice in the corpus for each onset registered in the 
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input. Here, the influence parameters come into play—closest matches vary depending 

on how they are set.

SOM nodes are not looked up in shadowing mode. Instead, instances from the input 

are compared directly to the feature vectors belonging to the audio slices in the 

corpus. Looking up audio slices directly creates a better contrast to the mirroring 

mode, which looks up SOM nodes. Direct slice matching makes sense when attempting 

to create an impression of an agent that follows the user as closely as possible. We 

found that BMU outliers in the SOM nodes weaken this effect to a certain degree.

Sparsities in some areas of the feature space yield discrepancies between the input 

and respective slice matches. Rather than being unwelcome artifacts, they tend to 

make sense musically. The harmonic influence is useful here because harmonically 

related events have similar chroma profiles.

Figure 4

Input vs. corpus matching in shadowing mode.
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In mirroring mode, the musical agent engages in reflexive interaction. Unlike the 

shadowing mode, the agent does not respond to input immediately but listens to longer 

phrases and attempts to respond with similar phrases. Upon receiving input, the agent 

starts building a list of closest SOM matches based on audio slices from the input 

stream. Accumulated SOM lists are expedited after eight beats, according to a tempo 

detection object listening to the input. Using a k-d tree algorithm, the processing 

module finds the closest matching SOM subsequence among the list of songs encoded 

as SOM sequences. A Factor Oracle (FO) of the song containing the matching 

subsequence is initiated, using the initial perceived SOM index as the initial state. The 

playback of the FO lasts for as many nodes as the length of the list that loaded it. For 

eight beats after the FO is initiated, SOM list gathering is inactive, corresponding 

roughly to the length of the agent’s response. This creates a sense of back and forth 

between the user and the agent. This process iterates as long as the mirroring mode is 

active.

0:00

Video 1

A free improvisation session in shadowing mode.
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Figure 5

Input vs. corpus matching in mirroring mode.

0:00

Video 2

Improvising in mirroring mode.
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In coupling mode, the user is “coupled” to an FO, which is played back continuously. 

Left unperturbed, the FO iteratively queries its next state, thereby taking on an 

autonomous style that may coerce the user to follow the musical agent’s lead. 

However, the agent listens to the user and attempts to align with the input by 

intermittently loading new FOs from other songs in the corpus or by jumping to new 

states within the same FO. The input buffer for this part of the machine listening is 20 

input slices—corresponding to the window length of the chroma transition matrices 

that were built during training.

The song that is automatically loaded from the corpus into the FO is selected based on 

a combination of two criteria:

If one or more same songs feature in both these groups, the FO will load the highest 

scoring match and initiate the change. After a change, the input buffer will start 

building anew, so changes will be no more frequent than the time it takes to fill the 

buffer.

Meso time scale harmonic dynamics: A chroma transition matrix of the past 20 input 

onsets is compared with corresponding matrices built from the corpus. Songs 

associated with the top ten matches are contenders for affecting an FO change.

Tempo similarity: A list of songs that are within plus/minus 10 bpm of the currently 

detected tempo is gathered.
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Figure 6

Input vs. corpus matching in coupling mode.

0:00

Video 3

Interaction in coupling mode (automated song changes disabled).
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Automation

Several studies point to a lack of awareness on the performer’s part during optimal 

performance, and neurological research seems to confirm that typical flow experiences 

are accompanied by the suppression of central processes associated with self-

monitoring and conscious volitional control [9]. This suggests to us that a musical 

agent designed for the purpose of optimizing flow should minimize the need for users 

to analyze their own performance in relation to the musical agent's current state. Our 

focus was thus guided to making an agent that transitions between interactive 

behaviors autonomously.

For now, the automation algorithm is quite simple. Shadowing is the initial mode, and 

it is also the fallback mode if the mirroring and coupling modes do not meet the 

qualifications for activation. Mirroring mode is activated if the SOM subsequence 

match contains at least three identical SOM matches (the k‑d tree algorithm comes up 

with many approximate matches). Mirroring mode deactivates if this qualification is 

not reached again within 20 seconds. Coupling mode jumps into action when the FO 

change threshold is met, and the mode is sustained for at least 30 seconds. Unless a 

new FO change is detected within this time, the mode is deactivated. The mirroring 

and coupling modes may “quarrel” if they both qualify at the same time. In this case, 

the latest qualifier will “win”.

Automated shifts in interactive modes will underperform in some contexts, especially 

in cases where corpora are sparse or consist of heterogeneous audio material. 

