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ABSTRACT

We propose and evaluate an approach to incorporating multiple user-provided inputs, 

each demonstrating a complementary set of musical characteristics, to guide the 

output of a generative model for synthesizing short music performances or loops.  We 

focus on user inputs that describe both “what to play” (via scores in MIDI format)  and 

“how to play it” (via rhythmic inputs to specify expressive timing and dynamics).  

Through experiments, we demonstrate that our method can facilitate human-AI co-

creation of drum loops with diverse and customizable outputs.  In the process, we 

argue for the interaction paradigm of mapping by demonstration as a promising 

approach to working with deep learning models that are capable of generating 

complex and realistic musical parts.

Author Keywords

Music Performance Modeling, Interactive Music Generation, Gesture Mapping, Human-

AI Collaboration

CCS Concepts

•Applied computing → Sound and music computing; Performing arts; •Human-

centered computing → Gestural Input

Introduction
Communication between musicians can take time, effort, multiple attempts and 

clarifications, and often requires trial and error.  In performance, composition, or 

production environments, contributors need to explain what they want from each 

other; any partnership or collaboration depends on the ability to clearly communicate 

ideas to the person whose job it is to execute those ideas musically (e.g. by playing an 

instrumental part, arranging a score, setting the level of a reverb effect, and so on).

When musicians and composers work with complex musical instruments and tools, 

communicating ideas to a machine can also require effort, exploration, and expertise 

(albeit expressed in a much different form), especially when the details of how an 

instrument works are opaque.  Musical instruments and tools based on Artificial 

Intelligence (AI) and Machine Learning (ML), especially those built on powerful 

generative models capable of synthesizing  human-like audio or MIDI, can be 

particularly difficult for users to navigate in predictable ways.  Still, realistic and 
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expressive outputs from this kind of model have inspired a growing interest among 

music creators to explore incorporating generative ML models into their creative 

practices[1][2][3].

Recent research highlights that while music creators can often count on ML music 

models to provide them with surprising or unexpected ideas, they tend to have a hard 

time controlling them, finding it difficult to achieve specific results when desired [3][4]

[5].  In response, a number of recent studies seek to make generative models easier for 

users to control by making them conditional - by training models with different types of 

input variables as probabilistic conditioning.  

In practice, inputs to conditional generative models can take many forms, for example 

categorical variables like genre or the identity of a specific artist[1], initial themes for 

continuation [6][7][8], pitch contours [9][10][11], chord symbols [12][13][14], accented 

rhythms[15], or features summarizing the characteristics of individual notes [16][17].  

Once a model has been trained, these variables can be exposed in different ways 

within user interfaces to provide different affordances.  Before reaching this stage, 

however, the choice of conditioning variables (along with the choice of training data) 

outlines an initial set of limitations that define how a model might be used.

If our intended use for a generative model is to provide inspiration, to help us break 

out of existing patterns or habits, or to challenge ourselves by including a “musical 

other” into our composition practice[3], then many different ways of conditioning a 

model may serve us well; indeed, other approaches that do not involve ML may also 

work just as well.  As soon as we begin to make our goals more specific, however, 

designing and implementing conditional models becomes harder[4] and requires 

solving interconnected technical and  interaction challenges at the same time.

In this work, taking inspiration from the ways in which musicians communicate with 

one another - in particular, by demonstrating an idea with multiple views drawn from 

different modalities - we contribute and experiment with a framework for designing 

and training conditional generative models with multiple complementary user inputs.

To anchor this notion of communication through multiple demonstrations with a 

specific recorded example, consider the diverse array of communication styles 

displayed by music producer Oak Felder in the process of collaborating with a 

drummer [18].  Within the span of no more than a few minutes, Felder: (1) offers high-

level stylistic suggestions (“I’m wondering if it should be a little more complex.”), (2) 

provides specific instructions about one instrumental part (“No hi-hat.”), (3) 
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demonstrates a drum pattern through sound with a vocal imitation, (4) indicates a 

drum fill by briefly playing air drums, and (5) nods his head to the side in time with 

the music to show where accented beats should go.  Some of this guidance  is given 

through examples (e.g. vocal and motion-based gestures), and other instructions, 

though expressed verbally by Felder, could presumably also be demonstrated to a 

machine by example (e.g. a blank hi-hat track indicates “No hi-hat.”)  Over the course 

of this interaction, Felder conveys some of the more concrete details only once (e.g. 

