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Abstract

This paper describes Oopsy, which provides a streamlined process for editing digital 

signal processing algorithms for precise and sample accurate sound generation, 

transformation and modulation, and placing them in the context of embedded 

hardware and modular synthesizers. This pipeline gives digital instrument designers 

the development flexibility of established software with the deployment benefits of 

working on hardware. Specifically, algorithm design takes place in the flexible context 

of gen~ in Max, and Oopsy  automatically and fluently translates this and uploads it 

onto the open-ended Daisy embedded hardware. The paper locates this work in the 

context of related software/hardware workflows, and provides detail of its 

contributions in design, implementation, and use.
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Introduction
The increasing power of available microcontrollers and single-board computers allows 

the development of new digital musical instruments (DMIs) that can combine the 

benefits of both general-purpose analogue sensors and controls along with audio-rate 

digital signal processing. Making  microcontrollers such as Arduino and Teensy more 

accessible to musicians and luthiers has had a significant impact in the development of 

new music controllers, instruments, and modular synthesis modules, and the corpus of 

NIME research includes numerous software systems to streamline embedded 

development from more flexible and comfortable desktop environments. It has also 

contributed to a growing community of musicians moving away from desktop/laptop 

computer workspaces toward hardware and modular synthesis, sometimes 

characterized by terms “out of the box” and “DAWless” (i.e., without a digital audio 

workstation). Here, affordable flashable hardware offers an intermediate balance 

between tactility and modal flexibility. 

This article describes a new addition to these domains, focused on streamlining 

algorithm development from the established desktop environment of Max/gen~ to the 
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capabilities of Daisy hardware, a low cost and small format self-contained solution for 

embedded GPIO and digital signal processing which was the result of a successful 

Kickstarter campaign in 2020 [1]. The Oopsy workflow focuses on lightweight design, 

with minimal input required to get an algorithm onto hardware, coupled with a 

targeted firmware generation that optimizes for CPU usage, memory footprint, and 

program size.



International Conference on New Interfaces for Musical Expression A streamlined work�ow from Max/gen~ to modular hardware

4

An example of the Oopsy workflow. Top-left: a gen~ patcher, here implementing a 

frequency modulation algorithm, with several knobs defined by param objects. 

Bottom: a Max patcher hosting the gen~ for testing and development, alongside 

Oopsy for automatic firmware generation and upload to hardware, here 

configured for the Daisy Patch to run at 48kHz sampling rate, 48-sample block 

size, boosted CPU frequency and faster math functions. Top-right: The generated 

firmware running on the hardware, here displaying the waveform as a Lissajous 

plot.
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Gen

The gen~ environment is a sub-domain of patching within Max that specifically focuses 

on optimized sample-by-sample signal processing [2][3]. Over a decade since its 

release, gen~ has grown to be a widely-used tool for many musicians, sound designers, 

 engineers, and educators, and code exported from gen~ has been utilized in many 

software and hardware instruments (research projects and products) as well as 

pedagogical courses and broader research activities [4][5][6][7][8][9][10]. 

Prior to gen~, each Max signal processing (MSP) object was a pre-compiled library of 

code operating on samples in blocks that are dynamically exchanged between objects. 

With gen~ an entire patcher represents a single-sample algorithm that is  converted to 

C++ and then to optimized machine code via JIT compilation, after every edit. This has 

three significant implications. First, algorithms can include feedback processes at the 

level of a single sample frame, an essential ingredient to many audio routines including 

most filter and many oscillator designs. It can be impractical or even impossible to 

create new designs in these areas using block-based primitives. Second, there are 

numerous significant optimizations that the compiler can make when the entire 

algorithm is available, rather than on a per-object basis, leading to better CPU 

performance [11]. Third, and of special relevance to this article, any gen~ object’s 

patcher can be configured to export the C++ code of its algorithm. The gen~ object 

will then re-export C++ code  for every edit made to the patcher. The primary purpose 

of Oopsy is to map C++ code generated by gen~ to the capabilities of Daisy-based 

hardware in optimal and effective ways.

Daisy

The Daisy hardware is based around an embedded system (the “Daisy Seed”) featuring 

an ARM Cortex-M7 STM32H750 MCU processor  with 64MB of SDRAM and 8MB of 

flash memory. It has on-board audio processing via stereo duplex audio IO as well as 

31 configurable GPIO pins, including 12x 16-bit analogue-to-digital converters, 2x 12-

bit digital-to-analogue converters, SD Card interfaces, PWM outputs, and a built-in 

micro-USB port usable for power, firmware flashing, debugging, serial protocols, and 

other purposes. 

