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Abstract
Recent applications of Transformer neural networks in the field of music have 

demonstrated their ability to effectively capture and emulate long-term dependencies 

characteristic of human notions of musicality and creative merit. We propose a novel 

approach to automated symbolic rhythm generation, where a Transformer-XL model 

trained on the Magenta Groove MIDI Dataset is used for the tasks of sequence 

generation and continuation. Hundreds of generations are evaluated using blind-

listening tests to determine the extent to which the aspects of rhythm we understand 

to be valuable are learnt and reproduced. Our model is able to achieve a standard of 

rhythmic production comparable to human playing across arbitrarily long time periods 

and multiple playing styles.

Author Keywords
Transformer Neural Networks, Music Generation, Rhythm

CCS Concepts
•Applied computing → Sound and music computing; Performing arts; 

•Computing Methodologies → Machine Learning; •Computing Methodologies → 

Artificial Intelligence;

Introduction
The focus of this work is to examine how the application of current state-of-the-art 

machine learning methods in sequential data modelling can contribute to the creation 

of tools and processes for the automated generation, continuation and composition of 

musical rhythm.

Traditionally, the task of modelling musical sequences for the purposes of algorithmic 

composition has been difficult owing to its complex long-term structure and the 

computational requirements of capturing that. A recent addition to the family of 

models that handle sequential data is the Transformer neural network. The 

Transformer architecture uses attention mechanisms to process and learn long-term 

relationships in its input without the sequential recurrent processing of data that made 

https://creativecommons.org/licenses/by/4.0/
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previous methods so prohibitively resource-intensive [1][2]. This ability to learn 

effectively in the long-term has seen Transformers achieve state-of-the-art success in 

various natural language tasks [3][4][5] and, more recently, music, where they have 

been successfully used for raw audio generation [6] and symbolic composition [7][8].  

Building on the availability of well-annotated symbolic drumming datasets such as the 

Magenta Groove MIDI dataset [9] and a growing body of literature examining the 

application of Transformers in music, this work hopes to contribute to the field of 

computational creativity with new approaches to rhythmic modelling and generation.

Our objective is to train a model with the ability to (1) generate new rhythms from 

scratch, and (2) continue an unseen user-defined input rhythm. Success is evaluated 

using a series of empirical and subjective tests to determine the extent to which we 

can effectively model consonant, interesting and musically valuable rhythm as we 

understand it.

Related Work
The task of algorithmic composition has existed for centuries, with increasing levels of 

success achieved in the last 50 years or so with the application of computational 

methods [10][11][12]. Early computational efforts examine the application of 

Recurrent Neural Networks (RNNs) to the task [11] [13] [14] [15], though their 

inability to learn effectively in the long-term limits their success in modelling more 

complex musical structures [16]. A variation on the traditional RNN, long-term short-

memory networks (LSTMs), whose additional special units permit to maintain 

information in memory for longer time periods, address some of these issues. Many 

works using LSTM networks have produced impressive results [17] [18] [19] [20] [21]. 

Specifically in the rhythm domain, [22] [23] both produce interesting output on limited 

data. Most relevant to our task is Learning to Groove with Inverse Sequence 

Transformations by Gillick et al. [9]. In this work, a large symbolic dataset of 

professional drumming is introduced, the Groove MIDI dataset [9], to which an LSTM 

model of expressive performance is learnt and used for musical creativity tasks. 

However, LSTMs cannot yet be considered perfect in how they model temporal 

dependency in that there is still an emphasis on proximity in the input sequence. One 

drawback of the Learning to Groove approach for example is that the training and 

output is limited to short timescales (2 bars).

A more recent method of achieving long-term memory is the use of attention-based 

models, early descriptions of this approach can be found in [1] [24] [25]. Attention is at 

the heart of the Transformer neural network [2], whose application to symbolic music 
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generation tasks has yielded impressive results, with [7] first demonstrating their 

effectiveness in generating music over long time-scales (60 seconds), and [8] doing so 

in a multi-instrument setting. Transformer-based architectures require musical events 

to be inputed/predicted as discreet categorical classes (i.e. musical events need to be 

tokenized). Hence, musical event representation is critical for generative tasks 

employing Transformers. One approach is to represent MIDI events sequentially in 

absolute timing [7]. Alternatively, musical events can be represented in relative 

timing/duration, as presented in [26][27][28]. 

