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ABSTRACT

We present Spire Muse, a co-creative musical agent that engages in different kinds of
interactive behaviors. The software utilizes corpora of solo instrumental performances
encoded as self-organized maps and outputs slices of the corpora as concatenated,
remodeled audio sequences. Transitions between behaviors can be automated, and the
interface enables the negotiation of these transitions through feedback buttons that
signal approval, force reversions to previous behaviors, or request change. Musical
responses are embedded in a pre-trained latent space, emergent in the interaction,
and influenced through the weighting of rhythmic, spectral, harmonic, and melodic
features. The training and run-time modules utilize a modified version of the MASOM
agent architecture.

Our model stimulates spontaneous creativity and reduces the need for the user to
sustain analytical mind frames, thereby optimizing flow. The agent traverses a system
autonomy axis ranging from reactive to proactive, which includes the behaviors of
shadowing, mirroring, and coupling. A fourth behavior—negotiation—is emergent from
the interface between agent and user. The synergy of corpora, interactive modes, and
influences induces musical responses along a musical similarity axis from converging
to diverging. We share preliminary observations from experiments with the agent and
discuss design challenges and future prospects.
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Introduction

All music creation starts with a spire. It could be a phrase; a sound object; a
rhythmical pattern. Musicians—inspired by its sound, respire life into compositions by
improvising around the idea, adding layers, growing complexity. Seemingly, the music
takes a life of its own—it aspires to grow. For song-writing duos or small musical
groups, ideas for music compositions often emerge in contexts of improvisational
interactions between the musicians—so-called jams. A typical scenario would be a
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musician presenting a new idea to fellow musicians at a rehearsal, followed by a jam

session to “see what ideas pop out”.

Modeled on this, Spire Muse is a virtual musical partner that stimulates creativity and
optimizes flow—a state where one becomes so immersed in an activity that everything
else loses importance [1]. We adopt the term musical agent defined as autonomous
software agents that tackle musical tasks [2]. Obtaining and maintaining flow requires
an environment that provides flexibility while supporting an associative cognitive
process combined with internalized actions. In collaborative contexts, this, in turn,
hinges upon interaction dynamics, i.e. the spontaneous shifting of interactive modes
and style of turn-taking that occurs between agents when engaged in creative

activity [3].

Creativity has no universal, agreed-upon definition. Historically, creativity has moved
from being viewed as an inscrutable divine force—off-grounds from scientific inquiry—
to being conceived of as an emergent process in the context of complex and distributed
systems of interactions, with unpredictable outcomes and moment-to-moment
contingency [4]. The fields of human-computer interaction (HCI) and artificial
intelligence (AI) have also cultivated differing perspectives on creativity. In HCI, a
widely adopted term is creativity support tools (CST) [5], denoting digital tools that are
designed to support human creativity. Researchers studying creativity from the side of
Al and machine learning tend to focus on computational creativity (CC), i.e. systems
that generate artifacts that are judged by unbiased users to be creative [6]. The
acknowledgment of creativity as an emergent property of interaction rather than an
agential quality has led to a conflation of these concepts: Co-creativity occurs in
collaborative contexts where both human and computational agents contribute to a
process or product deemed creative [7].

We have focused on designing a co-creative system that realizes the concept of a
virtual jam partner. Hence, the computational agent is seen as a collaborator as
opposed to a tool or a creator, and we aim to place the human and computational
agents in a tight interactive loop where each has the capacity to modify the behavior of
the other [8].

Jamming to Grow Music

In musical collaborative contexts, jamming may be an efficient method to get from a
basic musical idea to larger formal structures. An apt metaphor is thinking of a
musical phrase as an elementary kernel. Interactions may “fertilize” this kernel and
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larger forms can “grow” from it. This notion led to the concept of a musical agent that
supports session-based musical brainstorming. Musical form may emerge from the
interaction, but events like this are mostly context-dependent and cannot be rule-
driven.

Improvisation is a key factor in such open-ended creative interaction. A significant
number of proposed models for improvised musical interaction revolve around
interactive strategies focused on iterative phases of “pulling together” and “pushing
apart”. Wilson and MacDonald [9] shed light on how improvising musicians regularly
evaluate whether they should maintain or change what they are doing. A change can
be either an initiative (something new) or a response (to what another musician is
doing), and three emergent response categories are adoption, augmentation, and
contrast. Borgo [10] describes how forms emerge in collective improvisation through
positive feedback—a mutual reinforcement of a particular idea, and how interest is
simultaneously maintained through negative feedback—an exploration of new ideas
diverging from the current one.

