International Conference on New Interfaces for Musical Expression

Toneblocks: Block-based
musical programming

Michael Quigley, William Payne

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

https://creativecommons.org/licenses/by/4.0/

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

ABSTRACT

Block-based coding environments enable novices to write code that bypasses the
syntactic complexities of text. However, we see a lack of effective block-based tools

that balance programming with expressive music making. We introduce Toneblocksl, a
prototype web application intended to be intuitive and engaging for novice users with
interests in computer programming and music. Toneblocks is designed to lower the
barrier of entry while increasing the ceiling of expression for advanced users. In
Toneblocks, users produce musical loops ranging from static sequences to generative
systems, and can manipulate their properties live. Pilot usability tests conducted with
two participants provide evidence that the current prototype is easy to use and can
produce complex musical output. An evaluation offers potential future improvements
including user-defined variables and functions, and rhythmic variability.

Author Keywords

creative coding; block-based programming; educational tools; web audio; music

CCS Concepts

* Applied computing —» Sound and music computing; * Human-centered
computing — User centered design; Web-based interaction;

Introduction

The ubiquity of personal computing and internet technologies has led many educators
to embrace programming as a means to foster creative thinking in youth. Building on
Dewey’s philosophy of experience [1] and Piaget’s theory of constructivism [2],
Papert’s Logo programming language enabled a hands-on approach toward learning to
code with simple instructions and visual art [3]. Building on Logo’s innovations,
Guzdial proposed the Media Computation approach to introducing computing in which
learners manipulate a range of images, audio, and other media files [4]. “MediaComp”
curricula and technologies have been widely used and adopted. As early advances in
computing education demonstrate, an experiential and tailored approach to teaching
supports a wide range of learners in gaining valuable problem solving skills [5].

Block-based programming is an increasingly common paradigm used to introduce
novices to programming, allowing users to drag, drop, and snap together code blocks
to form scripts [6]. This approach can be less intimidating, and it allows developers to

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

define and limit the available blocks to support a specific topic or activity (e.g. loop-
based music synthesis). Scratch, the most widely used block-based environment [7],
allows users to create games and animations and manipulate sounds.

The intersection of computer programming education and music has seen a number of
innovations including the text-based environments EarSketch [8], and Sonic Pi [9].
Scratch supports musical sequences and event triggering with a keyboard or controller
like the Makey Makey [10], and has even been used as the basis for entire curricula

introducing code through music [11][12]. However, musical content is expressed in
plain, single-note statements (Figure 1) limiting opportunities to incorporate logic
within musical sequences. Further, advanced uses like syncing rhythmic content
requires difficult and unintuitive workarounds, seemingly due to a lack of an audio
timing system. Often users opt to import music outside of Scratch for their projects
[13]. Blocky Talky [14], another block-based programming environment, allows users
to network and program the musical and interactive behaviors of synthesizers and
sensing devices.

Figure 1: Scratch block “play note 60 for
0.25 beats”

Toneblocks builds upon the foundations set by Scratch and Blocky Talky by leveraging
modern frameworks such as the Web Audio API and reconsidering how the affordances
of a small set of blocks might promote fun interactions with music synthesis.

Toneblocks Design

The current Toneblocks prototype consists of an interactive, block-based interface,
audio output, and documentation. The core functionality is built on Blockly [15], a
framework for creating block-based programming editors, and Tone.js [16], a
framework for creating interactive music in a browser. Toneblocks is written in HTML,
CSS, and Javascript, and is hosted via GitHub Pages.

The interface presents a scaffolded introduction for making music with visual code and
consists of a toolkit containing available blocks, a workspace in which they can be
dragged, and an embedded tutorial. The toolkit includes blocks for standard datatypes

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

like integers and booleans, programming constructs like conditionals and lists, and
custom music blocks such as synth, loop, and volume. The introductory tutorial
displays a simple musical example that can be copied and run. Additional controls
include a “Start” button, global tempo and volume sliders, and an animated
oscilloscope. Synthesizer parameters and note inputs can be modified in real time. Live
manipulation during playback is intended to foster a sense of play enabling users to
jam and improvise in response to emergent features of their sound system [17].

Welcome to Toneblocks!

