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Abstract

Recent applications of Transformer neural networks in the field of music have
demonstrated their ability to effectively capture and emulate long-term dependencies
characteristic of human notions of musicality and creative merit. We propose a novel
approach to automated symbolic rhythm generation, where a Transformer-XL model
trained on the Magenta Groove MIDI Dataset is used for the tasks of sequence
generation and continuation. Hundreds of generations are evaluated using blind-
listening tests to determine the extent to which the aspects of rhythm we understand
to be valuable are learnt and reproduced. Our model is able to achieve a standard of
rhythmic production comparable to human playing across arbitrarily long time periods
and multiple playing styles.
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Introduction

The focus of this work is to examine how the application of current state-of-the-art
machine learning methods in sequential data modelling can contribute to the creation
of tools and processes for the automated generation, continuation and composition of
musical rhythm.

Traditionally, the task of modelling musical sequences for the purposes of algorithmic
composition has been difficult owing to its complex long-term structure and the
computational requirements of capturing that. A recent addition to the family of
models that handle sequential data is the Transformer neural network. The
Transformer architecture uses attention mechanisms to process and learn long-term

relationships in its input without the sequential recurrent processing of data that made
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previous methods so prohibitively resource-intensive [1][2]. This ability to learn
effectively in the long-term has seen Transformers achieve state-of-the-art success in
various natural language tasks [3][4][5] and, more recently, music, where they have
been successfully used for raw audio generation [6] and symbolic composition [7][8].
Building on the availability of well-annotated symbolic drumming datasets such as the
Magenta Groove MIDI dataset [9] and a growing body of literature examining the
application of Transformers in music, this work hopes to contribute to the field of
computational creativity with new approaches to rhythmic modelling and generation.

Our objective is to train a model with the ability to (1) generate new rhythms from
scratch, and (2) continue an unseen user-defined input rhythm. Success is evaluated
using a series of empirical and subjective tests to determine the extent to which we
can effectively model consonant, interesting and musically valuable rhythm as we
understand it.

Related Work

The task of algorithmic composition has existed for centuries, with increasing levels of
success achieved in the last 50 years or so with the application of computational
methods [10][11][12]. Early computational efforts examine the application of
Recurrent Neural Networks (RNNs) to the task [11] [13] [14] [15], though their
inability to learn effectively in the long-term limits their success in modelling more

complex musical structures [16]. A variation on the traditional RNN, long-term short-
memory networks (LSTMs), whose additional special units permit to maintain
information in memory for longer time periods, address some of these issues. Many
works using LSTM networks have produced impressive results [17] [18] [19] [20] [21].
Specifically in the rhythm domain, [22] [23] both produce interesting output on limited

data. Most relevant to our task is Learning to Groove with Inverse Sequence
Transformations by Gillick et al. [9]. In this work, a large symbolic dataset of
professional drumming is introduced, the Groove MIDI dataset [9], to which an LSTM
model of expressive performance is learnt and used for musical creativity tasks.
However, LSTMs cannot yet be considered perfect in how they model temporal
dependency in that there is still an emphasis on proximity in the input sequence. One
drawback of the Learning to Groove approach for example is that the training and
output is limited to short timescales (2 bars).

A more recent method of achieving long-term memory is the use of attention-based
models, early descriptions of this approach can be found in [1] [24] [25]. Attention is at
the heart of the Transformer neural network [2], whose application to symbolic music
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generation tasks has yielded impressive results, with [7] first demonstrating their
effectiveness in generating music over long time-scales (60 seconds), and [8] doing so
in a multi-instrument setting. Transformer-based architectures require musical events
to be inputed/predicted as discreet categorical classes (i.e. musical events need to be
tokenized). Hence, musical event representation is critical for generative tasks
employing Transformers. One approach is to represent MIDI events sequentially in
absolute timing [7]. Alternatively, musical events can be represented in relative
timing/duration, as presented in [26][27][28].

While transformers show potential in generating long-term musical structures, they
generally struggle to generate content that show expert-level rhythmic and harmonic
consistency. [26] [27] [28] show that by incorporating more metrically and
harmonically aware representations, these shortcomings can be improved, attesting to
the fact that the performance of Transformer architectures is not only dependant on
the architectural specifications, but rather also on the representation of the symbolic

musical events.

Data and Representation

Here we introduce the dataset used in this work and describe the preprocessing
transformations applied to it.

