International Conference on New Iterfaces for Musical Expression
MapLooper: Live-looping of
distributed gesture-to-
sound mappings

Christian Frisson!, Mathias Bredholt!, Joseph Malloch?2,
Marcelo M. Wanderley?

linput Devices and Music Interaction Laboratory (IDMIL), Centre for Interdisciplinary Research in
Music Media and Technology (CIRMMT), McGill University,

2Graphics and Experiential Media (GEM) lab, Dalhousie University

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://creativecommons.org/licenses/by/4.0/

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

ABSTRACT

This paper presents the development of MapLooper: a live-looping system for gesture-
to-sound mappings. We first reviewed loop-based Digital Musical Instruments (DMIs).
We then developed a connectivity infrastructure for wireless embedded musical
instruments with distributed mapping and synchronization. We evaluated our
infrastructure in the context of the real-time constraints of music performance. We
measured a round-trip latency of 4.81 ms when mapping signals at 100 Hz with
embedded libmapper and an average inter-onset delay of 3.03 ms for synchronizing
with Ableton Link. On top of this infrastructure, we developed MapLooper: a live-
looping tool with 2 example musical applications: a harp synthesizer with
SuperCollider and embedded source-filter synthesis with FAUST on ESP32. Our system
is based on a novel approach to mapping, extrapolating from using FIR and IIR filters
on gestural data to using delay-lines as part of the mapping of DMIs. Our system
features rhythmic time quantization and a flexible loop manipulation system for

creative musical exploration. We open-source all of our components.

Author Keywords

Digital Musical Instrument, mapping, looping, synchronization, embedded computing

CCS Concepts

Applied computing — Media arts; Hardware — Sensor devices and platforms;
Sound-based input / output.

Introduction

Composers Pauline Oliveros and Terry Riley explored technology-driven repetition in
music in the 1950s through pioneering experiments with tape loop techniques and
tape delay/feedback systems [1]. Their system, Time Lag Accumulator, worked by
stringing tape between two tape recorders and feeding the signal from the second
machine back to the first, mixing incoming sound with the tape’s previously recorded
sound. Later, digital looping devices re-implemented this concept. Digital memory
replaced magnetic tape, and digital loopers are now available in much smaller form
factors than magnetic tape recorders.

A Digital Musical Instrument (DMI) consists of a gestural interface and a sound
generation [2]. The gestural interface and sound generator are separate units related

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

by mapping strategies. Hunt et al. demonstrated [3] that different mappings can
completely change an instrument’s behavior.

Mappings have been employed in synthesis engines [4], physical models [5], or audio
effects [6]. In these contexts, mappings facilitate skill-based performance,
characterized by rapid, coordinated movements in response to continuous signals [7].
This type of performance often involves instruments with a high level of mapping
transparency, where the link between a performer’s gesture and the resulting sound is
clear to both audience and performer, correlating with instrument expressiveness [8].
Musicians seeking the aesthetics of accurate and precise timing typically require a
high skill level, while existing tools for creating loop-based music such as music
sequencers, samplers, and loopers offer beginners a low “entry fee” [9]. However, the
control mapping of these tools is often opaque and difficult for the audience to
understand. In this work, we explore mapping in the context of loop-based music
performance with the goal of creating instruments with a low entry fee and high
mapping transparency.

In this paper, we first review several looping tools and list our design requirements.
We then describe our mapping and synchronization platform for embedded devices,
and validate our approach through the gesture-to-sound looping tool MapLooper and
two example synthesis applications. We finish by discussing perspectives beyond our
work.

Related work

We review several looping tools involving gesture-to-sound mappings grouped into two
main categories: a) audio stream loopers, b) control data stream loopers.

Audio stream loopers

Audio stream loopers have become popular in the form of commercial live-looping
pedals. These devices usually have user interfaces with buttons and knobs for
controlling recording and playback states, loop length, and volume of loop layers. Loop
controls can also be controlled gesturally, giving the performer the possibility to
perform with gestures and body movements.

SoundCatcher

SoundCatcher[10] (Image 1) is a live-looping system with a mid-air gestural control
interface. The distance between the performer’s hands is mapped to the loop length

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

and vibrotactile feedback. SoundCatcheris an example of the usage of an explicit
mapping strategy for the control of live-looping.

—_—
Ultrasonic

SCNS0rs
|

N

Gesture
input

» Footswitch

| H =
Record Loop-points

Y A

Sound Audio effect Sound
; Looper ; ;
input (Time-freezing) output
Vibrotactile
Actuators
feedback

Image 1
Gesture-to-sound interface of SoundCatcher. The performer is holding the
actuators, and the ultrasonic sensors are mounted to a microphone stand.

SoundGrasp

SoundGrasp [11] (Image 2) features a mid-air gestural control interface with a glove
controlling the recording/playback state and parameters for reverb and echo effects.
Postures are classified into a vocabulary of control commands such as
record/play/stop. SoundGrasp is an example of using machine learning as a mapping
strategy for the control of live-looping.

