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ABSTRACT

This paper presents the development of MapLooper: a live-looping system for gesture-

to-sound mappings. We first reviewed loop-based Digital Musical Instruments (DMIs). 

We then developed a connectivity infrastructure for wireless embedded musical 

instruments with distributed mapping and synchronization. We evaluated our 

infrastructure in the context of the real-time constraints of music performance. We 

measured a round-trip latency of 4.81 ms when mapping signals at 100 Hz with 

embedded libmapper and an average inter-onset delay of 3.03 ms for synchronizing 

with Ableton Link. On top of this infrastructure, we developed MapLooper: a live-

looping tool with 2 example musical applications: a harp synthesizer with 

SuperCollider and embedded source-filter synthesis with FAUST on ESP32. Our system 

is based on a novel approach to mapping, extrapolating from using FIR and IIR filters 

on gestural data to using delay-lines as part of the mapping of DMIs. Our system 

features rhythmic time quantization and a flexible loop manipulation system for 

creative musical exploration. We open-source all of our components.

Author Keywords
Digital Musical Instrument, mapping, looping, synchronization, embedded computing

CCS Concepts
Applied computing  Media arts; Hardware  Sensor devices and platforms; 

Sound-based input / output.

Introduction
Composers Pauline Oliveros and Terry Riley explored technology-driven repetition in 

music in the 1950s through pioneering experiments with tape loop techniques and 

tape delay/feedback systems [1]. Their system, Time Lag Accumulator, worked by 

stringing tape between two tape recorders and feeding the signal from the second 

machine back to the first, mixing incoming sound with the tape’s previously recorded 

sound. Later, digital looping devices re-implemented this concept. Digital memory 

replaced magnetic tape, and digital loopers are now available in much smaller form 

factors than magnetic tape recorders.

A Digital Musical Instrument (DMI) consists of a gestural interface and a sound 

generation [2]. The gestural interface and sound generator are separate units related 

→ →
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by mapping strategies. Hunt et al. demonstrated [3] that different mappings can 

completely change an instrument’s behavior.

Mappings have been employed in synthesis engines [4], physical models [5], or audio 

effects [6]. In these contexts, mappings facilitate skill-based performance, 

characterized by rapid, coordinated movements in response to continuous signals [7]. 

This type of performance often involves instruments with a high level of mapping 

transparency, where the link between a performer’s gesture and the resulting sound is 

clear to both audience and performer, correlating with instrument expressiveness [8]. 

Musicians seeking the aesthetics of accurate and precise timing typically require a 

high skill level, while existing tools for creating loop-based music such as music 

sequencers, samplers, and loopers offer beginners a low “entry fee” [9]. However, the 

control mapping of these tools is often opaque and difficult for the audience to 

understand. In this work, we explore mapping in the context of loop-based music 

performance with the goal of creating instruments with a low entry fee and high 

mapping transparency.

In this paper, we first review several looping tools and list our design requirements. 

We then describe our mapping and synchronization platform for embedded devices, 

and validate our approach through the gesture-to-sound looping tool MapLooper and 

two example synthesis applications. We finish by discussing perspectives beyond our 

work.

Related work
We review several looping tools involving gesture-to-sound mappings grouped into two 

main categories: a) audio stream loopers, b) control data stream loopers.

Audio stream loopers

Audio stream loopers have become popular in the form of commercial live-looping 

pedals. These devices usually have user interfaces with buttons and knobs for 

controlling recording and playback states, loop length, and volume of loop layers. Loop 

controls can also be controlled gesturally, giving the performer the possibility to 

perform with gestures and body movements.

SoundCatcher

SoundCatcher [10] (Image 1) is a live-looping system with a mid-air gestural control 

interface. The distance between the performer’s hands is mapped to the loop length 
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and vibrotactile feedback. SoundCatcher is an example of the usage of an explicit 

mapping strategy for the control of live-looping.

SoundGrasp

SoundGrasp [11] (Image 2) features a mid-air gestural control interface with a glove 

controlling the recording/playback state and parameters for reverb and echo effects. 

Postures are classified into a vocabulary of control commands such as 

record/play/stop. SoundGrasp is an example of using machine learning as a mapping 

strategy for the control of live-looping.