Dataset

The Magenta Groove MIDI Dataset (GMD) comprises 13.6 hours (22,000 measures) of
human-performed, tempo-aligned, expressive drumming, played mostly by professional
drummers. The data is provided in train, test and validation splits which we use here
for training and evaluation correspondingly (see Table 1).

Table 1 - Train, Test and Validation Splits of GMD

Split Beats Fills Measures Hits Duration
(minutes)

Train 378 519 17752 357618 648.5

Validation 48 76 2269 44044 82.2

Test 77 52 2193 43832 84.3

Total 503 647 22214 445494 815.0
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All samples are matched with associated metadata including anonymised drummer
identifiers, musical style annotations and tempo. Almost all samples are played in 4/4
timing, though there are some exceptions. Table 2 presents the distribution of playing
style - or genre - across the dataset.

Table 2 - Genre Distribution of GMD

Genre Count Proportion
rock 341 0.297
funk 160 0.139
jazz 101 0.088
latin 97 0.084
hip hop 95 0.083
soul 63 0.055
afrocuban 60 0.052
punk 58 0.050
new orleans 53 0.046
country 29 0.025
pop 27 0.023
reggae 20 0.017
gospel 19 0.017
afrobeat 13 0.011
dance 7 0.006
blues 4 0.003

highlife 2 0.002



International Conference on New Interfaces for Musical Expression Transformer Neural Networks for Automated Rhythm Generation

middle eastern 1 0.001

Total 1150 1.00

Sequence Tokenisation

We transform our raw data to a continuous one-dimensional stream of tokens, unique
identifiers with a one-to-one mapping to pitch, velocity or time.

The original MIDI representation can be thought of as a sequence of triples, each
element providing a value for pitch, velocity and start time, see equation 1 (since we
are dealing with onset events only, duration is irrelevant and end time is not
considered). It is important to note that all sequences are quantized to 1/16hs before
training, as in [9].

MIDI = [(pl,vl,tl), (p2,v2,t2), ..., (pN,’UN,tN)] for nin [1..N]

N = number of notes in sequence
Ppr, = pitch of n*" note

v, = velocity of n'* note

t, = start time of n** note

Three transformations are applied to the MIDI representation in equation 1: pitch
mapping, velocity bucketing and time tokenisation, detailed in equations 2 - 7.

Pitch Mapping

The Roland TD-11 drumkit, which the dataset was collected on, records 22 distinct
pitches, each corresponding to a different percussion instrument or sound. Many of
these pitches are very sparse in the dataset and can be naturally grouped for lowering
the dimensionality of the input data.

Table 3 - Pitch Mappings of Our Dataset

Pitch Roland Mapping General MIDI Our Mapping
Mapping
36 Kick Bass Drum 1 Bass (35)

38 Snare (Head) Acoustic Snare Snare (38)
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40

37

48

50

45

47

43

58

46

26

42

22

44

49

55

57

52

51

59

53

Snare (Rim)

Snare X-Stick

Tom 1

Tom 1 (Rim)

Tom 2

Tom 2 (Rim)

Tom 3 (Head)

Tom 3 (Rim)

HH Open (Bow)

HH Open (Edge)

HH Closed (Bow)

HH Closed (Edge)

HH Pedal

Crash 1 (Bow)

Crash 1 (Edge)

Crash 2 (Bow)

Crash 2 (Edge)

Ride (Bow)

Ride (Edge)

Ride (Bell)

Transformer Neural Networks for Automated Rhythm Generation

Electric Snare

Side Stick

Hi-Mid Tom

High Tom

Low Tom

Low-Mid Tom

High Floor Tom

Vibraslap

Open Hi-Hat

N/A

Closed Hi-Hat

N/A

Pedal Hi-Hat

Crash Cymbal 1

Splash Cymbal

Crash Cymbal 2

Chinese Cymbal

Ride Cymbal 1

Ride Cymbal 2

Ride Bell

Snare (38)

Snare (38)

High Tom (50)

High Tom (50)

Low-Mid Tom (48)

Low-Mid Tom (48)

High Floor Tom (45)

High Floor Tom (45)

Open Hi-Hat (46)

Open Hi-Hat (46)

Closed Hi-Hat (42)

Closed Hi-Hat (42)

Closed Hi-Hat (42)

Crash Cymbal (49)

Crash Cymbal (49)

Crash Cymbal (49)

Crash Cymbal (49)

Ride Cymbal (51)

Ride Cymbal (51)

Ride Cymbal (51)

We adopt a grouping of pitches almost identical to that used by Gillick et al. in [9] (see