Similar concepts are prevalent in models for co-creative systems. Dubnov and
Assayag [11] introduce a flow model where improvisation occurs along the axes of
replication, recombination, and innovation. Beyls [12] presents a model for human-
machine interaction where the system’s behavior follows from the competition
between the opposing forces of expression (output generated irrespective of or
contrasting to current context) and integration (output that is complementary to the
prevailing context and contributes to its further existence). Canonne and Garnier [13]
invoke a model for collective free improvisation where strategies range from
stabilization (attempts to converge to a “collective sequence”) to densification
(deliberately creating complexity to provoke a transition). In this apparent
terminological jungle, we propose that these concepts in essence are musical
strategies that may be grouped along a musical similarity axis ranging from converging
to diverging, as depicted in Figure 1.
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Figure 1

Musical strategies mapped onto the musical similarity axis.

These strategies inform us how agents—human or computational—relate to each other
musically. However, the driving force behind the interaction dynamics is not accounted
for. In interactions between humans, the distinction between actions and decision-
making is barely noticeable—they are intrinsically interwoven. In HCI, however, the
human user often acts as a substitute for the computational agent’s lack of decision-
making capabilities. Most software interfaces are essentially a submission of decision-
making power to the human user. An effect is that the user may become preoccupied
with handling this aspect of the interaction to the detriment of co-creativity. A
dimension is missing—the navigation between interactive behaviors of the system. For
our purposes, we adopt four categories of behaviors for interactive music systems from
Blackwell et al. [14]:

» Shadowing involves a synchronous following of what the user is doing, mapped into
a different domain. Despite lacking autonomy, the appearance of coherence can have
a strong effect on the user and may lead to the generation of novelty through its
interactive affordances.

« Mirroring occurs when stylistic information or musical content is extracted from the
user’s input and reflected back in novel ways. While taking lead from the user, this
mode clearly demonstrates participation and can contribute to a form of
collaborative creativity through the opening up of new possibilities.
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« Coupling refers to an interactive mode driven primarily by its own internal
generative routines, which are perturbed in various ways by information coming
from the user. Coupling tends to refer to a situation in which the system can clearly
be left to lead, possibly to the detriment of the sense of participation.

» Negotiation is a more sophisticated behavior. A system that negotiates constructs an
expectation of the collective musical output and attempts to achieve this global
target by modifying its output.

We regard negotiation as the “meeting space” where the musical agent trades decision-
making with the human user. We place the shadowing, mirroring, and coupling
behaviors along a system autonomy axis ranging from reactive to proactive.
Negotiation happens when the system switches between these three behaviors, either
autonomously or through manipulation by the user. Whereas the other three modes are
embedded in the software itself, negotiation is a type of behavior that emerges from
how the computational and human agents interact and influence each other. It is an
interface-layer behavior and requires the sharing of decision-making. For this reason,
negotiation does not map directly onto the autonomy axis and is placed above the

other behaviors in Figure 2.
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Figure 2

Interactive behaviors mapped onto the system autonomy axis.
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In Figure 3, we have combined the axes of musical similarity and system autonomy in a
two-dimensional diagram. We acknowledge that these axes are somewhat loosely
correlated, but tending toward parallelity. We illustrate this by displaying the
interactive behaviors diagonally. Behaviors that are more reactive also tend to
generate converging musical results, and vice versa, proactive behavior will tend

toward diverging musical output.
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Figure 3
The similarity and autonomy axes combined.

Related Work

The history of musical agents is predated by the wider notion of interactive music
systems, defined by Rowe as “those whose behavior changes in response to musical
input” [15]. The degree of autonomy in interactive music systems is correlated with
several distinct phases in their decades-long development. An early step from purely
reactive sound systems toward interactivity happened with the construction of CEMS
(Coordinated Electronic Music Studio) in the late 1960s. Founder Joel Chadabe
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described playing the system as “like conversing with a clever friend who was never
boring but always responsive” [16]. In the 1970s, a group of experimental artists
known as The League of Automatic Composers used affordable interlinked
microcomputers in a series of concerts spun around the concept of “letting the
network play” [17]—an early example of live electronic music performance.