The Daisy Seed is compact (51 x 18mm) and affordable ($30 USD at time of writing), 

and well-suited to breadboarding development projects and embedding within DMIs; it 

is also used in several commercially available devices in standard modular synthesizer, 
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guitar pedal stompbox, and desktop formats, some of which expose reprogramming 

and flashing firmware via the Oopsy software.

The MCU processor can run at 480MHz, and is quite capable of complex DSP 

algorithms (see the Performance section below). The AK4556 Codec in the Daisy Seed 

has 24-bit AC-coupled converters, while signal processing internally is 32-bit floating 

point. The Oopsy software supports audio processing at 48kHz or 96kHz sampling 

rates and audio block sizes ranging from 48 down to single sample frames, supporting 

throughput latencies of 1ms down to 0.01ms while still being capable of performing 

complex algorithms (see Table 2). Non-audio analogue pins, for knobs, switches, LEDs, 

control and gate voltages etc., are also sampled at the block rate, and some IO pin 

applications, such as gate outputs on common Daisy hardware formats, operate at the 

same throughput latency as audio. 

ElectroSmith, the creators of the Daisy platform, also distribute four standard 

hardware configurations including for Eurorack modular synthesizer (Daisy Patch), 

stompbox (Daisy Petal), and desktop (Daisy Field). The Daisy Seed normally supports 2-

in x 2-out audio ports, however the Daisy Patch hardware extends this to 4-in x 4-out 

via an additional AK4556 Codec connected to the second SAI port on the Daisy pinout. 

Several other manufacturers are also distributing Eurorack format modules built on 

the Daisy, including Noise Engineering (Versio), Qu-Bit Electronix (Surface and Data 

Bender), ModBap (Per4Mer), Venus Instruments (Veno-Echo). 

Daisy firmware can be developed using Arduino, FAUST, PureData via Heavy, as well 

as Max/gen~ using the Oopsy software detailed in this paper. At the time of writing 

Oopsy has streamlined support for all four ElectroSmith hardware configurations and 

the Noise Engineering Versio, as well as a straightforward method to describe custom 

embedded configurations via JSON files. 

Related Work
There are several established platforms for DMI and digital modular hardware 

comparable to Daisy, including both embedded computers running general-purpose 

operating systems (such as the Raspberry Pi) and high-performance microcontrollers 

(such as the Teensy). There are also several comparable software workflows for 

automatically translating signal processing graphs conventionally used in desktop 

platforms into embedded and modular hardware contexts. Many of the latter aim for 

generality of application, built upon language transpilers with templates for different 

target software and hardware contexts. Faust [12] is a pure functional language for 
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signal circuit definitions that can generate code for multiple languages such as C, Java, 

WebAssembly, and from there to numerous hardware contexts through architecture 

templates. The Heavy hvcc compiler [13] can interpret a subset of features of Pure 

Data Vanilla patches into code generation for platforms including OWL, Bela, 

Javascript WebAudio and many others. Support for developing Daisy hardware through 

both Heavy and Faust are also in development, but at the time of writing less feature-

complete and optimized than Oopsy. Like Heavy, Oopsy builds upon the existing base 

of a widely-used general signal processing environment. In contrast however Oopsy 

does not currently aim for generality: it is a very lightweight system tailored and 

optimized specifically for Daisy hardware platform (though the same approach and 

some of the software could be adapted to other hardware platforms). 

Bela is an open-source embedded platform based on the Beaglebone single-board 

computer designed for ultra-low latency audio and sensor processing [14][15] with 

support for development with Supercollider, PureData, and C++ through  a browser-

based environment. It uses a 1GHz ARM Cortex-A8 processor and 512MB of RAM. An 

interesting feature for instrument designers is on-board speaker amps. Bela provides 

stereo audio input and output, 8 analogue inputs and outputs and 16 digital IOs. A 

much smaller variant, the Bela Mini, eliminates the 8 analogue outputs and speaker 

amps. A significant differentiator for Bela is the low latency, described online as an 

“action-to-sound” latency of 0.5ms, significantly lower than desktop, cellphone, 

Arduino and Raspberry Pi comparisons [16]. Bela uses Xenomai Linux for hard real-

time audio processing with latencies down to 1ms and analogue IO down to 100 

microseconds. The operating system overhead of the Bela is minimized in several 

technically innovative ways as described in [17]. The Daisy Seed has a similar size as 

the Bela Mini, but it is not built with the overhead of an operating system and can 

support latencies down to around 10 microseconds. 