Table 3). Applying this to the entire dataset reduces it to 9 unique pitches in total: kick

drum, snare drum, closed hi-hat, open hi-hat, low tom, mid tom, high tom, crash
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cymbal and ride cymbal. After applying the mapping, each sequence is described by
equation 2.

seq = [(’ml,vl,tl), (ma,v2,t2), ..., (mN,'UN,tN)] fornin [1..N]

m,, = mapped pitch of n'* note

Velocity Bucketing

Velocity values, vy, lie in the range [0,127]. These are bucketed to fall within B equally
spaced bins.

seq — [(ml,bl,tl), (m2,bz,t2), ceey (mN,bN,tN)] for nin [1N]

b, = bucketed velocity of n'* note b, in [1..B]

for B = 2:

b — 1, ifw, € (0,64]
" )2, ifv, € (64,127
for B = 3:

1, ifw, € (0,42.33]
bn = < 2, ifv, € (42.33,84.67]
3, ifuv, € (84.67,127]
B is chosen by subjective evaluation of the model output at various values, reducing B
from B = 10, until we find a bucketing with which most buckets are occupied/being
generated into a large proportion of the time. We find 4 to be a nice balance - in line
with the number of choices one might be provided on a basic drum machine.

Finally, every (pitch m,,, velocity bucket b,,) combination is assigned a unique token
corresponding to that pair. With B = 4 and 9 pitch classes, we thus have 36 (9 x 4)
unique tokens, corresponding to every possible combination of (m,,, b,). We
experimented with representing the velocity and pitch as separate tokens but found
the results (subjective listening and quantitative evaluation of our model) to be better
with the combined representation.

Equation 6 concludes the velocity representation of our sequences.
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seq = [(pvl,tl), (pv2,t2), ..oy (va,tN)] for nin [1..N]

pv, = unique (pitch, velocity) token for n'* note

Time Tokenisation

The time ordering of equation 6 can be deduced from its time dimension (¢, values).
We want to reduce the number of dimensions at each element from two to one. To do
this, time tokens are inserted into the sequence to separate the pitch-velocity (pv,)
tokens by tokens representing the time between them.

The transformation of the sequence in equation 6 is as follows:

seq = [pvl, < t2 — tl >, pvy, < t3 — t2 >, < tN _tN—l >, va]
for nin [1..N]

< t, — t, >= time tokens representing difference in time between notes b and a

To create the time tokens to fill the sequence in equation 7, the difference in time (in
seconds) is computed between neighbouring pitches and converted to ticks. Ticks are
a unit of time in MIDI representation that reflect the maximum resolution at which the
MIDI recording software can detect notes. In our dataset the number of ticks per
quarter is 480. If the difference in time between two MIDI events is smaller than the
length of a tick, they are recorded as occurring simultaneously. Representing silence
using ticks is inspired by the successful application in a musical context using the
Transformer-XL framework by Donahue et al. in [8].

The number of unique ticks between two pv, events is kept to a minimum,
representing all silences in the dataset with 5 unique tick time tokens, as shown in
Table 4.

Table 4 - Time Tick Tokens

Time Token Number of Ticks
1 1
2 10

3 100
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4 1000

5 10000

Silences are filled with as few individual tick tokens as possible for the duration. For
example a silence of 345 ticks is represented by [3,3,3,2,2,2,2,1,1,1,1,1] (3 x one
hundred tokens, 4 x ten tokens and 5 x one tokens). Similarly, a silence of 5003 ticks
would be represented by [4,4,4,4,4,1,1,1]. These time token sequences fill the

< t, — t, > gaps in equation 7. Pitches that are hit in unison are represented by
neighbouring pv tokens without any time tokens in between.

All of our sequences are converted to this one-dimensional format and joined together
into one long stream. Each sequence is divided in the stream by a special dividing
token. This joining is relatively infrequent and does not skew the models learning of
tokens we care about. This approach is also used to separate documents in the paper
presented with the Transformer-XL model [29] and to separate musical sequences in
[8].

Methodology

Transformer-XL Model

A Transformer-XL model is trained on our data stream. This model augments the
original Transformer with a recurrence mechanism that enables it to use information
beyond its training segment, removing the memory bottleneck in learning long-term
dependencies; [8] demonstrates this in a musical context.

For a corpus of tokens x = (z1,...,zr), at a given step in the sequence, the Transformer-
XL model learns the joint probability P(x), auto-regressively expressed in equation 8.

