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Abstract

This paper describes Oopsy, which provides a streamlined process for editing digital
signal processing algorithms for precise and sample accurate sound generation,
transformation and modulation, and placing them in the context of embedded
hardware and modular synthesizers. This pipeline gives digital instrument designers
the development flexibility of established software with the deployment benefits of
working on hardware. Specifically, algorithm design takes place in the flexible context
of gen~ in Max, and Oopsy automatically and fluently translates this and uploads it
onto the open-ended Daisy embedded hardware. The paper locates this work in the
context of related software/hardware workflows, and provides detail of its

contributions in design, implementation, and use.
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Introduction

The increasing power of available microcontrollers and single-board computers allows
the development of new digital musical instruments (DMIs) that can combine the
benefits of both general-purpose analogue sensors and controls along with audio-rate
digital signal processing. Making microcontrollers such as Arduino and Teensy more
accessible to musicians and luthiers has had a significant impact in the development of
new music controllers, instruments, and modular synthesis modules, and the corpus of
NIME research includes numerous software systems to streamline embedded
development from more flexible and comfortable desktop environments. It has also
contributed to a growing community of musicians moving away from desktop/laptop
computer workspaces toward hardware and modular synthesis, sometimes
characterized by terms “out of the box” and “DAWIless” (i.e., without a digital audio
workstation). Here, affordable flashable hardware offers an intermediate balance
between tactility and modal flexibility.

This article describes a new addition to these domains, focused on streamlining
algorithm development from the established desktop environment of Max/gen~ to the
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capabilities of Daisy hardware, a low cost and small format self-contained solution for
embedded GPIO and digital signal processing which was the result of a successful
Kickstarter campaign in 2020 [1]. The Oopsy workflow focuses on lightweight design,
with minimal input required to get an algorithm onto hardware, coupled with a
targeted firmware generation that optimizes for CPU usage, memory footprint, and

program size.
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An example of the Oopsy workflow. Top-left: a gen~ patcher, here implementing a
frequency modulation algorithm, with several knobs defined by param objects.
Bottom: a Max patcher hosting the gen~ for testing and development, alongside
Oopsy for automatic firmware generation and upload to hardware, here
configured for the Daisy Patch to run at 48kHz sampling rate, 48-sample block
size, boosted CPU frequency and faster math functions. Top-right: The generated
firmware running on the hardware, here displaying the waveform as a Lissajous
plot.
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Gen

The gen~ environment is a sub-domain of patching within Max that specifically focuses
on optimized sample-by-sample signal processing [2][3]. Over a decade since its
release, gen~ has grown to be a widely-used tool for many musicians, sound designers,
engineers, and educators, and code exported from gen~ has been utilized in many
software and hardware instruments (research projects and products) as well as

Prior to gen~, each Max signal processing (MSP) object was a pre-compiled library of
code operating on samples in blocks that are dynamically exchanged between objects.
With gen~ an entire patcher represents a single-sample algorithm that is converted to
C++ and then to optimized machine code via JIT compilation, after every edit. This has
three significant implications. First, algorithms can include feedback processes at the
level of a single sample frame, an essential ingredient to many audio routines including
most filter and many oscillator designs. It can be impractical or even impossible to
create new designs in these areas using block-based primitives. Second, there are
numerous significant optimizations that the compiler can make when the entire
algorithm is available, rather than on a per-object basis, leading to better CPU
performance [11]. Third, and of special relevance to this article, any gen~ object’s
patcher can be configured to export the C++ code of its algorithm. The gen~ object
will then re-export C++ code for every edit made to the patcher. The primary purpose
of Oopsy is to map C++ code generated by gen~ to the capabilities of Daisy-based
hardware in optimal and effective ways.

Daisy

The Daisy hardware is based around an embedded system (the “Daisy Seed”) featuring
an ARM Cortex-M7 STM32H750 MCU processor with 64MB of SDRAM and 8MB of
flash memory. It has on-board audio processing via stereo duplex audio IO as well as
31 configurable GPIO pins, including 12x 16-bit analogue-to-digital converters, 2x 12-
bit digital-to-analogue converters, SD Card interfaces, PWM outputs, and a built-in
micro-USB port usable for power, firmware flashing, debugging, serial protocols, and
other purposes.