“No hi-hat”), while reinforcing more abstract concepts by demonstrating them in more 

than one way (e.g. gesturing a drum pattern in the air while vocalizing a version of it 

at the same time).  In the end, based on all these different cues, the drummer picks up 

on the intentions of the producer, and they successfully record the part together.

We do not bring up this example in order to argue that we should interact with 

computer models just like we do with humans, using natural language interfaces and 

so on; rather, we find it instructive to highlight the range of examples that a producer 

instinctively draws on here in order to convey their intention to the drummer. By 

breaking down an idea, which at firsts only exists in Felder’s imagination, into 

complementary (even if sometimes overlapping) components, some of which can be 

expressed well in one way and some better in another, the producer can convey 

information to the drummer more effectively.

Drawing inspiration from this kind of multifaceted communication between producer 

and musician, which happens not instantaneously but over the course of the time it 

takes to design or perform the relevant demonstrations, we experiment in this paper 

with building generative models that accept two or more user-provided conditioning 

inputs given by example, with each input designed so as to be possible for a user to 

create.  ML models offer promise as useful tools particularly when a user has an idea 

in mind that is difficult to create from scratch (for example because the user is not 

sitting in front of a drum kit or doesn’t know how to play drums[15]), but which can be 

still be specified by example in some simpler form.

To ground our experiments in a context that we hope can be of practical use to music 

creators, we focus on models for generating two-measure drum loops.  This particular 

task of creating drum and percussion parts  is of broad interest to creators in many 

styles of music, and models for generating drums have already been implemented in 

publicly available toolkits for music producers [5][19][20], making it easier to 

implement the methods we explore within interfaces similar to those in the toolkits 

above. Using drum recordings from the Groove Midi Dataset [15], we explore 
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Variational AutoEncoder (VAE) models[21] for generating drum beats based on two or 

more user inputs, with every input defined in MIDI format and able to be specified by 

example either through gestures recorded by a MIDI keyboard or microphone, or 

through grid interfaces like those found in drum machines. In working on creating 

drum loops, we pay particular attention not just to the pattern of which drums are to 

be played, but also to how they are played, modeling precise microtiming and 

dynamics information, which is known to be difficult for users to create by hand 

without performing any gestures to demonstrate [15].

This work’s primary contributions are as follows:

Code and pre-trained models developed for this paper can be found at: 

https://github.com/jrgillick/groove

Related Work
This paper builds on our previous research on drum loop generation [15], which serves 

as a starting point for the applications and the machine learning methods that we 

explore.  Previously, we proposed two models for conditional generation of drum loops 

using a Recurrent Variational AutoEncoder (a GrooVAE).  One model explores the task 

of Humanization - automatically generating dynamics and timing variations giving a 

quantized Midi input, and the other proposes an application called Drumify, in which a 

We design and implement a factorized Variational AutoEncoder model for  

generating drum performances conditioned on multiple inputs that cover aspects of 

both a musical score and how that score should be played.  We experiment with a 

model that accepts two inputs and another that takes up to eleven, more fine-

grained, inputs.  We demonstrate that these models allow us to generate drum loops 

with more diverse and more precisely specified outputs than existing methods.

We show that by factorizing score and performance characteristics into separate 

latent variables, we can overcome difficulties with sampling encountered in previous 

work in order to maintain diverse outputs while still leveraging efficient data 

representations that use continuous rather than discrete values to model 

microtiming and dynamics in music.

We tie together recent research in conditional generative models for music with the 

interaction framework of mapping by demonstration and offer a technical approach 

based on models that can accept multiple demonstrations from users, which we hope 

will take steps toward enabling future user-centered research on human-AI co-

creation with music generation models.

https://github.com/jrgillick/groove


International Conference on New Interfaces for Musical Expression
What to Play and How to Play it: Guiding Generative Music Models with

Multiple Demonstrations

6

model generates drum loops based on an input rhythm with expressive timing (which 

could be tapped out on a surface or implied by the onsets of another instrument), but 

with no specified instrumentation or score.  In each case, these models are able to 

synthesize realistic drums that listeners have difficulty distinguishing from real loops 

in the data set.  

Both of these interactions, however, are limited in that they only afford the user one 

input at a time in order to specify what they want. This means that in practice, if a user 

has a specific beat in mind, the Humanize model does not offer control over how the 

model will add expressive dynamics and timing to that beat; as a result, for any given 

input score, the output is almost always the same. Similarly, the Drumify model does 

not provide any control over which drums are played; for example, it is left up the 

model to choose whether to use the ride cymbal or the hi-hat. In our experiments here, 

we attempt to address these limitations with regard to both diversity and control.