Posture

Gesture Glove . o s
input controller identification
put - Sensor (Neural network)

data
Posture
Record /play Change Effect
parameter parameter
Y Y Y
Sound Looner Audio effects Sound
input pe (Reverb, Echo, Filter) output
Image 2

Gesture-to-sound interface of SoundGrasp. Gestures are recognized using a neural
network. The identified postures are used as commands for controlling the looper.
Sensor data is also mapped directly to audio effect parameters.

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Control stream loopers

Streams of control data such as MIDI or Open Sound Control (OSC) messages or
analog control voltages (CV) can also be looped, by inserting the looping device
between a control interface and a sound generator like a mapping layer. As with audio
stream loopers, control data is recorded into a buffer and played back in a loop.
Control stream loopers offer the advantage that mappings can be changed post-
recording, giving the possibility to re-route the control data to different synthesis
processes.

MidiREX and Midilooper

MidiREX [12] by Peter Kvitek and Midilooper [13] by Bastl Instruments (Image 3) take
their inspiration from digital loop pedals both in appearance and functionality. The
devices record incoming MIDI messages into a buffer, also compatible with MIDI
Polyphonic Expression (MPE) [14]. Midilooper can modulate MIDI velocity either
randomly or using a control voltage input as a modulation source. Random modulation
has become an increasingly popular feature of music sequencers as a tool for
“humanization” [15]—a trend Cascone characterizes as an era of “post-digital” music
defined by the aesthetics of failure and audible glitches [16]. Midilooper's random
velocity feature, labeled “human velocity”, can add dynamic variation to the recorded
loops.

User

interface

Record / play

Sound
output

Sound
generator

Gesture
input

Looper

Image 3
Gesture-to-sound interface of MidiREX and Midilooper. The MIDI protocol allows
using any MPE-compatible gestural controller.

Ribn and Tetrapad

Ribn [17] by Nobjsa Petrovic and Tetrapad [18] by Intellijel (Image 4) have touch
interfaces to record horizontal or vertical gestures. Up to eight sliders can be added to
Ribn’s interface, with each sending a single MIDI control change message. Recording
starts when the slider is touched and ends on release. Playback starts immediately
after recording, and loop lengths can not be changed after recording. Tetrapad is a

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Eurorack module with four touch zones that sense both position and pressure, allowing
for two-dimensional gesture recordings. Tetrapad has eight control voltage outputs
that can be patched to any parameter within a Eurorack system. With the Téte
expander module, recorded sequences can be quantized in both time and value, with
the possibility of quantizing control voltage outputs to a selection of musical scales.

User
interface

Record/ play

Sensor v Control
mapping

Sound
output

Gesture
input

Looper

Image 4
Gesture-to-sound interface of Ribn and Tetrapad + Téte. Touch sensor is
embedded in the interface.

Drile

Drile [19] by Berthaut et al. (Image 5) is a virtual reality-based live-looping system. A
bi-manual 6-DoF controller is used to create loops and control audio effects in a 3D
space. Unlike the other looping tools, Drile supports both audio and control streams,
and offers hierarchical live-looping by grouping loop layers in a hierarchical tree
instead of a flat structure. Loops can be layered per instrument or section in a piece.

Sound /control
input

Sound
ontput

Control
input

Kick Snare Hi hat Key-
drum drum drum board
loop loop loop loop

Bass
loop

Sound /control
output

Image 5
Traditional and hierarchical live-looping structures with Drile.

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Summary

We provide a comparison of related work versus our tool MapLooper in Table 1.
Interact refers to the gestural interface where *(x) means all devices supported by x.
Loop refers to the interface for switching recording and playback state. Quantize
refers to time quantization. Manipulate refers to any real-time processing of the
recorded loops.

Table 1
Project Stream Interact Loop Quantize Synchroni Manipulat Map

ze e
SoundCat Audio Ultra-sonic Footswitch No Yes Audio FX Explicit
cher
SoundGra Audio Glove Posture No No Audio FX Machine
sp learning
MidiRex Control *(MPE) Button Yes Yes No Explicit
Midiloope Control *(MPE) Button Yes Yes Random/C Explicit
r \Y
Ribn Control Touch Touch No No No Explicit
Tetrapad Control Touch Touch Yes Yes CVv Explicit
Drile Both 6-DoF 6-DoF Yes No No Explicit
MapLoope Control * * Yes Yes Random Open-
r (libmapper (libmapper ended

))

While most of the tools reviewed contain their own gestural interface; only MidiRex
and Midilooper can use external gestural interfaces. However, with these two tools,
the recording and playback state can only be controlled using a button. All of the
reviewed tools feature either time quantization, external synchronization, or loop
manipulation. Most of the tools’ mapping strategies are explicit, except for
SoundGrasp, which employs mapping using machine learning.

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Design requirements

Our review guided the design requirements of our tool that should support:

» changing sound sources after recording,

» looping streaming data from different gestural controllers,

» controlling loops with open-ended gestural interfaces,

» quantizing time,

« synchronizing time externally,

« manipulating loops by random modulation,

« mapping with both explicit and machine learning strategies,
« running on a wireless embedded device,

replicating its open-source components.