St | Tempo: e Volume, e—

Awab based, musical creative coding environment.

Tutorial (Hello Worid)

In this example, a synthesizer with a sinewave ogcillator will cycle
through & 4 noti op of quaner nobes, playing note 60 on the
downbeat, Lets take a closer look

« A Synih Block is connecied 1o a Loop black,

+ The Loap block's subdivision i= set 1o “4n”, for quaner note.

+ The Loop block has a Number block connected te the "Nate
1% input.

= The Number block is set to 80, which is the MIDI pitch value
of the musical nota known as middle C, or C4.

Go ahead and recreate the example on your ownl

Task 1

Mraota o fror neto bnn that armossiotoo maos o ™ AosT s in

Figure 2: The Toneblocks interface.

Music Blocks

Designed entirely around synthesis and sequencing, Toneblocks introduces four new
music blocks: synth, volume, a 4-note loop, and an 8-note loop. The synth block takes a
unique name to handle routing, and has a drop down menu for wave type: sine, square,
triangle, sawtooth. The loop blocks control the sequence of pitches, which are
repeated indefinitely at the specified subdivision: 1n, 2n, 4n, 8n, 16n. Each input to the
loop block accepts a MIDI note number or an operation that resolves to a MIDI note
number (Figure 3). Empty slots are rests. The vertical layout of the sequence blocks is
intended to encourage users to build nested computational operations resulting in
complex, generative musical scripts. While synths are monophonic, more than one can
be dragged into the workspace enabling polyphony and rhythmic syncopation. As

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

indicated above, loops are editable during playback allowing users to experiment with
computational operations and make changes based on immediate auditory feedback.

Synth
enter unique name BT101D

wave type
Loop

subdivision EIIES
Note 1 inlist | (o) create listwith [CX) CEED EEI [random integer from ﬂ o
i

g random integer from n to n is

if true
if false | [E&D

Figure 3: A Toneblocks script using nested blocks.

Usability Testing

We conducted an initial round of usability testing in which we asked participants to
complete four tasks, designed to scaffold users’ introduction to Toneblocks, and then
engage in a semi-structured interview. We hoped first to evaluate how quickly users
understood its interface, and second to observe whether and how it could be used for
open-ended experimentation and play. For example, Task 1 specified a musical output,
“Create a four note loop that arpeggiates over a C Maj7 chord in eighth notes, played
by a synth with a triangle wave oscillator...”, while Task 4 simply stated “Make music
however you see fit.” To be clear, while Toneblocks is intended to provide an
approachable environment introducing concepts in coding, these initial tests seek to
capture the usability of the current, early-stage design rather than learning gains of
the participants.

Two adults, both with college experience in music making and programming,
participated in the experiment. Due to COVID-19, each session was conducted
remotely within Zoom and recorded with consent for later analysis. Participants shared
their screens while one researcher timed each task and took notes on participant
actions and verbal feedback. The researcher did not help participants and interjected
only when unforeseen bugs occurred, e.g. to suggest a user scroll down once a resizing

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

issue concealed a portion of the screen. During the semi-structured interview, the
researcher asked users to reflect on their experiences, to identify difficulties they
faced, and to suggest improvements.

Usability Results & Feedback

Participants completed each task with relative ease, taking under 2 minutes each to
complete the first two, and 7-11 minutes to incorporate, randomization and logical
operators in open-ended explorations. One participant employed low MIDI pitch values
and multiple synth blocks to explore rhythmic sounds and syncopation, a surprising
workaround to incorporate percussion that we had not explored in our own testing.

Participant feedback from testing sessions was largely positive and insightful.
Participants understood how their code translated into audio, and felt that the
computational and mathematical operant blocks allowed for randomization and
interactivity in the music they created.

As past researchers note [18], blocks-based code often becomes difficult to navigate,

debug, and maintain as more concurrent scripts are added in disorganized
arrangements. Our participants' actions reflected such difficulties as their scripts grew
in complexity. Participants noted a desire for user-defined variables and functions to
simplify redundancies, as well as advanced musical options like variable length loops
and note durations, and note-triggering outside of a loop.