We also draw more broadly from a number of other studies on conditional models for 

music generation.  Recent work on music generation based on some kind of user input 

includes models that provide counterpoint to an improvised melody[22], map eight 

buttons on a game controller to the 88 keys on a piano[23], or synthesize the audio for 

one instrument based on fine-grained pitch contours and dynamics from another 

signal[11]; we build on these by exploring multiple complementary gestural inputs at 

the same time.  On the modeling side, we also build on work using factorized 

representation learning to control generation of monophonic[24] or polyphonic [9][13] 

music scores.  We explore a different kind of factorization here, however, by separating 

out scores from performance characteristics, as well as a different model architecture.

Finally, we draw inspiration from gesture mapping [25][26][27] in designing  the 

conditioning inputs used in generative models around the concept of a gesture (which 

has been defined in a number of different ways but can be broadly categorized as some 

kind of sensed input performed or specified by a user).  Much research within the 

NIME and Computer Music communities focuses on interaction paradigms centered 

around mapping various kinds of user inputs (which often take the form of performable 

gestures) onto output parameters for controlling sound [26][28].  By providing 

demonstrations of gestures, users can train their own mapping models by example 

using machine learning[27].  Most approaches to gesture mapping attempt to modify a 

relatively small number of output parameters (e.g. a handful of knobs on a synthesizer) 

[29], as opposed to the many thousands or millions of parameters in large neural 
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network models; as a result, gesture mapping often provides more precise control than 

has typically been possible with large music generation models.

One barrier that has inhibited music generation models from being put to use in the 

same way as gesture mapping, however, is the size of datasets and expense of 

computational resources needed to train them, which prevents users from choosing 

and manipulating their own training data.  A number of recent studies have explored 

ways to either make models smaller and faster to train[20] or to enable customization 

of pre-trained models to meet user needs [30].  We see this line of work as 

complementary to the model conditioning work that we explore here; depending on the 

context, interactions may be better facilitated by more precise conditioning controls, 

easier management of training data, or a combination of both. 

Proposed Models and Implementation

Modeling Two Inputs: Score and Groove

Starting from the hypothesis that multiple different forms of user input can lead to 

more controllable and diverse generated music, we operationalize the idea of model 

inputs as gestures by implementing a factorized neural network model architecture 

called an Auxiliary Guided Variational AutoEncoder [31].  We first implement a model 

that accepts two inputs - one for quantized drum scores (specifying what to play) and 

one for tapped rhythmic inputs (specifying how to play it), with each of these inputs 

implemented exactly as in the previously published Humanize and Drumify models 

[15].  An important point to make here is that these inputs are not directly provided in 

the data set; at training time, as with other AutoEncoder models, we are restricted to 

using inputs that can be computed with some function  applied to an input data point 

.  Through the design of a function , we specify a mapping from drum loops 

(high dimensional realistic data points) to simplified descriptors of those loops (which 

are easier for users to create with a gesture); we then train models to learn the inverse 

mapping from gestures to data.  For this model, we define two functions during 

training that take the place of user inputs at inference time:  is a quantization 

function that removes all microtiming and velocity information from a drum loop 

(keeping only drum score), and  is a “squashing” function that has the opposite 

effect, keeping performance characteristics in the form of microtiming and velocity, 

but discarding the drum score.  Figure 1 visualizes the architecture of this neural 

network model.

F

X F (X)

F (X)1

F (X)2
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This architecture differs from a standard VAE in two ways.  First, while a typical VAE, 

which we treat as a baseline, has a single latent variable , the Score and Groove 

inputs to this model are each encoded (in this case with bidirectional LSTM encoders) 

into separate latent variables  and , which are both independently trained to 

match standard normal distributions; following Roberts et al.[32], we train using the 

free bits method (hyper-parameters to balance the two loss terms in a VAE) with a 

tolerance of 48 bits.   and  are subsequently concatenated and passed to a 

decoder (also an LSTM), whose goal is to reconstruct the original drum sequence from 

the training data.  This separation between  and   (sometimes called factorizing or 

disentangling) aims to explicitly capture some of the variation among each of these two 

aspects of the data (Score and Groove) with specific variables.  One of our goals of 

factorizing in this way is to attempt to overcome problems with diversity reported in 

previous work, in which when generating performance characteristics for an input 

score, a given loop was always Humanized in the same way [15]; with this model, by 

Figure 1: Auxiliary Guided Variational AutoEncoder model trained to take two user 

inputs (a quantized drum score and a tapped rhythm expressing the groove of the 

loop). Features of the drum sequence, which are designed to be similar to inputs 

that could be demonstrated by a user through an example, are extracted via 

functions  (here, a quantization function that removes microtiming and 

velocity) and  (here a “squashing” function that preserves microtiming and 

velocity but discards the score).