The OWL programmable platform [18] is an established open-source microcontroller-

based system that supports multiple front-end interfaces including Max/gen~, Heavy, 

and FAUST. Hardware destinations include modular synthesizer modules as well as 

stompbox and desktop formats. A feature of the platform is the ability to load multiple 

algorithms or “patches” at a time, including removing and adding distinct patches 

without rebuilding the firmware, using a web-based interface and a USB cable via 

MIDI Sysex. A large library of such patches for the platform already exist [19]. Unlike 

the Daisy, the OWL runs an abstraction layer as a real-time operating system on the 

hardware, such that patches can be loaded and unloaded dynamically.  Moreover, 

patches are not compiled for a specific hardware configuration (user code does not 
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access hardware directly) and thus the same patches can run on different kinds of 

OWL-supported hardware. Indeed, there exists a port of the OWL software that can 

run on Daisy hardware (“Owlsy” [20]). In contrast, the approach with Oopsy is to 

compile each patch for the specific hardware, and upload via USB using DFU. This 

affords multiple opportunities for optimization in speed and memory footprint that an 

abstraction layer precludes, at the cost of eliminating the possibility of dynamically 

adding and removing patches without reflashing the hardware as a whole. With Oopsy 

multiple patches can be flashed at once, and switching between them is both rapid and 

can be MIDI-controlled, but all such patches must be flashed to the hardware at the 

same time. OWL audio ports are DC-coupled whereas Daisy audio ports are AC-

coupled. OWL audio processes at 48kHz and CV inputs are sampled every 64 samples 

(750Hz). Daisy audio can process at 48 or 96kHz, and CV inputs are sampled at block 

rate, configurable from 48 down to 1 sample (1kHz to 96kHz). 

The Mod Devices’ Mod Duo is a commercial platform for hosting software plugins in 

hardware boxes (with a focus on guitar pedal stompboxes) built around a 64-bit ARM 

CPUs with stereo audio IO at 48kHz. Plugins can be authored in Max/gen~ and 

converted via a cloud-based compiler for uploading to the device. Plugins on the device 

can be arranged into networks via a web-based visual editor skeuomorphically 

emulating guitar pedal chains. An Arduino shield is available to map custom sensors 

and controls and pair with the Mod hardware via network cable. 

In the context of programmable audio platforms for modular synthesisers, an extensive 

list of projects can be found at [21]. For example, the Bela hardware is utilized by the 

Salt module and the OWL platform in the RebelTech Magus and the Befaco Lich 

modules. There are other hardware modules with public APIs or open-source software 

that allow user reprogramming, such as the Qu-Bit Nebulae, the Ornament & Crime, 

and many of the Mutable Instruments devices with various alternate firmware 

available. The popularity of such alternate firmware underlines the pragmatic value of 

a modal approach to modular hardware.

Method
Oopsy presents two workflow interfaces. First, it can be used in a convenient way 

through the Max interface itself, in which the full workflow runs automatically every 

time a user saves their patcher. Second, it can be invoked on a command line terminal 

as a Node.js script for more automated control, and to allow use cases where Max is 

not available or amenable. Both methods invoke the Oopsy.js Node.js script with 

command line arguments for the paths to one or more C++ files generated by gen~, a 
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pre-defined or user generated JSON file describing the hardware, and configuration 

options such as sampling rate and block size. It then parses these files to generate 

C++ code specific to the patcher(s) and hardware, and if available, immediately 

uploads (flashes) this as new firmware to an attached hardware device. Note that 

Oopsy.js does not require Max: code exported by one person's patch can be shared 

online and used by any other person with Daisy hardware. (It may also be possible to 

run the Node.js workflow via an online server, including flashing devices via web-DFU, 

which would alleviate end-user installation requirements.) 