These early interactive “composing systems” were embedded in analog hardware. The
MIDI protocol paved way for in-the-box interactive music systems in the mid-1980s.
Music Mouse [18], M and Jam Factory [19] were among the first commercially

available interactive music systems for general use. They were like intelligent
instruments that produced formal musical structures in real-time, controlled by the
user. Some of the first accompanying systems that users could play together with as
duo partners came with Oscar[20], Voyager[21], and Cypher[15] in the late 1980s. A
few years later, improvisation systems making use of learned models instead of rules
emerged. GenJam [22] used genetic algorithms to “breed” stylistically appropriate jazz
solos to be played over predetermined sections of jazz standards. The Reactive
Accompanist [23] provided chord accompaniment of unfamiliar melodies using
subsumption architecture methodology. With Band-out-of-the-Box (BoB) [24], the
human user traded four-bar solos in the style of blues/jazz with the machine agent. The

agent utilized unsupervised machine learning techniques to adapt to the musical sense
of its user. The Continuator [25] produced musical continuations to phrases introduced
by users with the help of Markov models, allowing for a stylistically coherent back-and-
forth interaction.

OMax [26] pioneered the use of Factor Oracles (FO) for music purposes. FO is a finite
state automaton that efficiently learns internal relationships between components of a
string, originally developed as a technique for string matching and compression [27].
The input is sliced and categorized according to an “alphabet” of events. Inside the FO,
the input is represented as a string of events, with forward links (the original next
state), suffix links (pointers to previous substrings recognized as matching the next
substring), and forward jumps (pointers to future substrings recognized as matching
the next substring). Thus, the FO reassembles the events in a manner that claims to
yield a stylistic reinjection of the original sequence. OMax has spurred the
development of several other FO-based systems, including Audio Oracle [28],
PyOracle [29], Somax [30], and Improtek [31]. Our implementation of MASOM [32],
which will be presented in further detail in the next section, also includes FO within its

architecture.
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Implementation of the Interactive Model

The Spire Muse musical agent builds upon MASOM (Musical Agent based on Self-
Organising Maps) and is implemented in the Max graphical programming
environment [32]. Our version of the agent architecture utilizes MuBu [33], PiPo [34],
factorOracle [35], the Audio Influencer patcher from the Somax library [30], the

zsa.dist object from Zsa.Descriptors [36] and the ml.som and ml.kdtree objects from
the ml.* machine learning toolkit [37].

MASOM was originally designed to be used for electroacoustic and electronic music
performance. This has resulted in several works featuring improvised noise music,
acousmatic music, live electronics together with instrumental performers, and
audiovisual installations [38]. MASOM has also been reimagined as a gibberish
language agent relying on a latent space of syllables collected from the audio of
speakers of several languages [39]. We have redesigned MASOM’s training module to
optimize it for instrumental input and implemented novel interactive modes in the run-
time modules. In the following, we provide an overview of the musical agent’s
architecture and an ancillary interface as implemented in Spire Muse. We focus mainly
on new features. For more details, readers can refer to previous papers about MASOM.

Training

The learning module constructs a latent space of musical events with varying
durations. The duration range is adjustable—for our main experiments with an
acoustic guitar corpus, we used a minimum length of 200 milliseconds and a maximum
length of 3 seconds. The first stage of the learning process is the slicing of the audio in
the source folder (the corpus). Onsets are calculated by measuring loudness

transients, signifying new sonic events.

In the next step, each audio slice is labeled with a feature vector. Through
experimentation, we found that using large FFT window and hop sizes (8192/512)
yielded more reliable melodic and harmonic data. In all, there are 55 dimensions. The
first is duration. The remaining dimensions are the mean and standard deviation of
loudness (2), mel frequency cepstrum coefficients (MFCC) (26), fundamental frequency
(2), and chroma (24). The chroma features (pitch histograms featuring the 12 notes in
the chromatic scale) were added to strengthen the musical agent’s capability to orient
itself harmonically as well as melodically. The inclusion of chroma features serves two
functions. Firstly, it reinforces the melodic classification of slices containing one note.
Equally important, it minimizes pitch errors introduced in slices containing several
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notes. The average pitch of two or more notes yields a single pitch that is musically out
of context. However, the chroma features are discrete and can reveal the presence of
several notes within one slice. Hence, there is a better chance for slices with similar
harmonic content to be clustered together in the self-organizing map, even in cases
where the derived pitch misrepresents the tonality.