F (X)1

F (X)2

Z

Z1 Z2

Z1 Z2

Z1 Z2
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sampling different values for  or inputting different Grooves, we can try to 

synthesize different performances for the same score.  This factorization also affords a 

user two complementary ways of specifying a desired drum loop (by independently 

providing a Score and a Groove).

The second distinguishing feature of this architecture is the inclusion of  Auxiliary 

Decoders, similar in form to those proposed by Lucas and Verbeek for image 

generation[31].  As shown in Figure 1, in addition to the decoder trained to 

reconstruct the original drum loop, separate decoders (  and ) are 

trained at the same time to reconstruct the input Score and the input Groove. This 

variant of an AutoEncoder, which appears not to have been employed before for 

modeling music, offers promise for two reasons: first, it explicitly reinforces the 

incentive for the latent variables  and  to capture the relevant information, and 

second, it offers a mechanism for users to inspect the model’s interpretation of each 

input gesture: along with a generated drum loop, a user can also listen to or visualize 

the model’s reconstructions of the Score and the Groove corresponding to that loop.  

Examining these auxiliary reconstructions  allows the user (or model developer) one 

option for investigating the strengths and weaknesses in the model, which may be 

helpful in learning how to work with it.  For example, if the auxiliary reconstruction of 

a user-provided Groove is inaccurate, this suggests that the model is unable to 

recognize the given gesture; this feedback can direct the user to try again by 

performing the gesture slightly differently in order to better work within the model’s 

limitations.

Breaking it Down Further: Modeling More Inputs

In addition to the VAE with two inputs, in the spirit of our motivating example where a 

producer explains a drum beat to a drummer in several different ways, we further 

experiment with factorizing our model into more components, with the hope of 

capturing more options for diverse outputs and controllable interaction.  Here, we 

divide the latent variable  into 11 components .  This time, we separate the 9 

different drum instruments from the score into 9 different latent variables (visualized 

at the top of Figure 2), such that a user can specify as few or as many of these as they 

choose to, with the option to sample the others.  For example, a user can specify a 

pattern for the kick and snare drums, provide an empty pattern on the crash cymbal 

channel indicating not to play any crash cymbals, and through sampling the other 

latent variables, leave the choice of whether to add hi-hats or ride cymbal for the 

model to decide.  At the same time, in addition to the Groove input defined in the first 

Z2

Decoder1 Decoder2

Z1 Z2

Z Z …Z1 11
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model, we add a second performance-style input that captures musical Accents, 

indications of where notes are emphasized by being played louder.  Here, we define 

accents as binary vectors with one input corresponding to each 16th note timestep (we 

use a 16th note resolution in time for these models, although other resolutions offer 

different advantages and disadvantages[20]); we consider a metrical position in the 

dataset to be accented if it contains a note (on any drum) whose Midi velocity is more 

than one standard deviation above the mean velocity for that drum, calculated over the 

entire sequence.

In describing our models, we adopt the terminology of gesture to refer to each of the 

inputs, though some inputs could be either performed by a user in the typical sense of 

a gesture, or created in another way, for example by composing them in a Midi editor.  

In this second model, because each gesture is expected to be packed with less 

information, we simplify the encoder and decoder architectures in the interest of 

reducing model size and training time, using small feed-forward MLP neural networks 

instead of LSTM.  We experimented with simplifying the main decoder as well, but we 

found that in order to generate realistic outputs comparable to those in previous work, 

it was important to use a more powerful architecture than an MLP, so we use an LSTM 

here as well.
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Experiments
To evaluate our model designs, we examine metrics computed on the test partition of 

the Groove Midi Dataset, measuring two main aspects of our proposed methods.  First, 

we look at the diversity of generated drum loops using our models, comparing against 

the aforementioned GrooVAE model[15] in the context of the task of Humanizing 

quantized drum scores (by generating MIDI velocities and microtimings), and second, 

we examine the potential for controllability afforded by these models.  While 

controllability will ultimately depend on the context of how, and with which users, a 

model is situated in an interactive setting, as a starting point, we use the idea of fidelity

 as proxy: given a particular input gesture, we examine the degree to which the model 

outputs exhibit the characteristics demonstrated by that input.