Infrastructure for embedded, distributed and synchronized
mapping

To build applications for live-looping satisfying the design requirements that we
elicited, we developed a connectivity infrastructure for wireless mapping and

synchronization. We ported existing libraries for mapping and synchronization to a
wireless embedded platform.

Embedded platform
For the wireless embedded platform, we use the ESP32 microcontroller: a small,
cheap, and sufficiently powerful chip for digital signal processing [20].

Mapping framework

To build a looper with advanced mapping capabilities, we use the mapping software
libmapper[21] as the main building block.

Embedded Mapping Components

We adapted libmapper and its dependencies to run on ESP32 platforms: we
implemented functions in compat-idf for compatibility between pthread and the Free
Real-Time Operating System (FreeRTOS), we ported the Iiblo library for OSC
communication, and we compiled the zIib for data compression.

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

libmapper-arduino

T

libmapper-esp

T

liblo libmapper compat-idf zlib

Image 6
Structure of the libraries ported to ESP32 for libmapper support.
liblo

The liblo library relies on POSIX sockets and threads (pthreads) for creating UDP/TCP
sockets and servers. The Espressif IoT Development Framework (ESP-IDF) [22])
contains a pthread library that partially translates the FreeRTOS API into the POSIX
threads API that we needed to update.

compat-idf

We implemented several POSIX functions that were missing for networking embedded
DMTIs (getnameinfo, gai strerror, gethostname, getifaddrs, freeifaddrs) and packaged
as an open-source ESP-IDF component, compat-idf[23].

libmapper-esp
We packaged these four components, liblo, libmapper, compat-idf, and zlib, as an open-
source ESP-IDF component, libmapper-esp [24].

libmapper-arduino

To facilitate embedding libmapper support in DMIs like the T-Stick DMI using common
Integrated Development Environments, we implemented an Arduino version of the

libmapper library that we release as the open-source libmapper-arduino library [25].

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Testing

We measured round-trip latency, jitter, and package loss for data transmitted through
embedded libmapper. Our test setup consisted of applications running on two
computing devices. 1) The firmware of an ESP32 WROVER KIT development board [26]
running the libmapper-esp library creates one input and one output signals. The input
signal handler is set to forward incoming data to the output signal. 2) A software
application running on a MacBook Pro laptop (16-inch, 2019, macOS 10.15) sends a
100 Hz signal to the ESP32, and we measure the time between sending and receiving
data. The ESP32 was running in access-point mode and the computer was connected
to this access-point through WiFi. The results are in Image 7 .

0.00 - T T T
4 6 8 10 12

Time [ms]

Image 7
Histogram of round-trip latency
measurement with power saving feature
disabled. A 100 Hz is signal measured
over a period of 100 seconds. The
dashed line shows the mean round-trip
latency of 4.81 ms.

We found that the ESP32 has a WiFi power-saving feature enabled by default.
Disabling this feature had a significant impact on low latency performance. We
performed measurements with power-saving enabled or disabled. The mean of the
round-trip latency was 406 ms with power saving enabled and 4.81 ms when disabled.
According to our results, in a one-way communication situation, where the ESP32 is
only transmitting data, an average end-to-end latency L,, = 2.41 ms (half of round-trip)

can be expected.

We performed three more measurements at increasing rates for testing latency, jitter;
and packet loss P; at different signal rates. The results are in Image 8.

10

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Signal rate: 100 Hz, P = 0.0 Signal rate: 200 Hz, P; = 0.0001
1.0 4 1.0 1
2 0.5 Q0.5 -
0.0 T T T 0.0 T T T
1] 5 10 15 20 25 0 5 10 15 20 25
Time [ms] Time [ms]
Signal rate: 500 Hz, P, = 0.078 Signal rate: 1000 Hz, Pp = 0.55
1.0 1 1.0 1
.‘E- ".é-
2 0.5 - Q0.5 -
0.0 . L 0.0 . mk

o I
o

0 10 15 20 25 0 10 15 20 25

Time [ms] Time [ms)

Image 8
Histograms of round-trip latency of test signals at 100 Hz, 200 Hz, 500 Hz, and
1000 Hz, with 10,000 test points recorded for each signal. Packet loss P; and

frequency is listed in the title of each histogram.

We found that the system has a significant packet loss for signals at 500 Hz. For
signals at 1000 Hz, the packet loss is substantial, with 55% of packets being dropped.
The jitter also increases with frequency, which can be observed in the increase of the
standard deviation of the latency listed in . There is no significant change in the mean
latency for signals at 100 Hz and 200 Hz. For signals at 500 Hz, the latency increases
by a factor of 3. Signals at 500 Hz and 1000 Hz had similar performance in terms of
latency and jitter, but the packet loss increases from 7.8% at 500 Hz to 55% at 1000
Hz. Table 2 provides results from latency measurements.

Table 2

Signal rate [Hz] Mean latency [ms] Std. dev. of latency Packet loss Pr,
[ms]

1

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

100 4.81 1.56 0.0
200 4.78 1.86 0.0001
500 16.6 1.92 0.078
1000 17.9 1.98 0.55

Our results for the embedded libmapper implementation were slightly better than
previous studies by Wang et al. [27], who conducted tests of latency and jitter with

OSC communication over WiFi using ESP32. They measured a mean round-trip latency
of 6.62 ms, which is slightly higher than the 4.81 ms we measured in this project, both
at 100 Hz. Both measurements remain well below the “acceptable upper bound on the
computer’s audible reaction to gesture at 10 ms” proposed by Wessel and Wright [9].