The central method of Oopsy could be described informally as “snoop, fit, and glue”; 

that is, using a combination of parsing, feature-mapping, and code generation. For 

each C++ file, Oopsy.js parses the source code to identify its configuration and 

features, including labelled inputs, outputs, parameters, data resources and so on, to 

build up a feature set for the patch. Since the C++ generated by gen~ itself has a well-

formed template structure, parsing can leverage tailored lightweight regular 

expressions rather than a heavyweight full language parser. This is then processed 

along with the hardware configuration JSON data to generate a model data structure 

that maps these features to the selected Daisy hardware’s configuration and 

capabilities. The Oopsy software maps features to the Daisy environment in a number 

of ways outlined in the next subsections, including explicit labeling and auto-mapping 

heuristics. The model is then interpolated into templates for code generation of a 

binding C++ file with appropriate calls to the libDaisy library. The ARM GCC compiler 

Schematic overview of the Oopsy workflow.
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is invoked to compile this into binary firmware for the hardware device, and, if 

physically available, immediately flash the firmware onto it. 

Mapping by name

Aside from its suite of objects for essential DSP primitives, gen~ provides a small 

number of objects for interfacing with an external host environment, including in , 

out , param,  history , and data . Oopsy primarily maps to Daisy features by identifying 

these features in the exported code and deriving intentions from their parameters and 

variable names as detailed below. For example, a param knob1  in the gen~ patcher will 

automatically be mapped to the first knob in the hardware interface. 

Audio Inputs & Outputs

The in  and out  objects in gen~ represent signal inputs and outputs at full sample 

rate resolution, uniquely identified by channel indices (with no channel count limit), 

and can be optionally annotated with labels.  Oopsy normally maps  in  and out  

directly to whichever audio inputs and outputs are available on the hardware (with 

some exceptions for specific labels as detailed later). For convenience, any  in  objects 

whose channel indices are greater than the number of audio channels on the hardware 

will duplicate the data of earlier channels. Similarly, if the hardware has additional 

output channels that are not defined in the gen~ patcher, each will use data from a 

prior audio output channel. 

Normally in gen~, sample rate and block size (vector size) are determined by the host 

environment. These values are available in the gen~ patcher via the samplerate  and 

vectorsize  objects and variables. They can be specified in Oopsy via the Max interface 

or Oopsy.js command arguments. 

Analogue & Digital Inputs

A param  object in gen~ exposes an input parameter of an algorithm to the host 

environment. Each param  is uniquely and arbitrarily labeled by users, and may also be 

given specific initial values and value ranges (defaulting to 0-1 range and initial=0 if 

unspecified). 

In Oopsy, analogue and digital input pin controls (switches, knobs, buttons, CV and 

gate inputs, etc.) are mapped by use of specific labels to param  objects. These 

mappings and their labels are defined in the JSON configuration file of the hardware 

target. For the standard targets provided with Oopsy this includes labels such as 

“knob1”, “gate2”, “cv1”, “key3”, etc., with each having a corresponding code fragment 
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(usually a function call defined in the libDaisy C headers) and context also defined in 

the JSON file. For convenience, several labels can map to the same control. So for 

example, in the daisy.patch.json file configuring the Daisy Patch hardware, the labels 

“knob1”, “cv1”, and “ctrl1” all map to the same code fragment 

hardware.GetKnobValue(hardware.CTRL_1);   Thus a param ctrl1  in gen~ will cause this 

libDaisy function call to be made in the generated code, with the result routed to the 

parameter setter in the code exported by gen~.  

These inputs are sampled at block rate, which is configurable between 1 and 48 

frames of the sample rate (i.e., 1ms to 10 microseconds) and available in the patcher 

as samplerate  / vectorsize . Since pins are polled at block rate they produce step 

functions; for gate inputs a drop-in abstraction ( oopsy.gate.trig ) is available to shorten 

step functions to single-sample triggers if needed. Analogue inputs also have low levels 

of inherent noise or instability. The Oopsy package supplies some filter examples 

designed as drop-in solutions here, including a 3-pole lowpass filter at 30Hz 

( oopsy.ctrl.smooth3 ) that effectively silenced noise from the most unstable hardware 

input ADC tested against even in highly sensitive applications such as setting long 

delay line lengths. 