Image 1

Gesture-to-sound interface of SoundCatcher. The performer is holding the 

actuators, and the ultrasonic sensors are mounted to a microphone stand.

Image 2

Gesture-to-sound interface of SoundGrasp. Gestures are recognized using a neural 

network. The identified postures are used as commands for controlling the looper. 

Sensor data is also mapped directly to audio effect parameters.
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Control stream loopers

Streams of control data such as MIDI or Open Sound Control (OSC) messages or 

analog control voltages (CV) can also be looped, by inserting the looping device 

between a control interface and a sound generator like a mapping layer. As with audio 

stream loopers, control data is recorded into a buffer and played back in a loop. 

Control stream loopers offer the advantage that mappings can be changed post-

recording, giving the possibility to re-route the control data to different synthesis 

processes.

MidiREX and Midilooper

MidiREX [12] by Peter Kvitek and Midilooper [13] by Bastl Instruments (Image 3) take 

their inspiration from digital loop pedals both in appearance and functionality. The 

devices record incoming MIDI messages into a buffer, also compatible with MIDI 

Polyphonic Expression (MPE) [14]. Midilooper can modulate MIDI velocity either 

randomly or using a control voltage input as a modulation source. Random modulation 

has become an increasingly popular feature of music sequencers as a tool for 

“humanization” [15]—a trend Cascone characterizes as an era of “post-digital” music 

defined by the aesthetics of failure and audible glitches [16]. Midilooper’s random 

velocity feature, labeled “human velocity”, can add dynamic variation to the recorded 

loops.

Ribn and Tetrapad

Ribn [17] by Nobjsa Petrovic and Tetrapad [18] by Intellijel (Image 4) have touch 

interfaces to record horizontal or vertical gestures. Up to eight sliders can be added to 

Ribn’s interface, with each sending a single MIDI control change message. Recording 

starts when the slider is touched and ends on release. Playback starts immediately 

after recording, and loop lengths can not be changed after recording. Tetrapad is a 

Image 3

Gesture-to-sound interface of MidiREX and Midilooper. The MIDI protocol allows 

using any MPE-compatible gestural controller.
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Eurorack module with four touch zones that sense both position and pressure, allowing 

for two-dimensional gesture recordings. Tetrapad has eight control voltage outputs 

that can be patched to any parameter within a Eurorack system. With the Tête 

expander module, recorded sequences can be quantized in both time and value, with 

the possibility of quantizing control voltage outputs to a selection of musical scales.

Drile

Drile [19] by Berthaut et al. (Image 5) is a virtual reality-based live-looping system. A 

bi-manual 6-DoF controller is used to create loops and control audio effects in a 3D 

space. Unlike the other looping tools, Drile supports both audio and control streams, 

and offers hierarchical live-looping by grouping loop layers in a hierarchical tree 

instead of a flat structure. Loops can be layered per instrument or section in a piece.

Image 4

Gesture-to-sound interface of Ribn and Tetrapad + Tête. Touch sensor is 

embedded in the interface.

Image 5

Traditional and hierarchical live-looping structures with Drile.
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Summary

We provide a comparison of related work versus our tool MapLooper in Table 1. 

Interact refers to the gestural interface where *(x) means all devices supported by x. 

Loop refers to the interface for switching recording and playback state. Quantize 

refers to time quantization. Manipulate refers to any real-time processing of the 

recorded loops.

Table 1

While most of the tools reviewed contain their own gestural interface; only MidiRex 

and Midilooper can use external gestural interfaces. However, with these two tools, 

the recording and playback state can only be controlled using a button. All of the 

reviewed tools feature either time quantization, external synchronization, or loop 

manipulation. Most of the tools’ mapping strategies are explicit, except for 

SoundGrasp, which employs mapping using machine learning.