A significant new inclusion in the training module is the extraction of chroma
transition matrices from longer segments of the songs in the corpora. To achieve this,
the chroma features are first discretized. The most dominant chroma features per
vector are classified as ones, the rest as zeros. The threshold is set at 0.4 (the range is
0.0 to 1.0). With this discretization, the transformed vector essentially becomes a
standard pitch class vector (see Table 1). Using a 20-slice long window with a hop size
of four slices, the numbers of transitions between each pitch class are saved in 12x12
matrices with markers that signify song and slice indices per matrix. This is a
convenient way to encode longer-term harmonic dynamics. In run-time, these matrices

are looked up by the automation algorithm, detailed later.

Table 1

Chroma vector Becomes

Single note 0.11 0.78 0.15 0.21 0.19 0.27 010000000000
0.310.14 0.390.18 0.12 0.26

Multiple notes/ multiphonics 0.65 0.09 0.23 0.13 0.41 0.29 100010010000
0.17 0.59 0.22 0.19 0.08 0.14

A self-organizing map (SOM) is a type of artificial neural network that utilizes
unsupervised learning to map high-dimensional feature vectors onto a two-dimensional
topological grid [40]. Given a set of n-dimensional feature vectors, the learning
algorithm organizes these vectors such that the resulting two-dimensional feature
space is qualitatively aligned with the input. Each coordinate in the SOM, called a
node, is a feature vector that represents approximations of a varying number of input
vectors. On average, the number of nodes created is approximately one-sixth the size
of the number of audio slices. After the SOM has been created, each audio slice is
assigned to a node based on a best matching unit function (BMU). Hence, similar slices
are clustered together at these nodes.

In the next step, the tempo for each song in the corpus is derived from a Python script
via OSC. The tempo makes the generative playback in run-time more aligned with the

10



International Conference on New Interfaces for Musical Expression Spire Muse: A Virtual Musical Partner for Creative Brainstorming

song’s original tempo. For songs that are not tempo-based, the script will still attribute
a perceived tempo. Although redundant, forcing a grid on atemporal material does not
seem to have a negative impact—only minor time adjustments are made. Therefore,
the grid is used for all material, and there is no need to create a dichotomy in the
training process.

The final part of the training is a procedure where each song in the corpus gets
encoded as a sequence of SOM nodes, using the BMU function. This is a lossy
encoding, because many different audio slices may be represented by one SOM node.
We find this memory compression and subsequent sequence modeling to be a good
metaphor for the way musicians internalize musical events through rehearsal, and how
such internalized events may be activated in unpredictable ways through association
when interacting with other musicians. In jamming contexts, musicians feed off each
other’s creative initiatives and take turns in following and leading. This constitutes a
highly complex network of contingencies, where small deviations from expected
musical trajectories may affect the interaction dynamics decisively. Our aim has been
to model this combination of discernible stylistic residue from past performances and
mutable interaction dynamics.

Influence parameters

In run-time, the machine listening algorithm continuously segments the user’s input
stream into slices with durations that correspond to the ones in the corpus. We extract
the same set of features from the input slices as those in the feature vector during
offline training. The listening module can be directed to give some groups of features
more weight than others, and this alters the subsequent matching algorithms
considerably. The four influence parameters are rhythmic, spectral, melodic, and
harmonic. The rhythmic parameter weights the duration feature. Setting the rhythmic
parameter high and the rest low will make the agent search for material in the corpus
that follows the timing of the input closely, but disregards the other features. The
spectral parameter weights the MFCC features. The melodic parameter focuses on the
fundamental frequency, and the harmonic parameter weights the chroma features. The
influences can be set with sliders, so any combination of relative influence is possible.

Interactive Modes

Shadowing mode is the baseline behavior of the musical agent. The signal and data
flows are depicted in Figure 4. In shadowing mode, the agent responds reactively and
outputs the closest matching audio slice in the corpus for each onset registered in the

1
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input. Here, the influence parameters come into play—closest matches vary depending
on how they are set.