The Daisy Seed is compact (51 x 18mm) and affordable ($30 USD at time of writing),
and well-suited to breadboarding development projects and embedding within DMIs; it
is also used in several commercially available devices in standard modular synthesizer,
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guitar pedal stompbox, and desktop formats, some of which expose reprogramming
and flashing firmware via the Oopsy software.

The MCU processor can run at 480MHz, and is quite capable of complex DSP
algorithms (see the Performance section below). The AK4556 Codec in the Daisy Seed
has 24-bit AC-coupled converters, while signal processing internally is 32-bit floating
point. The Oopsy software supports audio processing at 48kHz or 96kHz sampling
rates and audio block sizes ranging from 48 down to single sample frames, supporting
throughput latencies of 1ms down to 0.01ms while still being capable of performing
complex algorithms (see Table 2). Non-audio analogue pins, for knobs, switches, LEDs,
control and gate voltages etc., are also sampled at the block rate, and some IO pin
applications, such as gate outputs on common Daisy hardware formats, operate at the
same throughput latency as audio.

ElectroSmith, the creators of the Daisy platform, also distribute four standard
hardware configurations including for Eurorack modular synthesizer (Daisy Patch),
stompbox (Daisy Petal), and desktop (Daisy Field). The Daisy Seed normally supports 2-
in x 2-out audio ports, however the Daisy Patch hardware extends this to 4-in x 4-out
via an additional AK4556 Codec connected to the second SAI port on the Daisy pinout.
Several other manufacturers are also distributing Eurorack format modules built on
the Daisy, including Noise Engineering (Versio), Qu-Bit Electronix (Surface and Data
Bender), ModBap (Per4Mer), Venus Instruments (Veno-Echo).

Daisy firmware can be developed using Arduino, FAUST, PureData via Heavy, as well
as Max/gen~ using the Oopsy software detailed in this paper. At the time of writing
Oopsy has streamlined support for all four ElectroSmith hardware configurations and
the Noise Engineering Versio, as well as a straightforward method to describe custom
embedded configurations via JSON files.

Related Work

There are several established platforms for DMI and digital modular hardware
comparable to Daisy, including both embedded computers running general-purpose
operating systems (such as the Raspberry Pi) and high-performance microcontrollers
(such as the Teensy). There are also several comparable software workflows for
automatically translating signal processing graphs conventionally used in desktop
platforms into embedded and modular hardware contexts. Many of the latter aim for
generality of application, built upon language transpilers with templates for different
target software and hardware contexts. Faust [12] is a pure functional language for
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signal circuit definitions that can generate code for multiple languages such as C, Java,
WebAssembly, and from there to numerous hardware contexts through architecture
templates. The Heavy hvce compiler [13] can interpret a subset of features of Pure
Data Vanilla patches into code generation for platforms including OWL, Bela,
Javascript WebAudio and many others. Support for developing Daisy hardware through
both Heavy and Faust are also in development, but at the time of writing less feature-
complete and optimized than Oopsy. Like Heavy, Oopsy builds upon the existing base
of a widely-used general signal processing environment. In contrast however Oopsy
does not currently aim for generality: it is a very lightweight system tailored and
optimized specifically for Daisy hardware platform (though the same approach and
some of the software could be adapted to other hardware platforms).

Bela is an open-source embedded platform based on the Beaglebone single-board
computer designed for ultra-low latency audio and sensor processing [14][15] with
support for development with Supercollider, PureData, and C++ through a browser-
based environment. It uses a 1GHz ARM Cortex-A8 processor and 512MB of RAM. An
interesting feature for instrument designers is on-board speaker amps. Bela provides
stereo audio input and output, 8 analogue inputs and outputs and 16 digital IOs. A
much smaller variant, the Bela Mini, eliminates the 8 analogue outputs and speaker
amps. A significant differentiator for Bela is the low latency, described online as an
“action-to-sound” latency of 0.5ms, significantly lower than desktop, cellphone,
Arduino and Raspberry Pi comparisons [16]. Bela uses Xenomai Linux for hard real-
time audio processing with latencies down to 1ms and analogue IO down to 100
microseconds. The operating system overhead of the Bela is minimized in several
technically innovative ways as described in [17]. The Daisy Seed has a similar size as
the Bela Mini, but it is not built with the overhead of an operating system and can
support latencies down to around 10 microseconds.