Conclusion & Future Work

The Toneblocks prototype is a block-based musical programming web application.
Early evidence suggests that Toneblocks presents an easily usable interface for
creating music with blocks, despite some complications. Two users who participated in
a usability study and interview possessed prior experience in music making and
computer programming, and they engaged with and pushed Toneblocks accordingly.
Testing with novices is necessary to identify barriers that users without code or music
knowledge face. Future work will incorporate variable-length loops, note durations,
and rhythmic patterns, as well as coding constructs including user-defined variables
and functions. We hope that this work sparks discussion on how to approach the
design of blocks-based interfaces to promote authentic music-making and expressive

play.

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

Acknowledgments

We thank Dr. Morwaread Farbood for guidance and support of this project.

Compliance with Ethical Standards

The study was done in compliance with the New York University Institutional Review
Board. Participants provided consent and were free to abandon the testing session at
any time.

Footnotes

1. Toneblocks video demo: https://youtu.be/rqlxpfseygU

Citations

1. Dewey, J. (1938). Experience and education. New York: Macmillan. <
2. Singer, D. G., & Revenson, T. A. (1997). A Piaget primer: How a child thinks.
International Universities Press, Inc., 59 Boston Post Road, Madison, CT 06443-1524.

Py

3. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New
York, NY: Basic Books. <

4. Guzdial, M. (2015). Media Computation and Contextualized Computing
Education. In John M. Carroll (Ed.), Learner-Centered Design of Computing
Education: Research on Computing for Everyone (pp. 53 - 68). San Rafael, CA:
Morgan & Claypool. <

5. Turkle S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of
the Concrete. Journal of Mathematical Behavior, 11(1), 3-33. Retrieved from
https://www.papert.org/articles/EpistemologicalPluralism.html «

6. Weintrop, David & Wilensky, Uri. (2018). How block-based, text-based, and hybrid
block/text modalities shape novice programming practices. International Journal of
Child-Computer Interaction. 17. 10.1016/j.ijcci.2018.04.005. <

7. Resnick, M. (2017). Lifelong kindergarten; Cultivating creativity, through
projects, passions, peer, and play. Cambridge, Massachusetts: The MIT Press. <

8. Freeman, J., & Magerko, B. (2016). Iterative composition, coding and pedagogy: a
case study in live coding with Earsketch. Journal of Music, Technology & Education,

https://youtu.be/rq1xpfseygU

International Conference on New Interfaces for Musical Expression Toneblocks: Block-based musical programming

9(1), 57-74. =

9. Aaron, S., Blackwell, A., & Burnard, P. (2016). The development of sonic pi and its
use in educational partnerships: co-creating pedagogies for learning computer
programming. Journal of Music, Technology & Education, 9(1), 75-94. =

10. Resnick, M., & Rosenbaum, E. (2013). Designing for Tinkerability. In M. Honey
& D.E. Hunter (Eds.) Design, make, play pp. 163-181. Routledge, London. <

11. Brown, A. R., & Ruthmann, A. (2020). Scratch music projects. Oxford University
Press. <

12. Greher, G. R., & Heines, J. M. (2014). Computational thinking in sound: Teaching
the art and science of music and technology. Oxford University Press. <

13. Payne, W,, & Ruthmann, A. (2019). Music Making in Scratch: High Floors, Low
Ceilings, and Narrow Walls? The Journal of Interactive Technology & Pedagogy, (15).
Retrieved from https://jitp.commons.gc.cuny.edu/music-making-in-scratch-high-floors-

low-ceilings-and-narrow-walls <

14. Shapiro, R.B., Kelly, A., Ahrens, M., Johnson, B., Politi, H., & Fiebrink, R. (2017).
Tangible Distributed Computer Music for Youth. Computer Music Journal 41(2), 52-
68. https://www.muse.jhu.edu/article/662534. <

15. Blockly. https://developers.google.com/blockly/ «
16. Tone.js https://tonejs.github.io/ =

17. Collins, N. (2016). Live coding and teaching SuperCollider. journal of Music,
Technology & Education, 9(1), 5-16.

P

18. Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2011). Habits of programming
in Scratch. Proceedings of the 16th annual joint conference on Innovation and
technology in computer science education, Darmstadt, Germany, pp. 168-172 <

https://muse.jhu.edu/article/662534