Any param with a defined @min and/or @max attribute, such as  param knob3_depth 2 

@min 0 @max 8 , will always coerce analogue controls to map over the defined range. If 

either is absent, the default @min is 0 and @max is 1.0. Any param name prefixed with 

“int_” or “bool_”, such as param int_knob2_mode 2 @min 0 @max 4 , will always coerce 

controls to exact integer or Boolean values. This can be convenient for analogue inputs 

with variable tolerances, such as coercing switches whose voltage ranges do not go all 

the way down to zero. 

Analogue & Digital Outputs

For Oopsy, non-audio hardware outputs can be addressed by attaching an appropriate 

label to an out  object or to a history  object (a history  object defines a stateful 

variable in gen~ which can be given an unique label, and  can also be used for  single-

sample feedback Z-1 operations). For example, the daisy.pod.json configuration file for 

the Daisy Pod hardware includes two output labels “led1” and “led2” for the onboard 

LEDs. Thus, an out 3 led1  or history led2_out  object in the patcher will route its signal 

to update an LED intensity. 

For some hardware it is more convenient to map more numerous features using data  

objects in gen~. Each data  object in gen~ defines a labelled block of random-access 
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floating-point data with frame length and a number of channels, and host 

environments may provide access to read and write the contents of this memory by 

reference to its label. For example, the Daisy Field target platform features an array of 

24 LEDs, which can be referred to in gen~ using a data leds 24  object and 

corresponding poke leds  objects to dynamically address specific LEDs as needed. 

Digital outputs are updated at block rate, while analogue outputs are updated at close 

to to block rate. Since output gates shorter than the block size could be missed, the 

Oopsy package supplies a drop-in abstraction ( oopsy.gate.min ) to automatically extend 

any gate to the block length or more, ensuring even the shortest trigger is not missed 

by hardware. 

Auto-mapping

A hardware configuration can mark certain analogue inputs for automapping by 

setting ”automap”: true  in the JSON file. Any control marked for automapping that was 

not explicitly mapped to a param  by name in the gen~ patcher will be automapped to 

any available unmapped param .  In this way, even a patcher that was not explicitly 

configured for a Daisy hardware will be usable from it.  In the case of the standard 

Daisy configurations supplied with Oopsy this is true for all manual controls (knobs, 

switches, and buttons). As such, any patcher with at least one gen~ object is ready to 

upload to the hardware for play simply be dropping in the Oopsy abstraction and 

hitting save. 

MIDI

The hardware supports MIDI IO via UART pins. Several strategies for mapping MIDI 

streams to the gen~ environment have been explored in Oopsy. This is not trivial as 

gen~ is a sample-processing domain and has almost no intermittent “message-

passing” capabilities beyond param  inputs. 

Common inputs. For most commonly used message types Oopsy will generate 

dedicated mappings in response to specific variable names. For example, param 

midi_cc1  will output a signal representing the last-received value form MIDI 

Continuous Controller 1 (mod wheel) on any channel, while param midi_cc7_ch2  will 

output the last-received value form MIDI Continuous Controller 7 on channel 2, etc. 

These continuous controller values will be expressed in the range of [0..1] rather than 

[0..127]. Similarly, param midi_press  will report channel pressure in [0..1],  param 

midi_bend  or param midi_bend_ch2  will output the last received MIDI pitch bend value in 

the range of [-1..1], param midi_clock  will report MIDI time code ticks, etc.  param 



International Conference on New Interfaces for Musical Expression A streamlined work�ow from Max/gen~ to modular hardware

13

midi_drum36  will output the last-received velocity of note 36 on channel 10, also 

expressed in the range of [0..1] rather than [0..127]; and more generally param 

midi_vel64_ch3  etc. will output the last-received note velocity for a specific pitch and 

channel.

Raw bytes. For comprehensive coverage,  Oopsy provides raw access to incoming and 

outgoing MIDI byte streams as signals. An in N midi  object (where N is any unused 

input index) will stream raw MIDI bytes into the patcher as a sample-rate signal, one 

byte per sample, with two modifications. First, if no incoming data is available the 

signal will have a negative value. Second, bytes are scaled by 1/256 for convenience, to 

avoid damage by accidental connection to audio outputs. An example patcher 

( oopsy.midi.parse ) demonstrates decoding raw MIDI bytes into all standard channel 

events as well as clock/transport, SYSEX dumps, etc. Users can take or modify 

whichever features are needed for a given project. 