Synchronization framework

For time synchronization between devices on a wireless network, we ported Ableton
Link [28]: an open-source library for synchronizing tempo, beat, phase, and start/stop
commands. Turchet et al. mention Ableton Link as a candidate for becoming a
standard for music synchronization for Internet of Musical Things (IoMusT) devices
[29].

Embedded Synchronization Components

To compile and run Ableton Link on ESP32, we needed to port the following modules
to FreeRTOS:

» Clock : a simple timer with microseconds resolution.

« Context for the asynchronous operation of Ableton Link.

» LockFreeCallbackDispatcher for real-time safety of the session state.

» Random for random identification string generation for the peer.

o ScanlpIfAddrs for retrieving information about the available network interfaces on
the system.

We distribute this library as an open-source ESP-IDF component: link-esp [30].

Testing

To test our embedded port of Ableton Link, we created a test setup for measuring the
delay between peers. The test setup consisted of two MacBook Pro laptop computers

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

(Computer 1: 16-inch, 2019 and Computer 2: 15-inch, 2018; both running macOS
10.15) and an ESP32 board, all connected to a RIGOL DS1054 oscilloscope. Two
probes were connected to an audio jack from the headphone output of each of the
computers. One probe was connected to a GPIO pin of the ESP32. The computers
synthesized a pulse signal through Ableton Live [31]. The ESP32 ran a test software
outputting a pulse on a GPIO pin. All devices were connected through an Ableton Link
session and outputted a periodic pulse on every quarter note at 120 BPM. A plot of the

measurements is in Image 9.

We found that the ESP32 performs similarly to the two laptop computers in terms of
inter-onset delay. Over 10 minutes, the average delay between Computer 1 and ESP32

was 3.03 ms (min: -6.62 ms, max: 0.02 ms).

—— Computer 1 "—*Wmnﬂ

Computer 2
259 —— ESP32

1.0 - F ————— T I ———

1 1 1 I I L] I

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Time |[ms]

Image 9
Oscilloscope measurement of an Ableton Link session consisting of two computers
and an ESP32. All peers output a pulse signal at every quarter note at 120 BPM.

Application: implementation of MapLooper: gesture-to-sound
looper

This section describes MapLooper, our gesture-to-sound looping tool built upon our
connectivity infrastructure. We implemented MapLooper based on a delay-line model

13

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

using libmapper map expressions. We present two musical applications built with the
tool. We distribute MapLooper as an open-source software [32].

Looping with a delay-line

We can build a digital looper by adding feedback to a delay-line. A digital delay-line is
a special case of IIR filtering, which is supported by libmapper for exponential
smoothing. The discrete-time system implementing a digital looper can be expressed in
terms of a linear interpolation between an input z[n], and a delayed output term

y[n — D], with the linear interpolation factor representing a record signal r[n] so that:
y[n] = r[n| - z[n] + (1 — r[n]) - y[n — D]. A block diagram of this system is in Image 10. For
most live-looping devices, the record/playback state is boolean, and the signal r[¢] is
either 0 or 1. When r[t] = 0, only the delay-line output is passed to the system’s output.
When r[t] = 1, the input is passed directly to the output and into the delay-line, thereby
being recorded. For 0 < r[t] < 1, overdub can be achieved as the input is mixed with
the delayed input.

ul

z[n] - > y[n]

[
A

1 — r{n]

Image 10
Block diagram of basic looping system implemented as a delay-line with feedback.

Synchronization and time quantization

For a loop to be synchronized to a meter, the length D of the delay-line should be
specified in terms of tempo [bpm] T and duration in beats B

B - 60 (1)
D=——
T

14

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

For a 1-bar loop with a tempo of 140 bpm and time signature 4/4, this results in

p— Abeats-60s _ | 0 0857143 ¢ (2)

140 beats/min

At the time of our initial implementation, delay-lines in libmapper were non-

interpolating in terms of delay-length. We first solved this issue by sampling the input
at a rate given by an integer subdivision of the tempo, ensuring that delay-lengths
were always an integer multiple of the loop-length in beats. We have since added
fractional delay lengths to libmapper.

We added a sample-and-hold structure to the system to implement tempo-synchronized
sampling. A clock signal ¢[t] synchronized with the tempo triggers a sampling of the
input signal z[t]. The rate of the clock determines the quantization. This rate is
commonly given for analog synchronization systems in the unit pulses per quarter note
(PPQN). A block diagram of this system is in Image 11.

c|n] 7|7

z[n| —»{S/H -+ > y|n

1 - r{n|

Image 11
Block diagram of looping system with time quantization.

Loop manipulation

We implemented a simple modulation system modelled on the sample-and-hold
structure. We used a uniform noise generator as a modulation source, sampled at the
same rate as the input. We added this modulation signal within the feedback path, so
that an input sequence could be recorded, after which modulation could be applied to
make the sequence slowly evolve over time. A block diagram of the system is in Image_
12.