SOM nodes are not looked up in shadowing mode. Instead, instances from the input
are compared directly to the feature vectors belonging to the audio slices in the
corpus. Looking up audio slices directly creates a better contrast to the mirroring
mode, which looks up SOM nodes. Direct slice matching makes sense when attempting
to create an impression of an agent that follows the user as closely as possible. We
found that BMU outliers in the SOM nodes weaken this effect to a certain degree.

Sparsities in some areas of the feature space yield discrepancies between the input
and respective slice matches. Rather than being unwelcome artifacts, they tend to
make sense musically. The harmonic influence is useful here because harmonically

related events have similar chroma profiles.

Onset
Input
detector
! gate 1/O CORPUS
Output . Audio
\ Feature Extraction alinas
y
Ouéput Best slice match«

Figure 4
Input vs. corpus matching in shadowing mode.

12
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Video 1
A free improvisation session in shadowing mode.

In mirroring mode, the musical agent engages in reflexive interaction. Unlike the
shadowing mode, the agent does not respond to input immediately but listens to longer
phrases and attempts to respond with similar phrases. Upon receiving input, the agent
starts building a list of closest SOM matches based on audio slices from the input
stream. Accumulated SOM lists are expedited after eight beats, according to a tempo
detection object listening to the input. Using a k-d tree algorithm, the processing
module finds the closest matching SOM subsequence among the list of songs encoded
as SOM sequences. A Factor Oracle (FO) of the song containing the matching
subsequence is initiated, using the initial perceived SOM index as the initial state. The
playback of the FO lasts for as many nodes as the length of the list that loaded it. For
eight beats after the FO is initiated, SOM list gathering is inactive, corresponding
roughly to the length of the agent’s response. This creates a sense of back and forth
between the user and the agent. This process iterates as long as the mirroring mode is

active.

13
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Input vs. corpus matching in mirroring mode.

Video 2
Improvising in mirroring mode.

14
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In coupling mode, the user is “coupled” to an FO, which is played back continuously.
Left unperturbed, the FO iteratively queries its next state, thereby taking on an
autonomous style that may coerce the user to follow the musical agent’s lead.
However, the agent listens to the user and attempts to align with the input by
intermittently loading new FOs from other songs in the corpus or by jumping to new
states within the same FO. The input buffer for this part of the machine listening is 20
input slices—corresponding to the window length of the chroma transition matrices
that were built during training.

The song that is automatically loaded from the corpus into the FO is selected based on
a combination of two criteria:

» Meso time scale harmonic dynamics: A chroma transition matrix of the past 20 input
onsets is compared with corresponding matrices built from the corpus. Songs
associated with the top ten matches are contenders for affecting an FO change.

« Tempo similarity: A list of songs that are within plus/minus 10 bpm of the currently
detected tempo is gathered.

If one or more same songs feature in both these groups, the FO will load the highest
scoring match and initiate the change. After a change, the input buffer will start
building anew, so changes will be no more frequent than the time it takes to fill the
buffer.
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Video 3
Interaction in coupling mode (automated song changes disabled).
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Automation

Several studies point to a lack of awareness on the performer’s part during optimal
performance, and neurological research seems to confirm that typical flow experiences
are accompanied by the suppression of central processes associated with self-
monitoring and conscious volitional control [9]. This suggests to us that a musical
agent designed for the purpose of optimizing flow should minimize the need for users
to analyze their own performance in relation to the musical agent's current state. Our
focus was thus guided to making an agent that transitions between interactive
behaviors autonomously.

For now, the automation algorithm is quite simple. Shadowing is the initial mode, and
it is also the fallback mode if the mirroring and coupling modes do not meet the
qualifications for activation. Mirroring mode is activated if the SOM subsequence
match contains at least three identical SOM matches (the k-d tree algorithm comes up
with many approximate matches). Mirroring mode deactivates if this qualification is
not reached again within 20 seconds. Coupling mode jumps into action when the FO
change threshold is met, and the mode is sustained for at least 30 seconds. Unless a
new FO change is detected within this time, the mode is deactivated. The mirroring
and coupling modes may “quarrel” if they both qualify at the same time. In this case,
the latest qualifier will “win”.