The OWL programmable platform [18] is an established open-source microcontroller-
based system that supports multiple front-end interfaces including Max/gen~, Heavy,
and FAUST. Hardware destinations include modular synthesizer modules as well as
stompbox and desktop formats. A feature of the platform is the ability to load multiple
algorithms or “patches” at a time, including removing and adding distinct patches
without rebuilding the firmware, using a web-based interface and a USB cable via
MIDI Sysex. A large library of such patches for the platform already exist [19]. Unlike
the Daisy, the OWL runs an abstraction layer as a real-time operating system on the
hardware, such that patches can be loaded and unloaded dynamically. Moreover,
patches are not compiled for a specific hardware configuration (user code does not
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access hardware directly) and thus the same patches can run on different kinds of
OWL-supported hardware. Indeed, there exists a port of the OWL software that can
run on Daisy hardware (“Owlsy” [20]). In contrast, the approach with Oopsy is to
compile each patch for the specific hardware, and upload via USB using DFU. This
affords multiple opportunities for optimization in speed and memory footprint that an
abstraction layer precludes, at the cost of eliminating the possibility of dynamically
adding and removing patches without reflashing the hardware as a whole. With Oopsy
multiple patches can be flashed at once, and switching between them is both rapid and
can be MIDI-controlled, but all such patches must be flashed to the hardware at the
same time. OWL audio ports are DC-coupled whereas Daisy audio ports are AC-
coupled. OWL audio processes at 48kHz and CV inputs are sampled every 64 samples
(750Hz). Daisy audio can process at 48 or 96kHz, and CV inputs are sampled at block
rate, configurable from 48 down to 1 sample (1kHz to 96kHz).

The Mod Devices’ Mod Duo is a commercial platform for hosting software plugins in
hardware boxes (with a focus on guitar pedal stompboxes) built around a 64-bit ARM
CPUs with stereo audio 10 at 48kHz. Plugins can be authored in Max/gen~ and
converted via a cloud-based compiler for uploading to the device. Plugins on the device
can be arranged into networks via a web-based visual editor skeuomorphically
emulating guitar pedal chains. An Arduino shield is available to map custom sensors
and controls and pair with the Mod hardware via network cable.

In the context of programmable audio platforms for modular synthesisers, an extensive
list of projects can be found at [21]. For example, the Bela hardware is utilized by the
Salt module and the OWL platform in the RebelTech Magus and the Befaco Lich
modules. There are other hardware modules with public APIs or open-source software
that allow user reprogramming, such as the Qu-Bit Nebulae, the Ornament & Crime,
and many of the Mutable Instruments devices with various alternate firmware
available. The popularity of such alternate firmware underlines the pragmatic value of
a modal approach to modular hardware.

Method

Oopsy presents two workflow interfaces. First, it can be used in a convenient way
through the Max interface itself, in which the full workflow runs automatically every
time a user saves their patcher. Second, it can be invoked on a command line terminal
as a Node.js script for more automated control, and to allow use cases where Max is
not available or amenable. Both methods invoke the Oopsy.js Node.js script with
command line arguments for the paths to one or more C++ files generated by gen~, a
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pre-defined or user generated JSON file describing the hardware, and configuration
options such as sampling rate and block size. It then parses these files to generate
C++ code specific to the patcher(s) and hardware, and if available, immediately
uploads (flashes) this as new firmware to an attached hardware device. Note that
Oopsy.js does not require Max: code exported by one person's patch can be shared
online and used by any other person with Daisy hardware. (It may also be possible to
run the Node.js workflow via an online server, including flashing devices via web-DFU,
which would alleviate end-user installation requirements.)
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Schematic overview of the Oopsy workflow.