15

International Conference on New Interfaces for Musical Expression

MapLooper: Live-looping of distributed gesture-to-sound mappings

c[n|

Noise

|n|

S/H

m|n)

r{n]

Image 12
Block diagram of loop manipulation system. The loop is modulated by noise
through a sample-and-hold structure. The modulation is within the feedback path.

> y|7)

The uniform noise generator creates a noise signal with a range between [-1, 1]

multiplied by the signal m/[t], controlling the modulation amount. For small amounts of

modulation, the original contour of a recorded sequence is retained on a macro timing

level with an increasing variation on the micro timing level.

Control signals

MaplLooper instantiates a libmapper device and initiates a Link session. The control

interface consists of five signals (Table 3): record, length, division, modulation, and

mute.

Table 3
Signal

record

length

division

Description Unit

Controls whether -

input is active

Length of the loop beats

Time quantization PPQN

16

Min

Max

100*

100

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

modulation Amount of - 0 1
modulation
mute Controls whether - 0 1

output is active

The record signal represents the r[t| signal in . The length and division signals
determine the length D of the delay-line by the relation: D = length - division. The length
signal is limited by the current maximum of 100 samples of delay in libmapper, though
the library can be recompiled with additional memory. The modulation signal
represents the m[¢| signal in . The mute signal was added to control whether the output
from local/recv propagates to the output signal.

For each loop instance, a convergent map is created between the control signals, the
local/send, and the local/recv signal. A map expression is created for the map,
describing the system in Image 13.

controller

P
Gestural input],-.-.-} loeal /send

\
—_—
record mute ————
,
L]
—— [
:
;
—
H Sound
length output
generator
-

—

division

S

—

modulation
—

Image 13
Block diagram of mapping configuration. Each block represents a signal. The solid
lines represent the convergent mapping between the control signals and the local
send and receive signals. The dashed lines are internal mappings done outside of
libmapper.

During loop updates, the input is sampled at a rate synchronized with Link. The
sampled value is sent to the local/send signal, and the map expression is evaluated.
Finally, if the Loop instance is not muted, the value of the local/recv signal is copied to
the output signal.

17

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

By mapping a gestural controller to the input signal and a sound generator to the
output signal (Video 1 and Image 14), a DMI with looping capabilities can be

implemented.

Video 1
Construction of the mapping in visualization tool Webmapper.

DESTINATIONS (8)

Image 14
Visualization of the mapping in visualization tool Webmapper.

18

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Graphical User Interface

For testing, we created a cross-platform GUI application based on the JUCE framework
[33], containing six sliders and a button (Image 15). When launching the GUI, a loop
instance is created, and sliders are initialized to the default values of control signals.
Slider 1 input sends its value to the loop’s input, and similarly to Ribn and Tetrapad
the value of the slider is only recorded when the slider is pressed. Slider 2 output
displays the output of the loop and is not editable. The remaining four sliders control:
the loop length in beats (slider 3), the amount of noise modulation (slider 4), division in
pulses per quarter note (slider 5), and tempo in beats per minute (slider 6). A toggle at
the bottom controls whether the local loop map’s output propagates to the loop’s
output. We distribute MapLooper-gui as an open-source project [34].

MapLooper-gui

input | 0.5656738
output 0.

length | 4.00 beats
noise | 0.0000000

division | 16 ppgn

tempo | 120.0 bpm

muted

Image 15
Screenshot of JUCE-based MapLooper-GUI.

19

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Sound synthesis examples

SuperCollider extension: MapperUGen

We implemented a new SuperCollider UGen server extension called MapperUGen [35]
for using libmapper. The extension has classes for creating input and output signals
(MapIn and MapOut) with signal names and ranges specified as arguments for the
constructor. When synths are created and destroyed in SuperCollider, UGens are
erased from memory, which causes maps to SuperCollider to be destroyed. We
implemented a system for persistent maps by saving libmapper signals in a global
variable. When Mapln and MapOut are instantiated, the classes automatically bind to
existing signals with the signal name given as an argument. This solution optimizes the
workflow considerably when prototyping mappings.

Harp demo

We created one musical demo by mapping the output signal to a harp synthesizer
implemented in SuperCollider (Video 2).

Video 2
Demo with harp synthesizer implemented in SuperCollider.

The harp synthesizer is based on a Karplus-Strong string model. Two input signals,
frequency and amplitude control the frequency and amplitude of the string model. The
frequency input is quantized to a melodic scale within the synthesizer, and a slope
detector on the quantized frequency triggers the string excitation. As a result, when

20

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

moving the input slider, melodic notes are triggered along with the range of the slider.
The interaction provides a similar feel as when sliding fingers over the strings of a
harp. The SuperCollider code for the demo is:

fork {

Mapper.enable;

// Wait 2 seconds for libmapper initialization

2.wait;

{
var index, scale, freqCtl, freq, amp, src, trig;
// Create buffer with pentatonic minor scale
scale = 36.collect{ |i]

Scale.minorPentatonic.degreeToFreq(i, 50, 0);

}.as(LocalBuf);
// libmapper input signals
freq = MapIn.kr(name: \freq, min: 50, max: 2000);
amp = MapIn.kr(name: \amp, min: 0, max: 1);
// Quantize frequency to pitch
freq = Index.kr(bufnum: scale, in: IndexInBetween.kr(scale, freq));
// Trigger the string on change
trig = Changed.kr(freq);
// Karplus-Strong string model
src = Pluck.ar(in: PinkNoise.ar, trig: K2A.ar(trig), delaytime: 1 / freq);
src * 0.5;

}.play;

}

Embedded Sound Synthesis

We also created a proof-of-concept demo of using the looper with embedded sound

synthesis (Video 3).