While transformers show potential in generating long-term musical structures, they 

generally struggle to generate content that show expert-level rhythmic and harmonic 

consistency.  [26] [27] [28] show that by incorporating more metrically and 

harmonically aware representations, these shortcomings can be improved, attesting to 

the fact that the performance of Transformer architectures is not only dependant on 

the architectural specifications, but rather also on the representation of the symbolic 

musical events.

Data and Representation
Here we introduce the dataset used in this work and describe the preprocessing 

transformations applied to it.

Dataset

The Magenta Groove MIDI Dataset (GMD) comprises 13.6 hours (22,000 measures) of 

human-performed, tempo-aligned, expressive drumming, played mostly by professional 

drummers. The data is provided in train, test and validation splits which we use here 

for training and evaluation correspondingly (see Table 1). 

Table 1 - Train, Test and Validation Splits of GMD

Split Beats Fills Measures Hits Duration 

(minutes)

Train 378 519 17752 357618 648.5

Validation 48 76 2269 44044 82.2

Test 77 52 2193 43832 84.3

Total 503 647 22214 445494 815.0
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All samples are matched with associated metadata including anonymised drummer 

identifiers, musical style annotations and tempo. Almost all samples are played in 4/4 

timing, though there are some exceptions. Table 2 presents the distribution of playing 

style - or genre - across the dataset.

Table 2 - Genre Distribution of GMD

Genre Count Proportion

rock 341 0.297

funk 160 0.139

jazz 101 0.088

latin 97 0.084

hip hop 95 0.083

soul 63 0.055

afrocuban 60 0.052

punk 58 0.050

new orleans 53 0.046

country 29 0.025

pop 27 0.023

reggae 20 0.017

gospel 19 0.017

afrobeat 13 0.011

dance 7 0.006

blues 4 0.003

highlife 2 0.002
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Sequence Tokenisation

We transform our raw data to a continuous one-dimensional stream of tokens, unique 

identifiers with a one-to-one mapping to pitch, velocity or time. 

The original MIDI representation can be thought of as a sequence of triples, each 

element providing a value for pitch, velocity and start time, see equation 1 (since we 

are dealing with onset events only, duration is irrelevant and end time is not 

considered). It is important to note that all sequences are quantized to 1/16ths before 

training, as in [9].

Three transformations are applied to the MIDI representation in equation 1: pitch 

mapping, velocity bucketing and time tokenisation, detailed in equations 2 - 7.

Pitch Mapping

The Roland TD-11 drumkit, which the dataset was collected on, records 22 distinct 

pitches, each corresponding to a different percussion instrument or sound. Many of 

these pitches are very sparse in the dataset and can be naturally grouped for lowering 

the dimensionality of the input data.

Table 3 - Pitch Mappings of Our Dataset

middle eastern 1 0.001

Total 1150 1.00

MIDI =  for n in [1..N ][(p , v , t ),1 1 1 (p , v , t ),2 2 2 ..., (p , v , t )N N N ]

N = number of notes in sequence
p =n pitch of n notet h

v =n velocity of n notet h

t =n start time of n notet h

Pitch Roland Mapping General MIDI 

Mapping

Our Mapping

36 Kick Bass Drum 1 Bass (35)

38 Snare (Head) Acoustic Snare Snare (38)
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We adopt a grouping of pitches almost identical to that used by Gillick et al. in [9] (see 

Table 3). Applying this to the entire dataset reduces it to 9 unique pitches in total: kick 

drum, snare drum, closed hi-hat, open hi-hat, low tom, mid tom, high tom, crash 

40 Snare (Rim) Electric Snare Snare (38)

37 Snare X-Stick Side Stick Snare (38)

48 Tom 1 Hi-Mid Tom High Tom (50)

50 Tom 1 (Rim) High Tom High Tom (50)

45 Tom 2 Low Tom Low-Mid Tom (48)

47 Tom 2 (Rim) Low-Mid Tom Low-Mid Tom (48)

43 Tom 3 (Head) High Floor Tom High Floor Tom (45)

58 Tom 3 (Rim) Vibraslap High Floor Tom (45)

46 HH Open (Bow) Open Hi-Hat Open Hi-Hat (46)

26 HH Open (Edge) N/A Open Hi-Hat (46)

42 HH Closed (Bow) Closed Hi-Hat Closed Hi-Hat (42)

22 HH Closed (Edge) N/A Closed Hi-Hat (42)

44 HH Pedal Pedal Hi-Hat Closed Hi-Hat (42)

49 Crash 1 (Bow) Crash Cymbal 1 Crash Cymbal (49)

55 Crash 1 (Edge) Splash Cymbal Crash Cymbal (49)

57 Crash 2 (Bow) Crash Cymbal 2 Crash Cymbal (49)

52 Crash 2 (Edge) Chinese Cymbal Crash Cymbal (49)

51 Ride (Bow) Ride Cymbal 1 Ride Cymbal (51)

59 Ride (Edge) Ride Cymbal 2 Ride Cymbal (51)

53 Ride (Bell) Ride Bell Ride Cymbal (51)
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cymbal and ride cymbal. After applying the mapping, each sequence is described by 

equation 2.