MIDI output. Similar naming conventions can be used to output MIDI messages from 

a patcher, such as history midi_cc13_out , history midi_bend_out , history midi_drum36_out  

etc. Such MIDI outputs use the same normalized value ranges as the inputs, and 

default to MIDI channel 1 if not specified (with the exception of drum outputs on 

channel 10). General MIDI note output requires two or more signal values (pitch, 

velocity, polyphonic pressure etc.). Oopsy provides a polyphonic note output using 

combinations of midi_note1_pitch_out , midi_note1_vel_out , midi_note1_press_out  and so 

on for note2 , note3  etc. as desired. Oopsy-generated code will only send event-like 

messages (notes, program changes, etc.) when values change, while continuous 

messages (CC, bend, etc.) are throttled to fit into the limited MIDI baud rate 

specification. 

OLED Display

Two of the current standard Daisy configurations incorporate a 128x64 pixel 

monochromatic OLED display. If present, Oopsy will generate code to fill the OLED 

with several switchable pages. Scope: Displays stereo signals (overlay, side-by-side, 

top-bottom, Lissajous plots), for any pair of inputs and/or outputs, with variable zoom. 

Parameters: A scrollable list displaying names, current values, and hardware 

mappings of all param  objects in the patcher. param  labels can include a human-

friendly name, such as param knob5_pitch , in which case the display will use the label 

“pitch”. This page also offers a way to modify unmapped parameters via an encoder, 

with steps quantized to divisions chosen to nearest power of 2 sizes for a resolution of 

between 100-200 steps. Patchers: A scrollable list of available patcher names for 
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switching between (see multi-patcher description below). Console: Displays memory 

usage and other debugging information. Several OLED pages also display current CPU 

usage percentage and MIDI input/output activity. The OLED interface code has 

negligible impact on CPU performance itself but does increase program code size; it 

can be disabled entirely by passing a flag to the Oopsy.js script. 

Dynamic multi-patcher configuration

The prevalence of multi-mode devices in hardware synthesis noted above inspired the 

support of multi-patcher firmware in Oopsy, allowing a hardware to serve a number of 

possible roles without needing to reflash it. If a Max patcher contains more than one 

gen~ object, all of their  gen~ patchers will have their C++ code exported and passed 

to Oopsy.js, which will produce a “multi-app” firmware for the hardware. With this 

firmware, the hardware can then switch dynamically between different patcher 

algorithms. Patcher switching takes only a few of milliseconds and can be selected via 

MIDI upon receiving standard Program Change events. Hardware configurations can 

also switch patchers by user interface interactions, such as using the patcher-select 

OLED page on the DaisyPatch and DaisyField or using the encoder LED ring on the 

DaisyPetal. Multi-app firmware has very little overhead, as noted below.

Performance
CPU performance. The performance of a diverse selection of typical patchers was 

measured under various option settings (see Table 1). Audio performance was 

measured as the duration spent in the audio processing callback divided by available 

time (block size divided by sample rate), with measurements taken from the CPU 

microsecond timer. (This ratio is shown on-screen on Daisy platforms with OLED 

displays, and also through the pulse-width of a 1Hz LED on the Daisy Seed itself.) CPU 

performance is deterministically related to sampling rate and MCU clock frequency. 

Decreasing sampling rate from 96kHz to 48kHz predictably results in halving the CPU 

time. Disabling  MCU boost drops the CPU clock frequency from 480MHz to 400MHz 

and results in the expected 20% increase in CPU time for audio processing. 

Some transcendental floating-point math operations can be very CPU-intensive on the 

embedded processor. The code generation in gen~ offers alternative optimized 32-bit 

approximations of many such operations that are significantly more efficient and 

smaller in code footprint than the standard math library. Users can access these 

implementations in two ways. The simplest option is to toggle a “fastmath” option in 

the Max interface (or add “fastmath” as a Node.js command argument), which will 
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replace all such standard math library functions. For more controlled use, users can 

instead use drop in operators including fastexp , fastpow , fastcos  etc. as replacements 

for their standard namesakes. For example, the Gigaverb example patcher used eight 

exp  operators to map a linear knob controls to a logarithmic frequency ranges for 

filters in the feedback delay networks; replacing these with fastexp   equivalents had 

no audible impact but reduced the total CPU usage from 48% to 20%. 

Latency. The block size is configurable in Oopsy at different periods down to a single 

sample, which reduces audio and control throughput latency but increases CPU cost. 