The central method of Oopsy could be described informally as “snoop, fit, and glue”;
that is, using a combination of parsing, feature-mapping, and code generation. For
each C++ file, Oopsy.js parses the source code to identify its configuration and
features, including labelled inputs, outputs, parameters, data resources and so on, to
build up a feature set for the patch. Since the C++ generated by gen~ itself has a well-
formed template structure, parsing can leverage tailored lightweight regular
expressions rather than a heavyweight full language parser. This is then processed
along with the hardware configuration JSON data to generate a model data structure
that maps these features to the selected Daisy hardware’s configuration and
capabilities. The Oopsy software maps features to the Daisy environment in a number
of ways outlined in the next subsections, including explicit labeling and auto-mapping
heuristics. The model is then interpolated into templates for code generation of a
binding C++ file with appropriate calls to the libDaisy library. The ARM GCC compiler
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is invoked to compile this into binary firmware for the hardware device, and, if
physically available, immediately flash the firmware onto it.

Mapping by name

Aside from its suite of objects for essential DSP primitives, gen~ provides a small
number of objects for interfacing with an external host environment, including in,
out, param, history, and data . Oopsy primarily maps to Daisy features by identifying
these features in the exported code and deriving intentions from their parameters and
variable names as detailed below. For example, a param knobl in the gen~ patcher will
automatically be mapped to the first knob in the hardware interface.

Audio Inputs & Outputs

The in and out objects in gen~ represent signal inputs and outputs at full sample
rate resolution, uniquely identified by channel indices (with no channel count limit),
and can be optionally annotated with labels. Oopsy normally maps in and out
directly to whichever audio inputs and outputs are available on the hardware (with
some exceptions for specific labels as detailed later). For convenience, any in objects
whose channel indices are greater than the number of audio channels on the hardware
will duplicate the data of earlier channels. Similarly, if the hardware has additional
output channels that are not defined in the gen~ patcher, each will use data from a
prior audio output channel.

Normally in gen~, sample rate and block size (vector size) are determined by the host
environment. These values are available in the gen~ patcher via the samplerate and
vectorsize objects and variables. They can be specified in Oopsy via the Max interface
or Oopsy.js command arguments.

Analogue & Digital Inputs

A param object in gen~ exposes an input parameter of an algorithm to the host
environment. Each param is uniquely and arbitrarily labeled by users, and may also be
given specific initial values and value ranges (defaulting to 0-1 range and initial=0 if
unspecified).

In Oopsy, analogue and digital input pin controls (switches, knobs, buttons, CV and
gate inputs, etc.) are mapped by use of specific labels to param objects. These
mappings and their labels are defined in the JSON configuration file of the hardware
target. For the standard targets provided with Oopsy this includes labels such as
“knob1”, “gate2”, “cvl”, “key3”, etc., with each having a corresponding code fragment

10
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(usually a function call defined in the libDaisy C headers) and context also defined in
the JSON file. For convenience, several labels can map to the same control. So for
example, in the daisy.patch.json file configuring the Daisy Patch hardware, the labels
“knob1”, “cv1”, and “ctrl1” all map to the same code fragment
hardware.GetKnobValue(hardware.CTRL 1); Thus a param ctrll in gen~ will cause this
libDaisy function call to be made in the generated code, with the result routed to the
parameter setter in the code exported by gen~.

These inputs are sampled at block rate, which is configurable between 1 and 48
frames of the sample rate (i.e., 1ms to 10 microseconds) and available in the patcher
as samplerate / vectorsize . Since pins are polled at block rate they produce step
functions; for gate inputs a drop-in abstraction ( oopsy.gate.trig ) is available to shorten
step functions to single-sample triggers if needed. Analogue inputs also have low levels
of inherent noise or instability. The Oopsy package supplies some filter examples
designed as drop-in solutions here, including a 3-pole lowpass filter at 30Hz
(oopsy.ctrl.smooth3 ) that effectively silenced noise from the most unstable hardware
input ADC tested against even in highly sensitive applications such as setting long
delay line lengths.

Any param with a defined @min and/or @max attribute, such as param knob3 depth 2
@min 0 @max 8, will always coerce analogue controls to map over the defined range. If
either is absent, the default @min is 0 and @maxis 1.0. Any param name prefixed with
“int_” or “bool ”, such as param int knob2 mode 2 @min 0 @max 4, will always coerce
controls to exact integer or Boolean values. This can be convenient for analogue inputs
with variable tolerances, such as coercing switches whose voltage ranges do not go all

the way down to zero.