Velocity Bucketing

Velocity values, , lie in the range . These are bucketed to fall within  equally 

spaced bins.

 

for  = 2: 

for  = 3: 

 is chosen by subjective evaluation of the model output at various values, reducing  

from , until we find a bucketing with which most buckets are occupied/being 

generated into a large proportion of the time. We find 4 to be a nice balance - in line 

with the number of choices one might be provided on a basic drum machine.

Finally, every (pitch , velocity bucket ) combination is assigned a unique token 

corresponding to that pair. With  and 9 pitch classes, we thus have 36 ( ) 

unique tokens, corresponding to every possible combination of ( , ). We 

experimented with representing the velocity and pitch as separate tokens but found 

the results (subjective listening and quantitative evaluation of our model) to be better 

with the combined representation.

Equation 6 concludes the velocity representation of our sequences.

seq =  for n in [1..N ][(m , v , t ),1 1 1 (m , v , t ),2 2 2 ..., (m , v , t )N N N ]

m =n mapped pitch of n notet h

vn [0, 127] B

seq =  for n in [1..N ][(m , b , t ),1 1 1 (m , b , t ),2 2 2 ..., (m , b , t )N N N ]

b =n bucketed velocity of n notet h b  in [1..B]n

B

b =n {1,
2,

if v ∈ (0, 64]n

if v ∈ (64, 127]n

B

b =n {
1,

2,
3,

if v ∈ (0, 42.33]n

if v ∈ (42.33, 84.67]n

if v ∈ (84.67, 127]n

B B

B = 10

mn bn

B = 4 9 × 4
mn bn
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Time Tokenisation

The time ordering of equation 6 can be deduced from its time dimension (  values). 

We want to reduce the number of dimensions at each element from two to one. To do 

this, time tokens are inserted into the sequence to separate the pitch-velocity ( ) 

tokens by tokens representing the time between them.

The transformation of the sequence in equation 6 is as follows:

 time tokens representing difference in time between notes b and a

To create the time tokens to fill the sequence in equation 7, the difference in time (in 

seconds) is computed between neighbouring pitches and converted to ticks. Ticks are 

a unit of time in MIDI representation that reflect the maximum resolution at which the 

MIDI recording software can detect notes. In our dataset the number of ticks per 

quarter is 480. If the difference in time between two MIDI events is smaller than the 

length of a tick, they are recorded as occurring simultaneously. Representing silence 

using ticks is inspired by the successful application in a musical context using the 

Transformer-XL framework by Donahue et al. in [8].

The number of unique ticks between two  events is kept to a minimum, 

representing all silences in the dataset with 5 unique tick time tokens, as shown in 

Table 4.

Table 4 - Time Tick Tokens

seq =  for n in [1..N ][(pv , t ),1 1 (pv , t ),2 2 ..., (pv , t )N N ]

pv =n unique (pitch, velocity) token for n notet h

tn

pvn

seq = [pv ,1 < t − t >,2 1 pv ,2 < t − t >,3 2 ..., < t − t >,N N−1 pvN ]
 for n in [1..N ]

< t −b t >a =

pvn

Time Token Number of Ticks

1 1

2 10

3 100
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Silences are filled with as few individual tick tokens as possible for the duration. For 

example a silence of 345 ticks is represented by  (3  one 

hundred tokens, 4  ten tokens and 5  one tokens). Similarly, a silence of 5003 ticks 

would be represented by . These time token sequences fill the 

 gaps in equation 7. Pitches that are hit in unison are represented by 

neighbouring  tokens without any time tokens in between.

All of our sequences are converted to this one-dimensional format and joined together 

into one long stream. Each sequence is divided in the stream by a special dividing 

token. This joining is relatively infrequent and does not skew the models learning of 

tokens we care about. This approach is also used to separate documents in the paper 

presented with the Transformer-XL model [29] and to separate musical sequences in 

[8].