P(x) =[I, P(z; | z<)
As with the original Transformer model [2], the conditional probability is learnt by
training an encoder on a context, x_;, to a fixed hidden state which is subsequently
multiplied by the existing token embeddings, returning logits. A softmax is applied to
the logits to give a categorical probability distribution for the next token [29].

The XL model is specifically interested in encoding arbitrarily long contexts (input
sequences of arbitrary lengths). Encoding had previously been achieved by breaking
the input sequence into training segments and training the model individually on each.
In which case, the largest possible dependency length is dictated by the segment size

10
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and inevitably (more often than not) contexts are split up (in the event of a segment
boundary falling in the middle of one of our concatenated input sequences). To address
this limitation, the XL model implements a segment-level recurrence mechanism,
where the hidden state learnt for each segment is cached and made available to the
next segment. Applying this mechanism to every two segments creates a recurrence
that effectively spans the length of all segments. This is noted as contributing to a
huge increase in dependency length over the original Transformer or previous RNN
models (450% and 80% respectively) [29].

Sampling and Generation

Our trained model is used for two generative tasks; (1) the generation of new
sequences, and (2) the continuation of existing ones. Our approach is adapted from [8].

Task 1: Rhythm Generation

The generation task is to create new sequences completely from scratch. The model is
primed with the special token used to delimit sub-sequences in our long one-
dimensional training sequence (from Data Representation). As mentioned in the
previous section, the current token (in this case the special delimiter) is encoded and
multiplied by the existing token embeddings, to produce a distribution over the next
token. We sample from this distribution to select our next token, feed this back into the
model to update the memory/add to context and repeat until a given generation length.
This sampling is controlled with the sampling temperature and top K parameters [30].

The output of the generation is a sequence identical (in format) to that introduced in
equation 7. The sequence is then de-tokenised to MIDI, with the velocity of each
element randomly generated from within the bucket corresponding to its pv value.

Task 2: Rhythm Continuation

Generation by continuation functions exactly the same as the generation introduced in
the previous sub-section, except that before generating, the model is primed with an
existing input sequence (i.e. an existing input sequence is passed to the model),
updating the internal memory before any sampling is done.

Sampling temperature and top K are also parameters of Continuation. Another
parameter specific to continuation is the prime length. This specifies how many tokens
from the priming sequence are passed to the model before asking it to generate. A
higher value for prime length results in a much more stable output, truer to the

1
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original form; however, this comes at the cost of improvisation or exciting/interesting

results.

Evaluation

The hyperparameters used for training our final model were selected by subjectively
evaluating the MIDI output of the model, for multiple parameter combinations in a
sensible search space. The number of training epochs were selected by stopping at the
point beyond which no further decrease in perplexity on the valid set is observed.
However, perplexity does not always correlate with human perceptions of musicality.
Therefore, we provide here the results of structured, blind listening tests, plus some
subjective evaluation of the output by the authors. Naturally, the output of this process
is best evaluated aurally; for this reason, we encourage the reader to spend some time

listening to the samples providedy.
Listening Tests

Listening Material

500 individual rhythms of varying length and genre are generated for evaluation in a
blind-listening test. All generations are created via the generation (top K=25,
temperature=0.95) or continuation (top K=25, temperature=0.92) methods.
Sequences of 3000 tokens are generated and the first 8 bars extracted manually. This
manipulation, along with the alignment of the first beat to coincide with time=0, is the
only human interference with the samples. Given the imbalance in genre in the
dataset, and the finite sampling for our test, some of the less common genres are not
present. Table 5 displays the genres included in the test and their relative proportions.
Of course, this is only relevant to those samples created by the generation method.

Table 5 - Genre Distribution of Samples in Listening Test

Genre Rock Reggae Latin Afrobea Soul Punk Dance HipHop Funk
t

Prop 0.32 0.08 0.14 0.11 0.05 0.06 0.05 0.15 0.05

Experiment Setup

The experiment is carried out on the Amazon Mechanical Turk platform, on which 136
unique listeners - selected at random with no prerequisite demographic or qualities -
are asked to listen to two 8-bar samples, one from the generated dataset of 500 and
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one from the original Groove MIDI dataset. Listeners are aware that one of the two
samples is generated by a machine, and one by a human. They are asked to select
which one they believe is generated by a human, they also have the option of
answering with "not sure". Inspired by [8], and to ensure that we only count responses
where the worker genuinely listened to both samples, we include 4 instances in which
randomly generated noise samples replace our machine-generated ones. Responses
from listeners who fail to identify the correct sample in any one of these 4 instances
are removed from the test. In total, 640 individual comparisons (human or machine)
are carried out. After removing the responses of listeners who failed the random noise
test, 548 remain for analysis.