Project Stream Interact Loop Quantize Synchroni

ze

Manipulat

e

Map

SoundCat

cher

Audio Ultra-sonic Footswitch No Yes Audio FX Explicit

SoundGra

sp

Audio Glove Posture No No Audio FX Machine 

learning

MidiRex Control *(MPE) Button Yes Yes No Explicit

Midiloope

r

Control *(MPE) Button Yes Yes Random/C

V

Explicit

Ribn Control Touch Touch No No No Explicit

Tetrapad Control Touch Touch Yes Yes CV Explicit

Drile Both 6-DoF 6-DoF Yes No No Explicit

MapLoope

r

Control *

(libmapper

)

*

(libmapper

)

Yes Yes Random Open-

ended
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Design requirements

Our review guided the design requirements of our tool that should support:

Infrastructure for embedded, distributed and synchronized 
mapping
To build applications for live-looping satisfying the design requirements that we 

elicited, we developed a connectivity infrastructure for wireless mapping and 

synchronization. We ported existing libraries for mapping and synchronization to a 

wireless embedded platform.

Embedded platform

For the wireless embedded platform, we use the ESP32 microcontroller: a small, 

cheap, and sufficiently powerful chip for digital signal processing [20].

Mapping framework

To build a looper with advanced mapping capabilities, we use the mapping software 

libmapper [21] as the main building block.

Embedded Mapping Components

We adapted libmapper and its dependencies to run on ESP32 platforms: we 

implemented functions in compat-idf for compatibility between pthread and the Free 

Real-Time Operating System (FreeRTOS), we ported the liblo library for OSC 

communication, and we compiled the zlib for data compression.

changing sound sources after recording,

looping streaming data from different gestural controllers,

controlling loops with open-ended gestural interfaces,

quantizing time,

synchronizing time externally,

manipulating loops by random modulation,

mapping with both explicit and machine learning strategies,

running on a wireless embedded device,

replicating its open-source components.
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liblo

The liblo library relies on POSIX sockets and threads (pthreads) for creating UDP/TCP 

sockets and servers. The Espressif IoT Development Framework (ESP-IDF) [22]) 

contains a pthread library that partially translates the FreeRTOS API into the POSIX 

threads API that we needed to update.

compat-idf

We implemented several POSIX functions that were missing for networking embedded 

DMIs (getnameinfo, gai_strerror, gethostname, getifaddrs, freeifaddrs) and packaged 

as an open-source ESP-IDF component, compat-idf [23].

libmapper-esp

We packaged these four components, liblo, libmapper, compat-idf, and zlib, as an open-

source ESP-IDF component, libmapper-esp [24].

libmapper-arduino

To facilitate embedding libmapper support in DMIs like the T-Stick DMI using common 

Integrated Development Environments, we implemented an Arduino version of the 

libmapper library that we release as the open-source libmapper-arduino library [25].

Image 6

Structure of the libraries ported to ESP32 for libmapper support.
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Testing

We measured round-trip latency, jitter, and package loss for data transmitted through 

embedded libmapper. Our test setup consisted of applications running on two 

computing devices. 1) The firmware of an ESP32 WROVER KIT development board [26]

 running the libmapper-esp library creates one input and one output signals. The input 

signal handler is set to forward incoming data to the output signal. 2) A software 

application running on a MacBook Pro laptop (16-inch, 2019, macOS 10.15) sends a 

100 Hz signal to the ESP32, and we measure the time between sending and receiving 

data. The ESP32 was running in access-point mode and the computer was connected 

to this access-point through WiFi. The results are in Image 7 .

We found that the ESP32 has a WiFi power-saving feature enabled by default. 

Disabling this feature had a significant impact on low latency performance. We 

performed measurements with power-saving enabled or disabled. The mean of the 

round-trip latency was 406 ms with power saving enabled and 4.81 ms when disabled. 

According to our results, in a one-way communication situation, where the ESP32 is 

only transmitting data, an average end-to-end latency  (half of round-trip) 

can be expected.

We performed three more measurements at increasing rates for testing latency, jitter; 

and packet loss  at different signal rates. The results are in Image 8.

Image 7

Histogram of round-trip latency 

measurement with power saving feature 

disabled. A 100 Hz is signal measured 

over a period of 100 seconds. The 

dashed line shows the mean round-trip 

latency of 4.81 ms.

L =m 2.41 ms

PL
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We found that the system has a significant packet loss for signals at 500 Hz. For 

signals at 1000 Hz, the packet loss is substantial, with 55% of packets being dropped. 