Analogue & Digital Outputs

For Oopsy, non-audio hardware outputs can be addressed by attaching an appropriate
label to an out object or to a history object (a history object defines a stateful
variable in gen~ which can be given an unique label, and can also be used for single-
sample feedback Z1 operations). For example, the daisy.pod.json configuration file for
the Daisy Pod hardware includes two output labels “led1” and “led2” for the onboard
LEDs. Thus, an out 3 ledl or history led2 out object in the patcher will route its signal
to update an LED intensity.

For some hardware it is more convenient to map more numerous features using data
objects in gen~. Each data object in gen~ defines a labelled block of random-access

1
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floating-point data with frame length and a number of channels, and host
environments may provide access to read and write the contents of this memory by
reference to its label. For example, the Daisy Field target platform features an array of
24 LEDs, which can be referred to in gen~ using a data leds 24 object and
corresponding poke leds objects to dynamically address specific LEDs as needed.

Digital outputs are updated at block rate, while analogue outputs are updated at close
to to block rate. Since output gates shorter than the block size could be missed, the
Oopsy package supplies a drop-in abstraction ( ocopsy.gate.min ) to automatically extend
any gate to the block length or more, ensuring even the shortest trigger is not missed
by hardware.

Auto-mapping

A hardware configuration can mark certain analogue inputs for automapping by
setting "automap”: true in the JSON file. Any control marked for automapping that was
not explicitly mapped to a param by name in the gen~ patcher will be automapped to
any available unmapped param. In this way, even a patcher that was not explicitly
configured for a Daisy hardware will be usable from it. In the case of the standard
Daisy configurations supplied with Oopsy this is true for all manual controls (knobs,
switches, and buttons). As such, any patcher with at least one gen~ object is ready to
upload to the hardware for play simply be dropping in the Oopsy abstraction and
hitting save.

MIDI

The hardware supports MIDI 10 via UART pins. Several strategies for mapping MIDI
streams to the gen~ environment have been explored in Oopsy. This is not trivial as
gen~ is a sample-processing domain and has almost no intermittent “message-
passing” capabilities beyond param inputs.

Common inputs. For most commonly used message types Oopsy will generate
dedicated mappings in response to specific variable names. For example, param

midi ccl will output a signal representing the last-received value form MIDI
Continuous Controller 1 (mod wheel) on any channel, while param midi cc7 ch2 will
output the last-received value form MIDI Continuous Controller 7 on channel 2, etc.
These continuous controller values will be expressed in the range of [0..1] rather than
[0..127]. Similarly, param midi_press will report channel pressure in [0..1], param
midi_bend or param midi bend ch2 will output the last received MIDI pitch bend value in
the range of [-1..1], param midi_clock will report MIDI time code ticks, etc. param
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midi drum36 will output the last-received velocity of note 36 on channel 10, also
expressed in the range of [0..1] rather than [0..127]; and more generally param

midi vel64 ch3 etc. will output the last-received note velocity for a specific pitch and
channel.

Raw bytes. For comprehensive coverage, Oopsy provides raw access to incoming and
outgoing MIDI byte streams as signals. An in N midi object (where N is any unused
input index) will stream raw MIDI bytes into the patcher as a sample-rate signal, one
byte per sample, with two modifications. First, if no incoming data is available the
signal will have a negative value. Second, bytes are scaled by 1/256 for convenience, to
avoid damage by accidental connection to audio outputs. An example patcher
(oopsy.midi.parse ) demonstrates decoding raw MIDI bytes into all standard channel
events as well as clock/transport, SYSEX dumps, etc. Users can take or modify
whichever features are needed for a given project.