Methodology

Transformer-XL Model

A Transformer-XL model is trained on our data stream. This model augments the 

original Transformer with a recurrence mechanism that enables it to use information 

beyond its training segment, removing the memory bottleneck in learning long-term 

dependencies; [8] demonstrates this in a musical context.

For a corpus of tokens , at a given step in the sequence, the Transformer-

XL model learns the joint probability , auto-regressively expressed in equation 8.

As with the original Transformer model [2], the conditional probability is learnt by 

training an encoder on a context, , to a fixed hidden state which is subsequently 

multiplied by the existing token embeddings, returning logits. A softmax is applied to 

the logits to give a categorical probability distribution for the next token [29].

The XL model is specifically interested in encoding arbitrarily long contexts (input 

sequences of arbitrary lengths). Encoding had previously been achieved by breaking 

the input sequence into training segments and training the model individually on each. 

In which case, the largest possible dependency length is dictated by the segment size 

4 1000

5 10000

[3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1] ×

× ×

[4, 4, 4, 4, 4, 1, 1, 1]

< t −b t >a

pv

x = (x , ...,x )1 T

P (x)

P (x) = P (x ∣∏
t t x )<t

x<t
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and inevitably (more often than not) contexts are split up (in the event of a segment 

boundary falling in the middle of one of our concatenated input sequences). To address 

this limitation, the XL model implements a segment-level recurrence mechanism, 

where the hidden state learnt for each segment is cached and made available to the 

next segment. Applying this mechanism to every two segments creates a recurrence 

that effectively spans the length of all segments. This is noted as contributing to a 

huge increase in dependency length over the original Transformer or previous RNN 

models (450% and 80% respectively) [29].

Sampling and Generation

Our trained model is used for two generative tasks; (1) the generation of new 

sequences, and (2) the continuation of existing ones. Our approach is adapted from [8].

Task 1: Rhythm Generation

The generation task is to create new sequences completely from scratch. The model is 

primed with the special token used to delimit sub-sequences in our long one-

dimensional training sequence (from Data Representation). As mentioned in the 

previous section, the current token (in this case the special delimiter) is encoded and 

multiplied by the existing token embeddings, to produce a distribution over the next 

token. We sample from this distribution to select our next token, feed this back into the 

model to update the memory/add to context and repeat until a given generation length. 

This sampling is controlled with the sampling temperature and top K parameters [30].

The output of the generation is a sequence identical (in format) to that introduced in 

equation 7. The sequence is then de-tokenised to MIDI, with the velocity of each 

element randomly generated from within the bucket corresponding to its  value.

Task 2: Rhythm Continuation

Generation by continuation functions exactly the same as the generation introduced in 

the previous sub-section, except that before generating, the model is primed with an 

existing input sequence (i.e. an existing input sequence is passed to the model), 

updating the internal memory before any sampling is done.

Sampling temperature and top K are also parameters of Continuation. Another 

parameter specific to continuation is the prime length. This specifies how many tokens 

from the priming sequence are passed to the model before asking it to generate. A 

higher value for prime length results in a much more stable output, truer to the 

pv
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original form; however, this comes at the cost of improvisation or exciting/interesting 

results.

Evaluation
The hyperparameters used for training our final model were selected by subjectively 

evaluating the MIDI output of the model, for multiple parameter combinations in a 

sensible search space. The number of training epochs were selected by stopping at the 

point beyond which no further decrease in perplexity on the valid set is observed. 

However, perplexity does not always correlate with human perceptions of musicality. 

Therefore, we provide here the results of structured, blind listening tests, plus some 

subjective evaluation of the output by the authors. Naturally, the output of this process 

is best evaluated aurally; for this reason, we encourage the reader to spend some time 

listening to the samples provided1. 

Listening Tests

Listening Material

500 individual rhythms of varying length and genre are generated for evaluation in a 

blind-listening test. All generations are created via the generation (top K=25, 

temperature=0.95) or continuation (top K=25, temperature=0.92) methods. 

Sequences of 3000 tokens are generated and the first 8 bars extracted manually. This 

manipulation, along with the alignment of the first beat to coincide with time=0, is the 

only human interference with the samples. Given the imbalance in genre in the 

dataset, and the finite sampling for our test, some of the less common genres are not 

present. Table 5 displays the genres included in the test and their relative proportions. 

Of course, this is only relevant to those samples created by the generation method.