Video 3
Embedded demo with pink noise passed through a Moog-style voltage-controlled
filter emulation.

21

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

The demo was based on the ESP32 LyraT board [36] (Image 16), which contains an
ESP32 WROVER module and an audio codec chip along with 1/8 inch TRS connectors
for headphones and auxiliary audio input.

VAT,

1'1*“ A!Hfa W J“‘U.r i ":

'y 5.4

AN Y ”d’

Image 16
The LyraT board.

We release our demo [37] as an open-source project using the Faust library [38] for
compiling a DSP program to the LyraT board, which is supported by the Faust
compiler [39]. The DSP program used for the demo is:

import("stdfaust.lib");

ctFreq = hslider("cutoffFrequency", 500, 50, 3000, 0.01);
res = hslider("resonance", 0.5, 0, 1, 0.1);

gain = hslider("gain", 1, 0, 1, 0.01);

process = no.pink noise : ve.moog vcf(res, ctFreq) * gain;

The program generates pink noise and passes it through a Moog-style voltage-
controlled filter emulation. The program has three parameters: cutoff frequency, filter
resonance, and output gain. A Loop is created for each parameter mapped to a

22

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

libmapper signal that updates the parameter when receiving a value. A random
number generator sends an input signal to each of the loop layers. The recorded signal
is 1.0 when the program starts and is set to 0.0 after 10 seconds. The program
continues indefinitely, repeating the same 1 bar sequence. A block diagram of the
demo program is in Image 17.

Noise Noise Noise
Record l
Y Y
Loop Loop Loop
Cutoff .
Resonance Gain
frequency
Pink A . Audio
naiee —» Moog VCEF Audio codec f—» out

Image 17
Block diagram of embedded sound synthesis example.

Conclusion and future work

We have presented the development of a live-looping system for gesture-to-sound
mappings built on a connectivity infrastructure for wireless embedded musical
instruments with distributed mapping and synchronization. We evaluated in the
context of the real-time constraints of music performance: round-trip latency, jitter,
and package loss of signals transmitted through embedded mapping; inter-onset delay
between peers for networked looping synchronization. On top of this infrastructure, we
developed MapLooper: a live-looping tool with example musical applications: a harp
synthesizer with SuperCollider and embedded source-filter synthesis with FAUST on
ESP32.

We follow by discussing perspectives on our work.

Scalability and flexibility of map expressions

Implementing our system using libmapper brings scalability, support for vector signals,
signal instances [40] and freely mixing mapping and looping. The map expression

23

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

interface allows for flexible mapping configurations for loop manipulation. The random
modulation implementation could be changed to use any modulation signal by merely
changing the map expression.

Delay-line models: continuous signals, zipper noise

One limitation is that the delay-line based model only allows for continuous signals.
The delay-line model updates the output at every time quantization step. Continually
updating the output can be an issue in scenarios where event-based signal updates are
needed.

Additionally, the delay-line model causes issues when changing loop-length known

from echo effects as zipper-noise. This noise is caused by discontinuities in the signal
when adjusting the read pointer of a circular buffer. For interpolating delay-lines, the
zipper-noise is replaced by Doppler-shifts. This effect has been used creatively as an
audio effect, but it might not be what users expect for control data streams. The issue
could be solved by cross-fading multiple read pointers when the loop-length is changed.

Latency compensation

When gestures are recorded through libmapper, all samples are time-tagged. Latency
could be subtracted during playback to achieve accurate timing. Peers could
continuously measure the latency between them by periodically sending a heartbeat
signal and keeping a record of each peer’s round-trip latency. This idea is similar to
how host time offsets are handled with Ableton Link. At sampling frequencies above
500 Hz, our implementation had significant reliability issues. Instead of networking all
peers at a high sampling rate, each peer could locally acquire the gestural data at a
higher sampling rate while only sending quantized data to the network.

Visual and haptic feedback

When recording gesture-to-sound sequences in our looper, the instantaneous feedback
gets lost once the recording is finished, since the auditory feedback no longer
corresponds to the physical gesture currently being held. In the case of a single loop
layer recording, our MapLooper-GUI provides visual feedback through a slider that
displays the current output value of a loop. However, for more complex mappings,
where more layers are being recorded simultaneously, the current system provides no
feedback on what has been recorded. This missing feedback could be in the form of
visualization on a screen, displaying multiple recorded sequences simultaneously. The
loop visualization tool could be developed as an extension of WebMapper. Additionally,

24

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

feedback could be given in the form of haptic feedback, for instance with
TorqueTuneri41] also embedding libmapper, to display force cues mapped to recorded
sequence.