MIDI output. Similar naming conventions can be used to output MIDI messages from
a patcher, such as history midi_cc13 out, history midi_bend out, history midi_drum36_out
etc. Such MIDI outputs use the same normalized value ranges as the inputs, and
default to MIDI channel 1 if not specified (with the exception of drum outputs on
channel 10). General MIDI note output requires two or more signal values (pitch,
velocity, polyphonic pressure etc.). Oopsy provides a polyphonic note output using
combinations of midi notel pitch out, midi notel vel out, midi notel press out and so
on for note2, note3 etc. as desired. Oopsy-generated code will only send event-like
messages (notes, program changes, etc.) when values change, while continuous
messages (CC, bend, etc.) are throttled to fit into the limited MIDI baud rate
specification.

OLED Display

Two of the current standard Daisy configurations incorporate a 128x64 pixel
monochromatic OLED display. If present, Oopsy will generate code to fill the OLED
with several switchable pages. Scope: Displays stereo signals (overlay, side-by-side,
top-bottom, Lissajous plots), for any pair of inputs and/or outputs, with variable zoom.
Parameters: A scrollable list displaying names, current values, and hardware
mappings of all param objects in the patcher. param labels can include a human-
friendly name, such as param knob5 pitch, in which case the display will use the label
“pitch”. This page also offers a way to modify unmapped parameters via an encoder,
with steps quantized to divisions chosen to nearest power of 2 sizes for a resolution of
between 100-200 steps. Patchers: A scrollable list of available patcher names for
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switching between (see multi-patcher description below). Console: Displays memory
usage and other debugging information. Several OLED pages also display current CPU
usage percentage and MIDI input/output activity. The OLED interface code has
negligible impact on CPU performance itself but does increase program code size; it
can be disabled entirely by passing a flag to the Oopsy.js script.

Dynamic multi-patcher configuration

The prevalence of multi-mode devices in hardware synthesis noted above inspired the
support of multi-patcher firmware in Oopsy, allowing a hardware to serve a number of
possible roles without needing to reflash it. If a Max patcher contains more than one
gen~ object, all of their gen~ patchers will have their C++ code exported and passed
to Oopsy.js, which will produce a “multi-app” firmware for the hardware. With this
firmware, the hardware can then switch dynamically between different patcher
algorithms. Patcher switching takes only a few of milliseconds and can be selected via
MIDI upon receiving standard Program Change events. Hardware configurations can
also switch patchers by user interface interactions, such as using the patcher-select
OLED page on the DaisyPatch and DaisyField or using the encoder LED ring on the
DaisyPetal. Multi-app firmware has very little overhead, as noted below.

Performance

CPU performance. The performance of a diverse selection of typical patchers was
measured under various option settings (see Table 1). Audio performance was
measured as the duration spent in the audio processing callback divided by available
time (block size divided by sample rate), with measurements taken from the CPU
microsecond timer. (This ratio is shown on-screen on Daisy platforms with OLED
displays, and also through the pulse-width of a 1Hz LED on the Daisy Seed itself.) CPU
performance is deterministically related to sampling rate and MCU clock frequency.
Decreasing sampling rate from 96kHz to 48kHz predictably results in halving the CPU
time. Disabling MCU boost drops the CPU clock frequency from 480MHz to 400MHz
and results in the expected 20% increase in CPU time for audio processing.

Some transcendental floating-point math operations can be very CPU-intensive on the
embedded processor. The code generation in gen~ offers alternative optimized 32-bit
approximations of many such operations that are significantly more efficient and
smaller in code footprint than the standard math library. Users can access these
implementations in two ways. The simplest option is to toggle a “fastmath” option in
the Max interface (or add “fastmath” as a Node.js command argument), which will
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replace all such standard math library functions. For more controlled use, users can
instead use drop in operators including fastexp, fastpow, fastcos etc. as replacements
for their standard namesakes. For example, the Gigaverb example patcher used eight
exp operators to map a linear knob controls to a logarithmic frequency ranges for
filters in the feedback delay networks; replacing these with fastexp equivalents had
no audible impact but reduced the total CPU usage from 48% to 20%.

Latency. The block size is configurable in Oopsy at different periods down to a single
sample, which reduces audio and control throughput latency but increases CPU cost.
Testing increasing the block size as far as 256 samples showed very minimal
improvement in CPU performance. Reducing block size below 16 samples starts to
show more sharply rising CPU differences (see Table 2). It is notable for example that
the complex Dattoro reverb algorithm can function within CPU limits at 96kHz and a
block size of 1 sample, resulting in a throughput latency of 0.01ms.