Table 5 - Genre Distribution of Samples in Listening Test

Experiment Setup

The experiment is carried out on the Amazon Mechanical Turk platform, on which 136 

unique listeners - selected at random with no prerequisite demographic or qualities - 

are asked to listen to two 8-bar samples, one from the generated dataset of 500 and 

Genre Rock Reggae Latin Afrobea

t

Soul Punk Dance HipHop Funk

Prop 0.32 0.08 0.14 0.11 0.05 0.06 0.05 0.15 0.05
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one from the original Groove MIDI dataset. Listeners are aware that one of the two 

samples is generated by a machine, and one by a human. They are asked to select 

which one they believe is generated by a human, they also have the option of 

answering with "not sure". Inspired by [8], and to ensure that we only count responses 

where the worker genuinely listened to both samples, we include 4 instances in which 

randomly generated noise samples replace our machine-generated ones. Responses 

from listeners who fail to identify the correct sample in any one of these 4 instances 

are removed from the test. In total, 640 individual comparisons (human or machine) 

are carried out. After removing the responses of listeners who failed the random noise 

test, 548 remain for analysis.

Results

Figures 1 and 2 show the accuracy of the participants’ ability to identify which of the 

pairs of samples they are presented is human-generated. An accuracy of 60% indicates 

that 60% of the time, our model is not able to convince a human listener that it itself is 

human; hence a lower value in these charts reflects a more performant model. These 

two charts are split across the metadata we have for the samples, genre, and 

generation type. It is important to note that there is no ground truth genre annotation 

for the samples generated by the generation method (i.e. completely sampled from the 

model) and as such, our sample size for experiments tagged with this information is 

roughly halved - hence the larger error.

Figure 1 - Overall Accuracy
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We have included in Figure 1 the results of a similar experiment presented in Learning 

to Groove from Gillick et al. [9]. In their experiment, the generations are put to 

listeners in a blind test, in an effort to determine their model’s ability to pass as 

human. Though none of the three methods presented by Gillick match exactly our 

work, we believe that the tasks are sufficiently similar to merit comparison.

In total, 77 out of 548 tests (14.1%) result in the listener not being able to identify 

which of the two samples is human (answering with "not sure"), these responses are 

therefore not counted in the numerator of the accuracy calculations presented in 

Figures 1 and 2. Figure 3 shows this proportion over all tests and for each of our 

generation methods separately.

Subjective Evaluation by the Authors

Figure 2 - Genre Accuracy

Figure 3 - Sureness
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Generations

Our generations from scratch can be roughly categorised into three groups: good, bad, 

and ugly. These classes are loosely defined and, as such, it is difficult to say exactly 

what proportion of our generated samples fall into each category, and indeed varies 

over the length of the output. A majority of our outputs do however exhibit some 

identifiable musicality, and most eventually converge to a recognisable style and 

consistency. We encourage the reader to exam the sounds linked to in the footnotes.

The Good

Defined as such because, by our own judgement, they are musically decent, consistent 

(they keep and remain in time), occasionally exciting, maintain long-term structure 

(over 8 or 16-bar loops) and could reasonably pass as human generated. However, 

there isn't much variation in style across the samples. Largely, they tend to be 

variations around rock, soul or dance beats, with more complex rhythmic patterns, 

such as those found in latin or afro-cuban, not appearing to any measurable degree. 

This last point is unsurprising given the distribution across genres in our dataset (see 

Table 2).

Three examples are provided2

The Bad

These generations are clearly not created by skilled drummers. They exhibit at least 

(and in many cases, more than) one of the following characteristics: poor timing, 

monotonous velocity, incorrectly placed accents, machine-like repetition, or little (if 

any) appreciable musicality.

Three examples are provided3

The Ugly

These samples are interesting and make up a non-negligible part of our generations. 

They are deemed to exhibit some degree of musicality, but a trained ear could identify 

that they were not played by skilled drummers. For example, they keep bad time, or 

the periodicity of the sub-rhythms does not match up with what is 

customary/expected/consonant. It is possible that these samples could fool a listener 

with no interest/experience in music into believing it was made by a human, or feasibly 

that it was played by an inexperienced drummer - an important point to bear in mind, 

given that the listeners in our listening tests did not necessarily have any experience in 

music.
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Three examples are provided4

Continuations

The continuations are generally good; they play in (and keep) good time; accents are in 

the right places; they exhibit interesting and varied syncopations; and, in most 

examples/genres, there is an identifiable, long-term structure with both repetition and 

one-off surprises (over time intervals of 8 bars+). There are very few examples of 

continuation where the model loses some aspect of rhythmic musicality that would 

give it away as being machine made (for example losing time, missing a beat, unusual 

velocity progressions). The reason for this is evidently the models ability to mimic the 

input pattern in the long-term. The continuations, though musically impressive, do not 

differ much (if at all) from the samples which they succeed. 