Therefore, there is an option to turn off automation, in which case the interface switch 

to another view (Figure 7). Manual selection of modes and songs will result in a more 

contemplative kind of session, giving the user more time to explore each mode and the 

generative modeling uninterrupted.
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The Negotiating Interface

The negotiating interface functions as a counterweight to the agent’s automated 

behaviors, and features the buttons Go back, Pause/Continue, Change, and Thumbs 

Up. Go back forces the agent to its previous mode. This backtracking can be repeated. 

The agent tracks its own history, which also includes FO song changes. Pause will mute 

the agent but it is still listening. This is useful if the user needs time to figure out 

something in his or her playing without interruption. Upon pressing Continue, the 

session will proceed based on the most recent listening. Change will force the agent 

away from its current state. For now, this sets the interactive mode, influences, and FO 

song selection randomly.

The Thumbs Up button signals to the agent that the user is enjoying the current 

interaction, and stays in the same state for the next 30 seconds. In future versions, we 

envisage that Thumbs Up can be used for online reinforcement learning. Through 

repeated use, the agent will learn what kind of states and transitions the user prefers 

in different kinds of contexts.

Figure 7

The Spire Muse interface as per April 2021. Left: Automation view. Right: Manual 

view. Pressing the tab key toggles between the two views.
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Discussion and Future Work
This version of Spire Muse is a proof of concept. An extensive user study is scheduled 

for June 2021. To date, it has been tested by the first author using corpora containing 

acoustic guitar, electric guitar, vocals, and oboe. The main focus has been on an 

acoustic guitar corpus [41]. An earlier version of the software has also been used in 

concert by a solo guitarist/live electronics musician1 using corpora containing electric 

guitar, violin, vocals, and various collections of sampled sounds.

Spire Muse is designed to encourage creative exploration and defer cognitive 

deliberation. Although it clearly does not approximate a real-life musician, our 

experience so far gives the impression of a versatile musical agent that listens quite 

well and frequently responds with pleasantly surprising material. The more contrasting 

responses can help users break out of habitual playing styles and spur them to explore 

new creative spaces. Even the slave-like shadowing mode may yield musical responses 

that can create interesting contrasts between the human and agent‑performed 

material. This is because both converging and diverging aspects are to be found even 

in the nearest matches, and weighting features differently can have significant effects 

on the output.

0:00

Video 4

Demo session featuring the use of the negotiation panel. The buttons are 

operated with foot pedals.
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Of course, the corpus choice is of importance. Experiments with various corpora have 

resulted in very different kinds of jam sessions. In a sense, one is importing an imprint 

of someone’s personality with the corpus—the musical agent engages in style 

imitation, and the outcome of the interaction potentially becomes something novel. 

This makes Spire Muse reliant on good selections of corpora. The mirroring mode is 

particularly exposed to fragilities in corpus selection and influence settings. The 

“casting back” of musical phrases modeled on SOM subsequences makes the mode 

well suited for call-and-response type interaction, but for some SOM regions, the 

interaction could become erratic. It is a volatile mode that may lead to highly diverging 

kinds of musical responses, especially if the corpus is sparse. Some responses may 

represent sharp breaks from the user’s current performance. As described, a mirroring 

mode may jump into action from the shadowing mode, and the experience may be that 

the output suddenly “goes off on a tangent”. The user may be coerced to moderate his 

or her playing as a reaction to such abrupt changes.

The coupling mode is particularly prone to yielding flow experiences. Due to the 

nature of the FO algorithm, the interaction becomes more loop-based in this mode. On 

several occasions, the first author became immersed in the interaction and only 

afterward discovered that ten minutes had gone by without actively engaging with the 

interface—a promising observation. Although we regard this version of Spire Muse as 

an early prototype, we are surprised by how absorbing the interaction feels.

The negotiating interface provides manipulation of behaviors that are high-level and 

gives plenty of room for autonomy for the agent. The correlate of this autonomy is 

unpredictability. However, we regard unpredictability as an important ingredient of co-

creativity. As with human musical partners, unpredictability may be frustrating at 

times but also an asset. Ultimately, we believe the most auspicious feature of Spire 

Muse is not the musical output of the agent per se, but the capacity to entice users 

into exploring ideas with a sense of shared ownership.

In future versions of Spire Muse, we are planning to implement machine learning 

algorithms that can rein in some of the unpredictability through repeated usage. Since 

the agent tracks each session and keeps tabs on the states that it goes through, it can 

build a profile of the user and adapt its behavior in response to different kinds of 

contexts.
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