Multiple read pointers

Multiple variable-speed read pointers could be implemented to explore new looping
techniques inspired by multi-tap delays and granular time-stretching audio effects. A
single loop layer could control several voices by mapping the instances to voices on a
polyphonic synthesizer, adding variations on a micro time-scale. Non-constant time
quantization could add the shuffle effect popular on many drum machines and featured

in MidiLooper.
Acknowledgements
The authors would like to thank:

» Florian Goltz: for helping with porting Ableton Link to ESP32,
« Eduardo Meneses: for collaborating on integrating libmapper in the T-Stick,
» Filipe Calegario: for contributing examples in libmapper-arduino [25],

« Simon Littauer: for sharing references and ideas on gesture looping,

» Mathias Kirkegaard: for our feedback loops between MapLooper and TorqueTuner
[41],

« Romain Michon: for reviewing Mathias Bredholt’s master thesis [42] which includes

this publication as contribution.

Citations

1. Peters, M. (1996). Michael Peters: The Birth of Loop (1996-). Retrieved from
http://www.livelooping.org/history concepts/theory/the-birth-of-loop/ =

2. Miranda, E. R., & Wanderley, M. M. (2006). New Digital Musical Instruments:
Control and Interaction beyond the Keyboard. Middleton, USA: A-R Editions, Inc. <
3. Hunt, A. D., Wanderley, M. M., & Paradis, M. (2002). The Importance of Parameter
Mapping in Electronic Instrument Design. In Proceedings of the International
Conference on New Interfaces for Musical Expression (pp. 88-93). Dublin, Ireland.
https://doi.org/10.5281/zenodo.1176424 ~

4. Hunt, A., & Wanderley, M. M. (2002). Mapping Performer Parameters to Synthesis
Engines. Organised Sound, 7(2), 97-108.

25

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

https://doi.org/10.1017/S1355771802002030<

5. Wang, S., Wanderley, M. M., & Scavone, G. (2020). The Study of Mapping
Strategies Between the Excitators of the Single-Reed Woodwind and the Bowed
String. In H. Li, S. Li, L. Ma, C. Fang, & Y. Zhu (Eds.), Proceedings of the 7th
Conference on Sound and Music Technology (CSMT) (pp. 107-119). Singapore:
Springer Singapore. https://doi.org/10.1007/978-981-15-2756-2 9 <

6. Verfaille, V., Wanderley, M., & Depalle, P. (2006). Mapping Strategies for Gestural
and Adaptive Control of Digital Audio Effects. Journal of New Music Research, 35,
71-93. https://doi.org/10.1080/09298210600696881 <

7. Malloch,]J., Birnbaum, D., Sinyor, E., & Wanderley, M. M. (2006). Towards a New
Conceptual Framework for Digital Musical Instruments. In Proceedings of the 9th
International Conference on Digital Audio Effects (DAFx-06). <

8. Fels, S., Gadd, A., & Mulder, A. (2002). Mapping Transparency Through Metaphor:
Towards More Expressive Musical Instruments. Organised Sound, 7(2), 109-126.
https://doi.org/10.1017/S1355771802002042 <

9. Wessel, D., & Wright, M. (2002). Problems and Prospects for Intimate Musical
Control of Computers. Computer Music Journal, 26(3), 11-22.
https://doi.org/10.1162/014892602320582945 ~

10. Vigliensoni, G., & Wanderley, M. M. (2010). Soundcatcher: Explorations in Audio-
Looping and Time-Freezing Using an Open-Air Gestural Controller. In Proceedings of
the International Computer Music Conference (pp. 100-103). Retrieved from
http://hdl.handle.net/2027/spo.bbp2372.2010.020 <

11. Mitchell, T., & Heap, I. (2011). Soundgrasp: A Gestural Interface for the
Performance of Live Music. In Proceedings of the International Conference on New
Interfaces for Musical Expression (pp. 465-468). Oslo, Norway.
https://doi.org/10.5281/zenodo.1178111 <

12. Kvitek, P. (2014). MidiREX. Retrieved from https://midisizer.com/midirex/ <

13. Instruments, B. (2020). Midilooper. Retrieved from https://bastl-
instruments.com/instruments/midilooper «

14. The MIDI Manufacturers Association. (2018). MIDI Polyphonic Expression
Version 1.0. Retrieved from https://www.midi.org/articles-old/midi-polyphonic-

26

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

expression-mpe<

15. Rodgers, T. (2003). On the Process and Aesthetics of Sampling in Electronic
Music Production. Organised Sound, 8(3), 313-320.
https://doi.org/10.1017/S1355771803000293 =

16. Cascone, K. (2000). The Aesthetics of Failure: “Post-Digital” Tendencies in
Contemporary Computer Music. Computer Music Journal, 24(4), 12-18.
https://doi.org/10.1162/014892600559489 ~