Testing increasing the block size as far as 256 samples showed very minimal 

improvement in CPU performance. Reducing block size below 16 samples starts to 

show more sharply rising CPU differences (see Table 2). It is notable for example that 

the complex Dattoro reverb algorithm can function within CPU limits at 96kHz and a 

block size of 1 sample, resulting in a throughput latency of 0.01ms.

Runtime memory. The Daisy hardware provides two stores of random-access 

memory: 512KB of SRAM and 64MB of SDRAM. Testing revealed that algorithms using 

SRAM for runtime memory resulted in better CPU performance than those using 

SDRAM, sometimes with significant differences. Fortunately, code generated  by gen~ 

separates out large object allocations (that is, for delay   and data  objects which can 

easily run to kilobytes or sometimes megabytes in size) to a later stage than the core 

algorithm state (likely tens or hundreds of bytes in total). Accordingly, Oopsy uses a 

strategic allocator with a simple heuristic: first, all core algorithm memory is allocated 

in SRAM; and second, all large object memory blocks are allocated from SRAM while 

space permits, and falling back to SDRAM otherwise.  All allocations occur during the 

start up of a patcher algorithm, and no allocations occur after audio processing begins. 

In practice, the authors have found only very few patchers require slower SDRAM 

space at all (see Table 1). For example,  the Gigaverb reverb algorithm as provided in 

the standard gen~ examples included with Max utilizes 1MB of SDRAM in addition to 

480KB of SRAM, while the Freeverb and Dattoro reverb algorithms, also both included 

with Max, fit entirely into SRAM. 

Program Memory. The Daisy hardware has 128kB of flash memory capacity for 

firmware program code, including libDaisy and dependencies as well as gen~- and 

Oopsy-generated code. Fortunately, gen~-generated code is quite compact with no 

additional dependencies. (Compactness of code produced by gen~ arose incidentally 

from efforts to reduce JIT compilation times of gen~ within the Max environment 

itself.) Oopsy is also conducive to minimizing code size as generated code is tailored 
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very specifically to the hardware configuration used, conferring an advantage over 

more dynamic or abstracted interfaces to hardware. Oopsy re-uses common code 

through compile-time C++ patterns rather than run-time abstractions wherever 

possible, and omits code and dependencies for any hardware features unused by the 

patcher either via suppressing code generation or via preprocessor macros. Program 

footprint therefore largely depends on the features available and utilized in the 

hardware. A baseline of 50KB is typical for the libDaisy and Oopsy common code (with 

an additional 8-10KB overhead if OLED features are used), plus a size per patcher 

included in the firmware binary. The code size of example patchers included with 

Oopsy, which reflect a typical range of complexity of real-world modules, range from 

<1KB (mid-side encoder/decoder) to 21KB (stereo 4-second delay with feedback tilt 

filters), with an average contribution per patcher of around 8.5KB (see Table 1). 

Interestingly, in some cases the “fast math” variants also led to significant reductions 

in code size.

Multi-app performance. There is virtually no additional runtime memory or CPU 

overhead for multi-app firmware. App code is defined in a union  since only one app is 

running at a time, so the total runtime memory footprint is only the size of the largest 

app. SRAM and SDRAM stores use pre-allocated blocks whose allocation pointers are 

reset to zero whenever apps are switched. The most significant constraint on multi-

apps is the number of patchers that can fit in the limited flash memory; using the sizes 

measured above, the platform can support around eight typical patchers on average. 

Table 1. CPU and memory usage of a variety of example patchers. CPU measured as 

percentage of available time spent in audio-processing, with CPU boost to 480MHz 

enabled. For some patchers, variants using fastmath approximations were compared 

with standard math library variants. All tests used the default block size of 48 sample 

frames. Runtime memory footprint measured for both SRAM and SDRAM stores. 

Program code footprint recorded as final binary size minus the 50KB baseline for an 

empty patcher.