The jitter also increases with frequency, which can be observed in the increase of the 

standard deviation of the latency listed in . There is no significant change in the mean 

latency for signals at 100 Hz and 200 Hz. For signals at 500 Hz, the latency increases 

by a factor of 3. Signals at 500 Hz and 1000 Hz had similar performance in terms of 

latency and jitter, but the packet loss increases from 7.8% at 500 Hz to 55% at 1000 

Hz. Table 2 provides results from latency measurements.

Table 2

Image 8

Histograms of round-trip latency of test signals at 100 Hz, 200 Hz, 500 Hz, and 

1000 Hz, with 10,000 test points recorded for each signal. Packet loss PL and 

frequency is listed in the title of each histogram.

Signal rate [Hz] Mean latency [ms] Std. dev. of latency 

[ms]

Packet loss PL
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Our results for the embedded libmapper implementation were slightly better than 

previous studies by Wang et al. [27], who conducted tests of latency and jitter with 

OSC communication over WiFi using ESP32. They measured a mean round-trip latency 

of 6.62 ms, which is slightly higher than the 4.81 ms we measured in this project, both 

at 100 Hz. Both measurements remain well below the “acceptable upper bound on the 

computer’s audible reaction to gesture at 10 ms” proposed by Wessel and Wright [9].

Synchronization framework

For time synchronization between devices on a wireless network, we ported Ableton 

Link [28]: an open-source library for synchronizing tempo, beat, phase, and start/stop 

commands. Turchet et al. mention Ableton Link as a candidate for becoming a 

standard for music synchronization for Internet of Musical Things (IoMusT) devices 

[29].

Embedded Synchronization Components

To compile and run Ableton Link on ESP32, we needed to port the following modules 

to FreeRTOS:

We distribute this library as an open-source ESP-IDF component: link-esp [30].

Testing

To test our embedded port of Ableton Link, we created a test setup for measuring the 

delay between peers. The test setup consisted of two MacBook Pro laptop computers 

100 4.81 1.56 0.0

200 4.78 1.86 0.0001

500 16.6 1.92 0.078

1000 17.9 1.98 0.55

Clock : a simple timer with microseconds resolution.

Context for the asynchronous operation of Ableton Link.

LockFreeCallbackDispatcher for real-time safety of the session state.

Random for random identification string generation for the peer.

ScanIpIfAddrs for retrieving information about the available network interfaces on 

the system.
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(Computer 1: 16-inch, 2019 and Computer 2: 15-inch, 2018; both running macOS 

10.15) and an ESP32 board, all connected to a RIGOL DS1054 oscilloscope. Two 

probes were connected to an audio jack from the headphone output of each of the 

computers. One probe was connected to a GPIO pin of the ESP32. The computers 

synthesized a pulse signal through Ableton Live [31]. The ESP32 ran a test software 

outputting a pulse on a GPIO pin. All devices were connected through an Ableton Link 

session and outputted a periodic pulse on every quarter note at 120 BPM. A plot of the 

measurements is in Image 9.

We found that the ESP32 performs similarly to the two laptop computers in terms of 

inter-onset delay. Over 10 minutes, the average delay between Computer 1 and ESP32 

was 3.03 ms (min: -6.62 ms, max: 0.02 ms).

Application: implementation of MapLooper: gesture-to-sound 
looper
This section describes MapLooper, our gesture-to-sound looping tool built upon our 

connectivity infrastructure. We implemented MapLooper based on a delay-line model 

Image 9

Oscilloscope measurement of an Ableton Link session consisting of two computers 

and an ESP32. All peers output a pulse signal at every quarter note at 120 BPM.
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using libmapper map expressions. We present two musical applications built with the 

tool. We distribute MapLooper as an open-source software [32].

Looping with a delay-line

We can build a digital looper by adding feedback to a delay-line. A digital delay-line is 

a special case of IIR filtering, which is supported by libmapper for exponential 

smoothing. The discrete-time system implementing a digital looper can be expressed in 

terms of a linear interpolation between an input , and a delayed output term 

, with the linear interpolation factor representing a record signal  so that: 

. A block diagram of this system is in Image 10. For 

most live-looping devices, the record/playback state is boolean, and the signal  is 

either 0 or 1. When , only the delay-line output is passed to the system’s output. 