Results

Figures 1 and 2 show the accuracy of the participants’ ability to identify which of the
pairs of samples they are presented is human-generated. An accuracy of 60% indicates
that 60% of the time, our model is not able to convince a human listener that it itself is
human; hence a lower value in these charts reflects a more performant model. These
two charts are split across the metadata we have for the samples, genre, and
generation type. It is important to note that there is no ground truth genre annotation
for the samples generated by the generation method (i.e. completely sampled from the
model) and as such, our sample size for experiments tagged with this information is
roughly halved - hence the larger error.

i Learning to Groove Benchmark =7 ]
Infilling [Gillick] | Our Results |__|
Tap2Drum [Gillick] | |__|
‘g Generation |__|
=
=
% Humanized [Gillick] —
Overall |__|
Continuation |——|
T T T T T T
0.0 01 02 03 04 05 06 07

Accuracy in Identifying Human Generated Samples

Figure 1 - Overall Accuracy
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Punk I |

Hiphop }—’—{

Dance I |

Reggas o I I

HArobeat } | |

Latin - }—’—{

Funk I | |

Rock }—’—{
Soul J
[ 1
T T T T T T T T
00 01 02 03 0.4 05 0.6 0.7 08
Accuracy in Identifying Human Generated Samples

Genre

Figure 2 - Genre Accuracy

We have included in Figure 1 the results of a similar experiment presented in Learning
to Groove from Gillick et al. [9]. In their experiment, the generations are put to
listeners in a blind test, in an effort to determine their model’s ability to pass as
human. Though none of the three methods presented by Gillick match exactly our
work, we believe that the tasks are sufficiently similar to merit comparison.

In total, 77 out of 548 tests (14.1%) result in the listener not being able to identify
which of the two samples is human (answering with "not sure"), these responses are
therefore not counted in the numerator of the accuracy calculations presented in
Figures 1 and 2. Figure 3 shows this proportion over all tests and for each of our
generation methods separately.

Continuation - I——|
B
£ Overall =
2
Generation |——|
0.0 D-.Il 0. |2 D.IEI D.I4 D.IS D.IE 0.7

Proportion of "Not Sure” Responses

Figure 3 - Sureness

Subjective Evaluation by the Authors
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Generations

Our generations from scratch can be roughly categorised into three groups: good, bad,
and ugly. These classes are loosely defined and, as such, it is difficult to say exactly
what proportion of our generated samples fall into each category, and indeed varies
over the length of the output. A majority of our outputs do however exhibit some
identifiable musicality, and most eventually converge to a recognisable style and
consistency. We encourage the reader to exam the sounds linked to in the footnotes.

The Good

Defined as such because, by our own judgement, they are musically decent, consistent
(they keep and remain in time), occasionally exciting, maintain long-term structure
(over 8 or 16-bar loops) and could reasonably pass as human generated. However,
there isn't much variation in style across the samples. Largely, they tend to be
variations around rock, soul or dance beats, with more complex rhythmic patterns,
such as those found in latin or afro-cuban, not appearing to any measurable degree.
This last point is unsurprising given the distribution across genres in our dataset (see
Table 2).

Three examples are providedZ

The Bad

These generations are clearly not created by skilled drummers. They exhibit at least
(and in many cases, more than) one of the following characteristics: poor timing,
monotonous velocity, incorrectly placed accents, machine-like repetition, or little (if
any) appreciable musicality.

Three examples are provided3

TheUgly

These samples are interesting and make up a non-negligible part of our generations.
They are deemed to exhibit some degree of musicality, but a trained ear could identify
that they were not played by skilled drummers. For example, they keep bad time, or
the periodicity of the sub-rhythms does not match up with what is
customary/expected/consonant. It is possible that these samples could fool a listener
with no interest/experience in music into believing it was made by a human, or feasibly
that it was played by an inexperienced drummer - an important point to bear in mind,
given that the listeners in our listening tests did not necessarily have any experience in
music.
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Three examples are provided2

Continuations

The continuations are generally good; they play in (and keep) good time; accents are in
the right places; they exhibit interesting and varied syncopations; and, in most
examples/genres, there is an identifiable, long-term structure with both repetition and
one-off surprises (over time intervals of 8 bars+). There are very few examples of
continuation where the model loses some aspect of rhythmic musicality that would
give it away as being machine made (for example losing time, missing a beat, unusual
velocity progressions). The reason for this is evidently the models ability to mimic the
input pattern in the long-term. The continuations, though musically impressive, do not
differ much (if at all) from the samples which they succeed.