Patcher 48kHz

cpu%

96kHz

cpu%

SRAM

KB

SDRAM MB Code

KB

Empty patcher 0 0 0.05 0

Mid-side 

decoder & 

encoder

0 0 0.52 <1
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Scatter matrix 

mixer

3 7 0.22 2

Universal 

slope 

generator

4 9 0.44 10

ModFM 

oscillator 

(fastmath/stan

dard)

5/

15

11/

31

0.3 3/

12

Squinewave 

oscillator 

(fastmath/stan

dard)

7/

9

15/

18

0.3 5/

5

Feedback FM 

& PM 

oscillator 

(fastmath/stan

dard)

8/

11

17/

23

0.53 5/

7

Phase-

preserving 

crossover SVF  

filter 

(fastmath/stan

dard)

9/

12

18/

25

0.32 3/

6

Shift register 

sequencer

10 20 0.63 14

Dattoro reverb 10 21 230 13

Stereo 4 

second filter 

feedback delay 

(fastmath/stan

dard)

17/

36

33/

72

0.44 2 12/

21
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Table 2. Block size impact on IO latency (milliseconds) and CPU usage (percentage 

used of available time), testing various patchers: 

32-point sinc 

anti-aliased 

wavetable 

(fastmath/stan

dard)

45/

47

85/

92

128 15/

18

Gigaverb 

(fastmath/stan

dard)

20/

48

41/

Over

480 1 11/

17

Pulsar 

generator 

(fastmath/stan

dard)

32/

53

62/

Over

0.4 10/

9

Block size 

(samples)

256 48 16 4 2 1

IO latency 

@48kHz 

(ms)

5.33 1.00 0.33 0.08 0.04 0.02

IO latency 

@96kHz 

(ms) 

2.67 0.50 0.17 0.04 0.02 0.01

Patcher 

tested:

CPU performance (%) 

Gigaverb 

@48kHz

48 49 50 53 59 71

32-point 

sinc anti-

aliased 

wavetable 

osc @48kHz

46 47 48 52 59 69
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Community
Oopsy has been available as an open-source project hosted on Github [22] since 

November 2020. Available online statistics suggest that the Oopsy project is 

addressing real interests with a growing community of users, including close to 300 

downloads and git clones of the software in the first two months, 3000 views and 100 

posts on the forum and 300 members of a Slack group dedicated to the Oopsy software 

in the same period, and 3,500 views and 110 subscriptions from an online tutorial 

video over three months: 

Visit the web version of this article to view interactive content.

At the time of writing, a commercial Eurorack product from an independent company 

is being developed exclusively with Oopsy. An independent open source / open 

hardware platform for guitar pedal stompboxes based around the Daisy Seed 

(Terrarium) also has Oopsy workflow support close to completion. The authors have 

also been advised that the Oopsy workflow is likely to support undergraduate teaching 

in at least one university music technology course (with no known relation to the 

authors). 

Conclusion
Oopsy supports a streamlined workflow from a well-established platform for digital 

signal processing into a promising emerging hardware platform highly suitable for 

DMIs and NIMEs. The workflow applies a pragmatic and lightweight solution for 

mapping from existing resources to available features, through the use of simple 

labeling schema, automapping, and drop-in examples for common requirements. Oopsy 

supports a diversity of IO features including a variety of MIDI handling strategies and 

Stereo 4 

second 

delay 

@48kHz

32 35 36 37 43 52

Dattoro 

reverb 

@96kHz

20 21 23 28 38 57

Oopsy: Daisy from gen~ in Max/MSP
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has full-featured support for available fixed-format hardware configurations as well as 

a flexible data-driven JSON schema for open-ended DIY hardware configurations. The 

firmware generated benefits from optimizations possible with a highly targeted 

workflow, and incorporates practices to minimize program and runtime memory 

footprints as well as features for reducing CPU overhead. The performance 

measurements indicate that Oopsy can be used to author and flash hardware with a 

broad diversity of commonly sought algorithms including oscillators, filters, matrix 

mixers, slope generators, sequencers, delays and reverbs at high fidelity and low 

latency. Of note, tests demonstrated that the system is capable of an expensive digital 

oscillator design (a wavetable oscillator using dual 16-point sinc interpolation for 

smooth waveform-agnostic anti-aliasing over 13 octaves) at 48kHz sampling rate and 

throughput  latency down to ~0.01ms, which thus permits placing such algorithms 

within analogue feedback audio modulation circuits covering the entire audible 

spectrum, and thus escaping one of the common problems of working with digital 

signal processing in hardware modular synthesizers. The project is fully open source 

and incorporates a diversity of example materials, supporting industry, community, and 

pedagogical projects. 

Compliance with Ethical Standards
The research described in this article was undertaken without financial or other 

conflicts of interest with the exception that the creators of the Daisy platform supplied 

sample hardware for development and testing.
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