We have not yet deployed these models in an interactive interface to study their 

usability in practice, but this choice of metrics is informed by our findings from 

previous work in which we deployed the Humanization and Drumify models (treated 

here as baselines) as plugins in Ableton Live [15][5] and tested them with users.  We 

Figure 2: Auxiliary Guided VAE Model with 11 Inputs. This version breaks drum 

loops further into 11 different latent variables: 9 based on the score (1 for each 

instrument in the kit) and 2 based on performance features (one specifying 

microtiming through a tapped rhythm and one specifying accented beats).
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believe that improving on these quantitative metrics is an important next step in our 

ongoing iterative process of designing tools for musical human-AI co-creation.

Measuring Diversity in  Generated Performance Characteristics

To measure diversity, we explore the task of Humanization.  In this task, a model’s job 

is to take a quantized drum loop as input (a Score), and then synthesize performance 

characteristics (microtiming and velocity) for that input.  One of the motivating factors 

for this work was the shortcoming of our baseline model [15], which, although able to 

create realistic outputs, always generated the same stylistic outcomes.  For this metric, 

we look at the standard deviations of timing offsets generated by each model. 

Following the baseline implementation, we calculate timing offsets as continuous 

numbers between -1 and 1, which represent how far each drum onset falls between the 

current timestep and an adjacent one.  Drum hits played late, or behind the beat, are 

represented by positive numbers here, and drum hits played early, or ahead of the 

beat, are given negative numbers.

Using two-measure windows extracted from every drum performance in the test set (a 

total of 2192 sequences), we humanize each drum sequence five times with each 

model, and then among each set of five generated loops, we compute the mean 

element-wise standard deviations of the timing offsets, such that notes in the same 

position (e.g. a snare on beat 3) are compared with each other.   This yields a single 

measurement for each test sequence, which we finally average across the entire test 

set.  A higher standard deviation here indicates more diverse outputs. 

In this experiment, we compare three conditions: (1) the baseline Variational 

AutoEncoder model that includes neither factorized latent variables nor Auxiliary 

Decoders, (2) our factorized model without Auxiliary Decoders, and (3), the full model 

shown in Figure 1.  In the baseline model, only the Score input is provided; for our new 

models, we implement the Humanization task by taking a single score as input, while, 

across each of the five runs, we sample a random vector for  to pass to the decoder. 

Measuring Fidelity to a Gesture

In a second experiment, as a proxy for measuring the controllability of interactions 

with our models, we look at how well the generated outputs match the characteristics 

of a given gesture in the new model.  Here, we fix an input Groove with a pre-specified 

pattern of timing offset values (e.g. 0.5 for every off-beat 16th note and 0 for every on-

beat 16th note to indicate a 16th note swing), before applying the same Groove to 

every Score in the test set using the 2-input Auxiliary Guided VAE model shown in 

Z2
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Figure 1.  After applying the same 3 Grooves as conditioning inputs paired with the 

Score  extracted from every sequence in the test, we plot the resulting distributions for 

each groove and measure the means and standard deviations of the generated timing 

offsets on the off-beats.  For the three different input grooves, we use a different fixed 

offset value (-0.05, -0.2, and -0.4, respectively) for every alternate 16th note position.  

This corresponds roughly to choosing a particular Swing value (as is common in drum 

machines) as a conditioning input.  Unlike drum machines, however, in which timing 

offsets are applied uniformly through a templated approach, we might not expect the 

synthesized outputs from our machine learning models to conform exactly to this 

value; the goal here is again to guide the model towards a particular groove rather 

than to control it exactly.

Results and Discussion
Through our quantitative evaluations, we find that, in general, the methods  explored 

in this work appear promising for both diversity and controllability in generated drum 

loops.  As Table 1 shows, our measurement of diversity confirms the finding reported 

previously that the baseline model usually performs Humanization in the same way 

each time.  The Standard Deviation metric of 0.061 (measured as a proportion of the 

distance between successive metrical positions as 16th note resolution) for the 

baseline in Table 1 is quite small; for context, even changing the timing of a drum 

pattern by two standard deviations here would not be enough, for example, to change 

a beat from a straight feel to a heavy swing feel.  The factorized VAE models, however, 

show a different trend, with much higher Standard Deviations among the timing 

offsets; the version using Auxiliary Decoders shows the most diversity here with a 

Standard Deviation of 0.22.  Furthermore, alternative methods for adding diversity 

during sampling do not help the baseline here: increasing the value of the temperature 

parameter in the decoder does not change the metrics in Table 1, and adding noise to 

the latent vector  before decoding has the undesirable side effect of causing the 

model not to follow the given input Score. 