Runtime memory. The Daisy hardware provides two stores of random-access
memory: 512KB of SRAM and 64MB of SDRAM. Testing revealed that algorithms using
SRAM for runtime memory resulted in better CPU performance than those using
SDRAM, sometimes with significant differences. Fortunately, code generated by gen~
separates out large object allocations (that is, for delay and data objects which can
easily run to kilobytes or sometimes megabytes in size) to a later stage than the core
algorithm state (likely tens or hundreds of bytes in total). Accordingly, Oopsy uses a
strategic allocator with a simple heuristic: first, all core algorithm memory is allocated
in SRAM; and second, all large object memory blocks are allocated from SRAM while
space permits, and falling back to SDRAM otherwise. All allocations occur during the
start up of a patcher algorithm, and no allocations occur after audio processing begins.
In practice, the authors have found only very few patchers require slower SDRAM
space at all (see Table 1). For example, the Gigaverb reverb algorithm as provided in
the standard gen~ examples included with Max utilizes 1MB of SDRAM in addition to
480KB of SRAM, while the Freeverb and Dattoro reverb algorithms, also both included
with Magx, fit entirely into SRAM.

Program Memory. The Daisy hardware has 128kB of flash memory capacity for
firmware program code, including libDaisy and dependencies as well as gen~- and
Oopsy-generated code. Fortunately, gen~-generated code is quite compact with no
additional dependencies. (Compactness of code produced by gen~ arose incidentally
from efforts to reduce JIT compilation times of gen~ within the Max environment
itself.) Oopsy is also conducive to minimizing code size as generated code is tailored
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very specifically to the hardware configuration used, conferring an advantage over
more dynamic or abstracted interfaces to hardware. Oopsy re-uses common code
through compile-time C++ patterns rather than run-time abstractions wherever
possible, and omits code and dependencies for any hardware features unused by the
patcher either via suppressing code generation or via preprocessor macros. Program
footprint therefore largely depends on the features available and utilized in the
hardware. A baseline of 50KB is typical for the libDaisy and Oopsy common code (with
an additional 8-10KB overhead if OLED features are used), plus a size per patcher
included in the firmware binary. The code size of example patchers included with
Oopsy, which reflect a typical range of complexity of real-world modules, range from
<1KB (mid-side encoder/decoder) to 21KB (stereo 4-second delay with feedback tilt
filters), with an average contribution per patcher of around 8.5KB (see Table 1).
Interestingly, in some cases the “fast math” variants also led to significant reductions
in code size.

Multi-app performance. There is virtually no additional runtime memory or CPU
overhead for multi-app firmware. App code is defined in a union since only one app is
running at a time, so the total runtime memory footprint is only the size of the largest
app. SRAM and SDRAM stores use pre-allocated blocks whose allocation pointers are
reset to zero whenever apps are switched. The most significant constraint on multi-
apps is the number of patchers that can fit in the limited flash memory; using the sizes
measured above, the platform can support around eight typical patchers on average.

Table 1. CPU and memory usage of a variety of example patchers. CPU measured as
percentage of available time spent in audio-processing, with CPU boost to 480MHz
enabled. For some patchers, variants using fastmath approximations were compared
with standard math library variants. All tests used the default block size of 48 sample
frames. Runtime memory footprint measured for both SRAM and SDRAM stores.
Program code footprint recorded as final binary size minus the 50KB baseline for an

empty patcher.
Patcher 48kHz 96kHz SRAM SDRAM MB Code
cpu% cpu% KB KB
Empty patcher 0 0 0.05 0
Mid-side 0 0 0.52 <1
decoder &

encoder
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Scatter matrix 3 7 0.22 2
mixer

Universal 4 9 0.44 10
slope

generator

ModFM 5/ 11/ 0.3 3/
oscillator 15 31 12
(fastmath/stan

dard)

Squinewave 7/ 15/ 0.3 5/
oscillator 9 18 5
(fastmath/stan

dard)