When , the input is passed directly to the output and into the delay-line, thereby 

being recorded. For , overdub can be achieved as the input is mixed with 

the delayed input.

Synchronization and time quantization

For a loop to be synchronized to a meter, the length  of the delay-line should be 

specified in terms of tempo [bpm]  and duration in beats  

x[n]

y[n−D] r[n]

y[n] = r[n] ⋅ x[n] + (1 − r[n]) ⋅ y[n−D]

r[t]

r[t] = 0

r[t] = 1

0 < r[t] < 1

Image 10

Block diagram of basic looping system implemented as a delay-line with feedback.

D

T B

(1)
D =

T

B ⋅ 60
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 For a 1-bar loop with a tempo of 140 bpm and time signature 4/4, this results in 

 At the time of our initial implementation, delay-lines in libmapper were non-

interpolating in terms of delay-length. We first solved this issue by sampling the input 

at a rate given by an integer subdivision of the tempo, ensuring that delay-lengths 

were always an integer multiple of the loop-length in beats. We have since added 

fractional delay lengths to libmapper.

We added a sample-and-hold structure to the system to implement tempo-synchronized 

sampling. A clock signal  synchronized with the tempo triggers a sampling of the 

input signal . The rate of the clock determines the quantization. This rate is 

commonly given for analog synchronization systems in the unit pulses per quarter note 

(PPQN). A block diagram of this system is in Image 11.

Loop manipulation

We implemented a simple modulation system modelled on the sample-and-hold 

structure. We used a uniform noise generator as a modulation source, sampled at the 

same rate as the input. We added this modulation signal within the feedback path, so 

that an input sequence could be recorded, after which modulation could be applied to 

make the sequence slowly evolve over time. A block diagram of the system is in Image 

12.

(2)
D = =

140 beats/min
4 beats ⋅ 60 s

1.7142857143 s

c[t]

x[t]

Image 11

Block diagram of looping system with time quantization.



International Conference on New Interfaces for Musical Expression MapLooper: Live-looping of distributed gesture-to-sound mappings

16

The uniform noise generator creates a noise signal with a range between [-1, 1] 

multiplied by the signal , controlling the modulation amount. For small amounts of 

modulation, the original contour of a recorded sequence is retained on a macro timing 

level with an increasing variation on the micro timing level.

Control signals

MapLooper instantiates a libmapper device and initiates a Link session. The control 

interface consists of five signals (Table 3): record, length, division, modulation, and 

mute. 

Table 3

Image 12

Block diagram of loop manipulation system. The loop is modulated by noise 

through a sample-and-hold structure. The modulation is within the feedback path.

m[t]

Signal Description Unit Min Max

record Controls whether 

input is active

- 0 1

length Length of the loop beats 1 100*

division Time quantization PPQN 1 100
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The record signal represents the  signal in . The length and division signals 

determine the length  of the delay-line by the relation: . The length

 signal is limited by the current maximum of 100 samples of delay in libmapper, though 

the library can be recompiled with additional memory. The modulation signal 

represents the  signal in . The mute signal was added to control whether the output 

from local/recv propagates to the output signal.

For each loop instance, a convergent map is created between the control signals, the 

local/send, and the local/recv signal. A map expression is created for the map, 

describing the system in Image 13.

During loop updates, the input is sampled at a rate synchronized with Link. The 

sampled value is sent to the local/send signal, and the map expression is evaluated. 

Finally, if the Loop instance is not muted, the value of the local/recv signal is copied to 

the output signal.

modulation Amount of 

modulation

- 0 1

mute Controls whether 

output is active

- 0 1

r[t]
D D = length ⋅ division

m[t]

Image 13

Block diagram of mapping configuration. Each block represents a signal. The solid 

lines represent the convergent mapping between the control signals and the local 

send and receive signals. The dashed lines are internal mappings done outside of 

libmapper.
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By mapping a gestural controller to the input signal and a sound generator to the 

output signal (Video 1 and Image 14), a DMI with looping capabilities can be 

implemented.