Automated shifts in interactive modes will underperform in some contexts, especially
in cases where corpora are sparse or consist of heterogeneous audio material.
Therefore, there is an option to turn off automation, in which case the interface switch
to another view (Figure 7). Manual selection of modes and songs will result in a more
contemplative kind of session, giving the user more time to explore each mode and the
generative modeling uninterrupted.
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Figure 7
The Spire Muse interface as per April 2021. Left: Automation view. Right: Manual
view. Pressing the tab key toggles between the two views.

The Negotiating Interface

The negotiating interface functions as a counterweight to the agent’s automated
behaviors, and features the buttons Go back, Pause/Continue, Change, and Thumbs
Up. Go back forces the agent to its previous mode. This backtracking can be repeated.
The agent tracks its own history, which also includes FO song changes. Pause will mute
the agent but it is still listening. This is useful if the user needs time to figure out
something in his or her playing without interruption. Upon pressing Continue, the
session will proceed based on the most recent listening. Change will force the agent
away from its current state. For now, this sets the interactive mode, influences, and FO

song selection randomly.

The Thumbs Up button signals to the agent that the user is enjoying the current
interaction, and stays in the same state for the next 30 seconds. In future versions, we
envisage that Thumbs Up can be used for online reinforcement learning. Through
repeated use, the agent will learn what kind of states and transitions the user prefers

in different kinds of contexts.

18
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Video 4
Demo session featuring the use of the negotiation panel. The buttons are
operated with foot pedals.

Discussion and Future Work

This version of Spire Muse is a proof of concept. An extensive user study is scheduled
for June 2021. To date, it has been tested by the first author using corpora containing
acoustic guitar, electric guitar, vocals, and oboe. The main focus has been on an

acoustic guitar corpus [41]. An earlier version of the software has also been used in

concert by a solo guitarist/live electronics musicianl using corpora containing electric

guitar, violin, vocals, and various collections of sampled sounds.

Spire Muse is designed to encourage creative exploration and defer cognitive
deliberation. Although it clearly does not approximate a real-life musician, our
experience so far gives the impression of a versatile musical agent that listens quite
well and frequently responds with pleasantly surprising material. The more contrasting
responses can help users break out of habitual playing styles and spur them to explore
new creative spaces. Even the slave-like shadowing mode may yield musical responses
that can create interesting contrasts between the human and agent-performed
material. This is because both converging and diverging aspects are to be found even
in the nearest matches, and weighting features differently can have significant effects
on the output.

19
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Of course, the corpus choice is of importance. Experiments with various corpora have
resulted in very different kinds of jam sessions. In a sense, one is importing an imprint
of someone’s personality with the corpus—the musical agent engages in style
imitation, and the outcome of the interaction potentially becomes something novel.
This makes Spire Muse reliant on good selections of corpora. The mirroring mode is
particularly exposed to fragilities in corpus selection and influence settings. The
“casting back” of musical phrases modeled on SOM subsequences makes the mode
well suited for call-and-response type interaction, but for some SOM regions, the
interaction could become erratic. It is a volatile mode that may lead to highly diverging
kinds of musical responses, especially if the corpus is sparse. Some responses may
represent sharp breaks from the user’s current performance. As described, a mirroring
mode may jump into action from the shadowing mode, and the experience may be that
the output suddenly “goes off on a tangent”. The user may be coerced to moderate his
or her playing as a reaction to such abrupt changes.

The coupling mode is particularly prone to yielding flow experiences. Due to the
nature of the FO algorithm, the interaction becomes more loop-based in this mode. On
several occasions, the first author became immersed in the interaction and only
afterward discovered that ten minutes had gone by without actively engaging with the
interface—a promising observation. Although we regard this version of Spire Muse as
an early prototype, we are surprised by how absorbing the interaction feels.

The negotiating interface provides manipulation of behaviors that are high-level and
gives plenty of room for autonomy for the agent. The correlate of this autonomy is
unpredictability. However, we regard unpredictability as an important ingredient of co-
creativity. As with human musical partners, unpredictability may be frustrating at
times but also an asset. Ultimately, we believe the most auspicious feature of Spire
Muse is not the musical output of the agent per se, but the capacity to entice users
into exploring ideas with a sense of shared ownership.

In future versions of Spire Muse, we are planning to implement machine learning
algorithms that can rein in some of the unpredictability through repeated usage. Since
the agent tracks each session and keeps tabs on the states that it goes through, it can
build a profile of the user and adapt its behavior in response to different kinds of
contexts.
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