Feedback FM 8/ 17/ 0.53 5/
& PM 11 23 7
oscillator

(fastmath/stan

dard)

Phase- 9/ 18/ 0.32 3/
preserving 12 25 6
crossover SVF

filter

(fastmath/stan

dard)

Shift register 10 20 0.63 14
sequencer

Dattoro reverb 10 21 230 13
Stereo 4 17/ 33/ 0.44 2 12/
second filter 36 72 21
feedback delay

(fastmath/stan

dard)

17
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32-point sinc
anti-aliased
wavetable
(fastmath/stan
dard)

Gigaverb
(fastmath/stan
dard)

Pulsar
generator
(fastmath/stan
dard)

45/
47

20/

48

32/
53

85/
92

41/
Over

62/
Over

A streamlined workflow from Max/gen~ to modular hardware

128

480

0.4

15/
18

11/
17

10/

Table 2. Block size impact on 10 latency (milliseconds) and CPU usage (percentage

used of available time), testing various patchers:

Block size
(samples)

10 latency
@48kHz

(ms)

10 latency
@96kHz

(ms)

Patcher
tested:

Gigaverb
@48kHz

32-point
sinc anti-
aliased
wavetable
osc @48kHz

256

5.33

2.67

48

1.00

0.50

CPU performance (%)

48

46

49

47

16

0.33

0.17

50

48

0.08

0.04

53

52

18

0.04

0.02

59

59

0.02

0.01

71

69
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Stereo 4 32 35 36 37 43 52
second

delay

@48kHz

Dattoro 20 21 23 28 38 57
reverb
@96kHz

Community

Oopsy has been available as an open-source project hosted on Github [22] since
November 2020. Available online statistics suggest that the Oopsy project is
addressing real interests with a growing community of users, including close to 300
downloads and git clones of the software in the first two months, 3000 views and 100
posts on the forum and 300 members of a Slack group dedicated to the Oopsy software
in the same period, and 3,500 views and 110 subscriptions from an online tutorial
video over three months:

Visit the web version of this article to view interactive content.

Oopsy: Daisy from gen~ in Max/MSP

At the time of writing, a commercial Eurorack product from an independent company
is being developed exclusively with Oopsy. An independent open source / open
hardware platform for guitar pedal stompboxes based around the Daisy Seed
(Terrarium) also has Oopsy workflow support close to completion. The authors have
also been advised that the Oopsy workflow is likely to support undergraduate teaching
in at least one university music technology course (with no known relation to the
authors).

Conclusion

Oopsy supports a streamlined workflow from a well-established platform for digital
signal processing into a promising emerging hardware platform highly suitable for
DMIs and NIMEs. The workflow applies a pragmatic and lightweight solution for
mapping from existing resources to available features, through the use of simple
labeling schema, automapping, and drop-in examples for common requirements. Oopsy
supports a diversity of 10 features including a variety of MIDI handling strategies and
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has full-featured support for available fixed-format hardware configurations as well as
a flexible data-driven JSON schema for open-ended DIY hardware configurations. The
firmware generated benefits from optimizations possible with a highly targeted
workflow, and incorporates practices to minimize program and runtime memory
footprints as well as features for reducing CPU overhead. The performance
measurements indicate that Oopsy can be used to author and flash hardware with a
broad diversity of commonly sought algorithms including oscillators, filters, matrix
mixers, slope generators, sequencers, delays and reverbs at high fidelity and low
latency. Of note, tests demonstrated that the system is capable of an expensive digital
oscillator design (a wavetable oscillator using dual 16-point sinc interpolation for
smooth waveform-agnostic anti-aliasing over 13 octaves) at 48kHz sampling rate and
throughput latency down to ~0.01ms, which thus permits placing such algorithms
within analogue feedback audio modulation circuits covering the entire audible
spectrum, and thus escaping one of the common problems of working with digital
signal processing in hardware modular synthesizers. The project is fully open source
and incorporates a diversity of example materials, supporting industry, community, and
pedagogical projects.

Compliance with Ethical Standards

The research described in this article was undertaken without financial or other
conflicts of interest with the exception that the creators of the Daisy platform supplied
sample hardware for development and testing.
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