0:00

Video 1

Construction of the mapping in visualization tool Webmapper.

Image 14

Visualization of the mapping in visualization tool Webmapper.
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Graphical User Interface

For testing, we created a cross-platform GUI application based on the JUCE framework 

[33], containing six sliders and a button (Image 15). When launching the GUI, a loop 

instance is created, and sliders are initialized to the default values of control signals. 

Slider 1 input sends its value to the loop’s input, and similarly to Ribn and Tetrapad 

the value of the slider is only recorded when the slider is pressed. Slider 2 output 

displays the output of the loop and is not editable. The remaining four sliders control: 

the loop length in beats (slider 3), the amount of noise modulation (slider 4), division in 

pulses per quarter note (slider 5), and tempo in beats per minute (slider 6). A toggle at 

the bottom controls whether the local loop map’s output propagates to the loop’s 

output. We distribute MapLooper-gui as an open-source project [34].

Image 15

Screenshot of JUCE-based MapLooper-GUI.
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Sound synthesis examples

SuperCollider extension: MapperUGen

We implemented a new SuperCollider UGen server extension called MapperUGen [35] 

for using libmapper. The extension has classes for creating input and output signals 

(MapIn and MapOut) with signal names and ranges specified as arguments for the 

constructor. When synths are created and destroyed in SuperCollider, UGens are 

erased from memory, which causes maps to SuperCollider to be destroyed. We 

implemented a system for persistent maps by saving libmapper signals in a global 

variable. When MapIn and MapOut are instantiated, the classes automatically bind to 

existing signals with the signal name given as an argument. This solution optimizes the 

workflow considerably when prototyping mappings.

Harp demo

We created one musical demo by mapping the output signal to a harp synthesizer 

implemented in SuperCollider (Video 2). 

The harp synthesizer is based on a Karplus-Strong string model. Two input signals, 

frequency and amplitude control the frequency and amplitude of the string model. The 

frequency input is quantized to a melodic scale within the synthesizer, and a slope 

detector on the quantized frequency triggers the string excitation. As a result, when 

0:00

Video 2

Demo with harp synthesizer implemented in SuperCollider.
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moving the input slider, melodic notes are triggered along with the range of the slider. 

The interaction provides a similar feel as when sliding fingers over the strings of a 

harp. The SuperCollider code for the demo is:

fork { 

  Mapper.enable; 

  // Wait 2 seconds for libmapper initialization 

  2.wait; 

  { 

    var index, scale, freqCtl, freq, amp, src, trig; 

    // Create buffer with pentatonic minor scale 

    scale = 36.collect{ |i| 

      Scale.minorPentatonic.degreeToFreq(i, 50, 0); 

    }.as(LocalBuf); 

    // libmapper input signals 

    freq = MapIn.kr(name: \freq, min: 50, max: 2000); 

    amp = MapIn.kr(name: \amp, min: 0, max: 1);  

    // Quantize frequency to pitch 

    freq = Index.kr(bufnum: scale, in: IndexInBetween.kr(scale, freq)); 

    // Trigger the string on change 

    trig = Changed.kr(freq); 

    // Karplus-Strong string model  

    src = Pluck.ar(in: PinkNoise.ar, trig: K2A.ar(trig), delaytime: 1 / freq); 

    src * 0.5; 

  }.play; 

}

Embedded Sound Synthesis

We also created a proof-of-concept demo of using the looper with embedded sound 

synthesis (Video 3). 

0:00

Video 3

Embedded demo with pink noise passed through a Moog-style voltage-controlled 

filter emulation.
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The demo was based on the ESP32 LyraT board [36] (Image 16), which contains an 

ESP32 WROVER module and an audio codec chip along with 1/8 inch TRS connectors 

for headphones and auxiliary audio input.