Table 1: Measuring Diversity in Generated Timing Offsets

Z

Model Standard Deviation of Timing Offsets

Baseline VAE[15] 0.061 += 0.001

Factorized VAE 0.200 += 0.002
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Our subjective experience in listening to these Humanizations accords with the metric 

here as well; we find that unlike with the baseline, these models generate perceptually 

different results.  Depending on the Groove conditioning, sometimes the same beat is 

played with a swung or triplet feel, and other times it is played straight.  In addition, 

drums and metrical positions are accented different across different runs.   

In our second experiment, a case study in examining the fidelity of our Auxiliary 

Guided VAE model to a gesture (the gesture in question is a Groove representing a 

particular amount of swing), we find that when applied broadly to a large number of 

input Scores, the average swing values (as measured by timing offsets on off-beats) 

come quite close to the target values. Different swing values lead to slightly different 

trends here: guiding the model toward more heavily swung beats tends to give slightly 

larger variation in the generated outputs than when specifying beats with less swing, 

and in general, offset values tend to regress slightly to the mean of the entire dataset.  

Table 2 summarizes these results, and Figure 3 visualizes the distributions from this 

experiment.

Table 2: Measuring Fidelity to a Gesture (Swing Amount)

Factorized VAE + Auxiliary Decoders 0.222 += 0.002

Target Swing 

Amount

Generated Swing 

(Mean)

Generated Swing 

(Std. Dev)

Difference in Means

-0.05 -0.091 0.161 0.042

-0.2 -0.214 0.163 0.014

-0.4 -0.366 0.175 0.034
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In addition to the metrics reported above, which focus on the 2-input model factorizing 

Score and Groove, we also explored the larger 11-input model more informally by 

listening to a number of outputs with different conditioning setups.  For example, in 

one experiment, we fixed all of the gestural inputs except for the features specifying 

the intended patterns for hi-hats and ride cymbals.   We then applied several different 

hi-hat or ride input patterns given the same fixed set of other conditioning inputs.  We 

found that the results were usually quite realistic, though in some cases slightly less so 

than with the baseline or the simpler 2-way model. The possibilities for diversity and 

control, however, appear richer: the model did follow the input specification, reliably 

switching between hi-hat and ride cymbal, while still following the same groove in 

each alternate condition.  The model also seemed to make reasonable choices in this 

case when forced to choose between mismatched conditioning inputs (e.g. specifying 

an Accent or emphasizing a Groove in a metrical position where the corresponding 

score is blank).  As we might expect, however, not all combinations of input gestures 

are able to lead to realistic results; in particular, when we specified less common 

patterns through the input gestures, model outputs were either less realistic or less 

faithful to the specified gesture.  

Conclusions
Designing and developing technology to guide complicated generative music models 

towards user-specified musical goals is a challenging problem that has recently seen 

increased interest among ML and MIR research communities.  As researchers from 

these communities have increasingly turned away from working solely on the technical 

aspects of machine learning and toward studying how to making generative models 

easier for users to control, research questions have begun to overlap with existing 

work on mapping from the NIME community: increased control, broader interaction 

possibilities, and new methods for human-AI co-creation motivate much recent work on 

Figure 3: Distribution of timing offsets for 3 different target Grooves. From left to 

right, the target values specified by the three conditioning inputs are -0.05, -0.2, 

and -0.4.



International Conference on New Interfaces for Musical Expression
What to Play and How to Play it: Guiding Generative Music Models with

Multiple Demonstrations

16

conditional models for music generation [10][15][23]. This convergence (which has 

also been raised by others [3]) motivates our current work, in which we aim to 

continue to move music generation research toward directions where it may be able to 

meet the creative needs of music creators.

In this paper, we build on this strand of technical research, exploring a new 

combination of conditioning inputs and implementing them in a model for generating 

drum loops. At the same time, drawing inspiration from work in on gesture mapping, 

we reinterpret the technical formulation of conditional generative models into a simple 

interaction paradigm based on guiding ML models with demonstrations, and show 

through experiments as well as informal subjective evaluations that our approach can 

enable diverse and controllable interactions with music generation models.  We hope 

that this approach will provide useful grounding for future technical and user-centered 

research on musical interactions between people and AI.
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