17. Petrovic, N. (2018). Ribn. App Store. Retrieved from
https://apps.apple.com/us/app/ribn/id1413777040 <

18. Intellijel. (2018). Tetrapad. Retrieved from
https://intellijel.com/shop/eurorack/tetrapad/ =

19. Berthaut, F., Desainte-Catherine, Myriam, & Hachet, M. (2010). DRILE: An
Immersive Environment for Hierarchical Live-Looping. In Proceedings of the
International Conference on New Interfaces for Musical Expression (pp. 192-197).
Sydney, Australia. https://doi.org/10.5281/zenodo.1177721 <

20. Grame-CNCM. (2020). DSP on the ESP-32 with Faust - Faust Documentation.
Retrieved from https://faustdoc.grame.fr/tutorials/esp32/ <

21. Malloch, J., Sinclair, S., & Wanderley, M. M. (2015). Distributed Tools for
Interactive Design of Heterogeneous Signal Networks. Multimedia Tools and
Applications, 74(15), 5683-5707. https://doi.org/10.1007/s11042-014-1878-5 <

22. Espressif IoT Development Framework (ESP-IDF). (2020). Retrieved from
https://github.com/espressif/esp-idf =

23. Bredholt, M., & Frisson, C. (2020). compat-idf. Retrieved from
https://github.com/mathiasbredholt/compat-idf

24. Bredholt, M. (2020). libmapper-esp. Retrieved from
https://github.com/mathiasbredholt/libmapper-esp <

25. Bredholt, M., Frisson, C., & Calegario, F. (2020). libmapper-arduino. Retrieved
from https://github.com/mathiasbredholt/libmapper-arduino <

26. Espressif. (2020). ESP32 Modules and Boards - ESP32 - — ESP-IDF Programming
Guide Latest Documentation. Retrieved from https://docs.espressif.com/projects/esp-

27

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-seriese
27. Wang, J., Meneses, E., & Wanderley, M. (2020). The Scalability of WiFi for Mobile
Embedded Sensor Interfaces. In R. Michon & F. Schroeder (Eds.), Proceedings of the
International Conference on New Interfaces for Musical Expression (pp. 73-76).
Birmingham, UK: Birmingham City University. Retrieved from
https://www.nime.org/proceedings/2020/nime2020 paperl4.pdf -

28. Goltz, F. (2018). Ableton Link: A Technology to Synchronize Music Software. In
Proceedings of the Linux Audio Conference (pp. 39-42). Retrieved from
http://dx.doi.org/10.14279/depositonce-7046 <

29. Turchet, L., Fischione, C., Essl, G., Keller, D., & Barthet, M. (2018). Internet of
Musical Things: Vision and Challenges. IEEE Access, 6, 61994-62017.
https://doi.org/10.1109/ACCESS.2018.2872625 <

30. Bredholt, M. (2020). link-esp. Retrieved from
https://github.com/mathiasbredholt/link-esp <

31. Ableton. (2020). Music Production with Live and Push | Ableton. Retrieved from
https://www.ableton.com/en/ <

32. Bredholt, M. (2020). MapLooper. Retrieved from
https://github.com/mathiasbredholt/MapLooper <

33. JUCE: Class Index. (n.d.). Retrieved from https://docs.juce.com/master/index.html
34. Bredholt, M. (2020). MapLooper-Gui. Retrieved from
https://github.com/mathiasbredholt/MapLooper-gui <

35. Bredholt, M., & Frisson, C. (2020). MapperUGen. Retrieved from
https://github.com/mathiasbredholt/MapperUGen <

36. ESP32-Lyrat V4.3 Getting Started Guide — Audio Development Framework
Documentation. (2020). Retrieved from https://docs.espressif.com/projects/esp-
adf/en/latest/get-started/get-started-esp32-lyrat.html <

37. Bredholt, M. (2020). MapLooper-Faust. Retrieved from
https://github.com/mathiasbredholt/MapLooper-faust <

38. Orlarey, Y., Fober, D., & Letz, S. (2009). FAUST: An Efficient Functional Approach
to Dsp Programming. In E. D. France (Ed.), New Computational Paradigms for

28

International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

Computer Music (pp. 65-96). Retrieved from https://hal.archives-ouvertes.fr/hal-
02159014~

39. Grame-CNCM. (2020). DSP on the ESP-32 with Faust - Faust Documentation.
Retrieved from https://faustdoc.grame.fr/tutorials/esp32/ =

40. J. Malloch, S. Sinclair, & M. M. Wanderley. (2018). Generalized Multi-Instance
Control Mapping for Interactive Media Systems. IEEE MultiMedia, 25(1), 39-50.
https://doi.org/10.1109/MMUL.2018.112140028 =

41. Kirkegaard, M., Bredholt, M., Frisson, C., & Wanderley, M. (2020). TorqueTuner:
A Self Contained Module for Designing Rotary Haptic Force Feedback for Digital
Musical Instruments. In R. Michon & F. Schroeder (Eds.), Proceedings of the
International Conference on New Interfaces for Musical Expression (pp. 273-278).
Birmingham, UK: Birmingham City University. Retrieved from
https://www.nime.org/proceedings/2020/nime2020 paper52.pdf <

42. Bredholt, M. (2021). Live-looping of distributed gesture-to-sound mappings. <

29