We release our demo [37] as an open-source project using the Faust library [38] for 

compiling a DSP program to the LyraT board, which is supported by the Faust 

compiler [39]. The DSP program used for the demo is:

import("stdfaust.lib"); 

ctFreq = hslider("cutoffFrequency", 500, 50, 3000, 0.01); 

res = hslider("resonance", 0.5, 0, 1, 0.1); 

gain = hslider("gain", 1, 0, 1, 0.01); 

process = no.pink_noise : ve.moog_vcf(res, ctFreq) * gain;

The program generates pink noise and passes it through a Moog-style voltage-

controlled filter emulation. The program has three parameters: cutoff frequency, filter 

resonance, and output gain. A Loop is created for each parameter mapped to a 

Image 16

The LyraT board.
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libmapper signal that updates the parameter when receiving a value. A random 

number generator sends an input signal to each of the loop layers. The recorded signal 

is 1.0 when the program starts and is set to 0.0 after 10 seconds. The program 

continues indefinitely, repeating the same 1 bar sequence. A block diagram of the 

demo program is in Image 17.

Conclusion and future work
We have presented the development of a live-looping system for gesture-to-sound 

mappings built on a connectivity infrastructure for wireless embedded musical 

instruments with distributed mapping and synchronization. We evaluated in the 

context of the real-time constraints of music performance: round-trip latency, jitter, 

and package loss of signals transmitted through embedded mapping; inter-onset delay 

between peers for networked looping synchronization. On top of this infrastructure, we 

developed MapLooper: a live-looping tool with example musical applications: a harp 

synthesizer with SuperCollider and embedded source-filter synthesis with FAUST on 

ESP32.

We follow by discussing perspectives on our work.

Scalability and flexibility of map expressions

Implementing our system using libmapper brings scalability, support for vector signals, 

signal instances [40] and freely mixing mapping and looping. The map expression 

Image 17

Block diagram of embedded sound synthesis example.
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interface allows for flexible mapping configurations for loop manipulation. The random 

modulation implementation could be changed to use any modulation signal by merely 

changing the map expression.

Delay-line models: continuous signals, zipper noise

One limitation is that the delay-line based model only allows for continuous signals. 

The delay-line model updates the output at every time quantization step. Continually 

updating the output can be an issue in scenarios where event-based signal updates are 

needed.

Additionally, the delay-line model causes issues when changing loop-length known 

from echo effects as zipper-noise. This noise is caused by discontinuities in the signal 

when adjusting the read pointer of a circular buffer. For interpolating delay-lines, the 

zipper-noise is replaced by Doppler-shifts. This effect has been used creatively as an 

audio effect, but it might not be what users expect for control data streams. The issue 

could be solved by cross-fading multiple read pointers when the loop-length is changed.

Latency compensation

When gestures are recorded through libmapper, all samples are time-tagged. Latency 

could be subtracted during playback to achieve accurate timing. Peers could 

continuously measure the latency between them by periodically sending a heartbeat 

signal and keeping a record of each peer’s round-trip latency. This idea is similar to 

how host time offsets are handled with Ableton Link. At sampling frequencies above 

500 Hz, our implementation had significant reliability issues. Instead of networking all 

peers at a high sampling rate, each peer could locally acquire the gestural data at a 

higher sampling rate while only sending quantized data to the network.

Visual and haptic feedback

When recording gesture-to-sound sequences in our looper, the instantaneous feedback 

gets lost once the recording is finished, since the auditory feedback no longer 

corresponds to the physical gesture currently being held. In the case of a single loop 

layer recording, our MapLooper-GUI provides visual feedback through a slider that 

displays the current output value of a loop. However, for more complex mappings, 

where more layers are being recorded simultaneously, the current system provides no 

feedback on what has been recorded. This missing feedback could be in the form of 

visualization on a screen, displaying multiple recorded sequences simultaneously. The 

loop visualization tool could be developed as an extension of WebMapper. Additionally, 
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feedback could be given in the form of haptic feedback, for instance with 

TorqueTuner[41] also embedding libmapper, to display force cues mapped to recorded 

sequence.

Multiple read pointers

Multiple variable-speed read pointers could be implemented to explore new looping 

techniques inspired by multi-tap delays and granular time-stretching audio effects. A 

single loop layer could control several voices by mapping the instances to voices on a 

polyphonic synthesizer, adding variations on a micro time-scale. Non-constant time 

quantization could add the shuffle effect popular on many drum machines and featured 

in MidiLooper.
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