Three examples of continuation are provided in the genres, afrobeat, dance, and latin.2

Discussion

The representation of the Groove MIDI dataset is integral to the work of this paper.
Combining velocity and pitch is an unintuitive choice that produces subjectively better
results. This may be due to the increase in size of the model vocabulary in multiplying
the number of tokens for each pitch by the number of velocity buckets, thus reducing
the chances of incorrectly sampling. The time representation is also unique and unseen
in other works. Using ticks rather than quantized time steps does not inhibit the
models ability to keep time, paving the way for less-quantized approaches in future. On
the point of quantization, it is obvious by listening, that the 1/16th note quantization in
some training examples does remove some of the rhythmic essence. This is most
obvious in drum rolls, and a similar observation is made in [9].

The generations are varied in quality and limited in genre. It has also not been proven
that the model adds any significant layer of improvisation to the existing samples in
the raw dataset. We argue that this is not a negative point, and that reproducing input
demonstrates an ability to learn in the long-term, something identified as difficult or
expensive in previous algorithms. The genre distribution of our output samples reflects
the distribution in our raw dataset. This is expected albeit slightly disappointing (as
some of the more rhythmically interesting genres are less common). A fine-tuning
technique, such as that proposed in [8], could aid in controlling these distributions.

The selection of model and generation parameters have a huge impact on the quality
and character of results. A lower memory length for the generations from scratch

16
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helps to avoid the model getting stuck in musically undesirable loops. This is
presumably because the model doesn't feed back into itself as much as with a longer
memory length and hence doesn't internalize its bad learnings to the same extent. Top
K is tuned relative to the number of tokens and dictates the extent of improvisation, or
deviations from identifiable reproductions of the input data. Sampling temperature
also balances this trade-off and is useful in defining the models ability to find its way
out of undesirable loops. As noted in [8], lowering the sampling temperature prevents
the generations from getting stuck in loops, both desirable and undesirable. A high
enough prime length in continuation ensures a reliable reproduction of the input, but
this comes at the cost of less experimentation. The work presented here is a prototype
of methodology rather than a finished usable musical interface; however, one could
feasibly see the value in top K and sampling temperature functioning as controllable
parameters of an instrument built using these processes.

Given the statistical uncertainty of the listening test results presented in Figures 1-3, it
is impossible to conclude that the model performs better on a specific genre or task.
However, we can conclude that our model is consistently able to convince listeners
that it is human and that this has not necessarily been completed on all generation
tasks on this dataset to date. Listening to the generated samples corroborates these
results, in both the short and long term; an achievement that we present for the first
time in this domain.

It would be remiss not to acknowledge that these types of tests have been criticised for
their ability to effectively evaluate generative systems [31]. We present these tests and
results, not as the ultimate appraisal of our models creative output, but instead as the
bare minimum required to validate our proposed approach - that its output, in a
significant proportion of cases, cannot be distinguished from a human attempting the
same task. Future experiments would be sensible to consider feature-based evaluation,
such as in [32], where musically-meaningful and problem-relevant aspects of the

output are aggregated and compared analytically.

Finally, we reflect on the extent to which the work presented here contributes to the
field of new musical interface design. Although not sufficiently developed to be
considered a workable musical interface in itself, it should serve as proof that this
methodology has the potential to contribute to tools that aid in the creative musical
process. One could imagine, for example, the use of a pre-trained model such as our
own in an interface that provides the user with bespoke and musically interesting
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generations across various styles and/or context-relevant continuations of user created

input, whether through live midi recording or the use of music production software.

Conclusions and Future Work

We hope to have demonstrated the value in applying Transformer neural networks to
the task of automated rhythm generation for the purposes of appreciable musical
output. We present generations of musical quality comparable to human drummers,
both in musical character and in how they are perceived over long timescales. And in
doing so, hope to have offered an exciting basis for the future development of
percussion specific automated generative tools.

Footnotes

1. Random generations - https://soundcloud.com/user-124263192/sets/random-

generations <

2. Good generations - https://soundcloud.com/user-124263192/sets/good-generation-

examples «

3. Bad generations - https://soundcloud.com/user-124263192/sets/bad-generation-

examples <

4. Ugly generations - https://soundcloud.com/user-124263192/sets/ugly-generation-

examples «

5. Continuations - https://soundcloud.com/user-124263192/sets/continuations «
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