Three examples of continuation are provided in the genres, afrobeat, dance, and latin.5

Discussion
The representation of the Groove MIDI dataset is integral to the work of this paper. 

Combining velocity and pitch is an unintuitive choice that produces subjectively better 

results. This may be due to the increase in size of the model vocabulary in multiplying 

the number of tokens for each pitch by the number of velocity buckets, thus reducing 

the chances of incorrectly sampling. The time representation is also unique and unseen 

in other works. Using ticks rather than quantized time steps does not inhibit the 

models ability to keep time, paving the way for less-quantized approaches in future. On 

the point of quantization, it is obvious by listening, that the 1/16th note quantization in 

some training examples does remove some of the rhythmic essence. This is most 

obvious in drum rolls, and a similar observation is made in [9].

The generations are varied in quality and limited in genre. It has also not been proven 

that the model adds any significant layer of improvisation to the existing samples in 

the raw dataset. We argue that this is not a negative point, and that reproducing input 

demonstrates an ability to learn in the long-term, something identified as difficult or 

expensive in previous algorithms. The genre distribution of our output samples reflects 

the distribution in our raw dataset. This is expected albeit slightly disappointing (as 

some of the more rhythmically interesting genres are less common).  A fine-tuning 

technique, such as that proposed in [8], could aid in controlling these distributions.

The selection of model and generation parameters have a huge impact on the quality 

and character of results. A lower memory length for the generations from scratch 
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helps to avoid the model getting stuck in musically undesirable loops. This is 

presumably because the model doesn't feed back into itself as much as with a longer 

memory length and hence doesn't internalize its bad learnings to the same extent. Top 

K is tuned relative to the number of tokens and dictates the extent of improvisation, or 

deviations from identifiable reproductions of the input data. Sampling temperature 

also balances this trade-off and is useful in defining the models ability to find its way 

out of undesirable loops. As noted in [8], lowering the sampling temperature prevents 

the generations from getting stuck in loops, both desirable and undesirable. A high 

enough prime length in continuation ensures a reliable reproduction of the input, but 

this comes at the cost of less experimentation. The work presented here is a prototype 

of methodology rather than a finished usable musical interface; however, one could 

feasibly see the value in top K and sampling temperature functioning as controllable 

parameters of an instrument built using these processes. 

Given the statistical uncertainty of the listening test results presented in Figures 1-3, it 

is impossible to conclude that the model performs better on a specific genre or task. 

However, we can conclude that our model is consistently able to convince listeners 

that it is human and that this has not necessarily been completed on all generation 

tasks on this dataset to date. Listening to the generated samples corroborates these 

results, in both the short and long term; an achievement that we present for the first 

time in this domain. 

It would be remiss not to acknowledge that these types of tests have been criticised for 

their ability to effectively evaluate generative systems [31]. We present these tests and 

results, not as the ultimate appraisal of our models creative output, but instead as the 

bare minimum required to validate our proposed approach - that its output, in a 

significant proportion of cases, cannot be distinguished from a human attempting the 

same task. Future experiments would be sensible to consider feature-based evaluation, 

such as in [32], where musically-meaningful and problem-relevant aspects of the 

output are aggregated and compared analytically.

Finally, we reflect on the extent to which the work presented here contributes to the 

field of new musical interface design. Although not sufficiently developed to be 

considered a workable musical interface in itself, it should serve as proof that this 

methodology has the potential to contribute to tools that aid in the creative musical 

process. One could imagine, for example, the use of a pre-trained model such as our 

own in an interface that provides the user with bespoke and musically interesting 



International Conference on New Interfaces for Musical Expression Transformer Neural Networks for Automated Rhythm Generation

18

generations across various styles and/or context-relevant continuations of user created 

input, whether through live midi recording or the use of music production software.

Conclusions and Future Work
We hope to have demonstrated the value in applying Transformer neural networks to 

the task of automated rhythm generation for the purposes of appreciable musical 

output.  We present generations of musical quality comparable to human drummers, 

both in musical character and in how they are perceived over long timescales. And in 

doing so, hope to have offered an exciting basis for the future development of 

percussion specific automated generative tools.
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