International Conference on New Interfaces for Musical Expression

What to Play and How to
Play it: Guiding Generative
Music Models with
Multiple Demonstrations

Jon Gillick!, David Bammanl

luniversity of California, Berkeley

Published on: Apr 29,2021

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)



https://creativecommons.org/licenses/by/4.0/

. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

ABSTRACT

We propose and evaluate an approach to incorporating multiple user-provided inputs,
each demonstrating a complementary set of musical characteristics, to guide the
output of a generative model for synthesizing short music performances or loops. We
focus on user inputs that describe both “what to play” (via scores in MIDI format) and
“how to play it” (via rhythmic inputs to specify expressive timing and dynamics).
Through experiments, we demonstrate that our method can facilitate human-AI co-
creation of drum loops with diverse and customizable outputs. In the process, we
argue for the interaction paradigm of mapping by demonstration as a promising
approach to working with deep learning models that are capable of generating
complex and realistic musical parts.

Author Keywords

Music Performance Modeling, Interactive Music Generation, Gesture Mapping, Human-
Al Collaboration

CCS Concepts

eApplied computing - Sound and music computing; Performing arts; e Human-
centered computing - Gestural Input

Introduction

Communication between musicians can take time, effort, multiple attempts and
clarifications, and often requires trial and error. In performance, composition, or
production environments, contributors need to explain what they want from each
other; any partnership or collaboration depends on the ability to clearly communicate
ideas to the person whose job it is to execute those ideas musically (e.g. by playing an
instrumental part, arranging a score, setting the level of a reverb effect, and so on).

When musicians and composers work with complex musical instruments and tools,
communicating ideas to a machine can also require effort, exploration, and expertise
(albeit expressed in a much different form), especially when the details of how an
instrument works are opaque. Musical instruments and tools based on Artificial
Intelligence (AI) and Machine Learning (ML), especially those built on powerful
generative models capable of synthesizing human-like audio or MIDI, can be
particularly difficult for users to navigate in predictable ways. Still, realistic and



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

expressive outputs from this kind of model have inspired a growing interest among
music creators to explore incorporating generative ML models into their creative
practices[1][2][3].

Recent research highlights that while music creators can often count on ML music
models to provide them with surprising or unexpected ideas, they tend to have a hard
time controlling them, finding it difficult to achieve specific results when desired [3][4]
[5]. In response, a number of recent studies seek to make generative models easier for
users to control by making them conditional - by training models with different types of
input variables as probabilistic conditioning.

In practice, inputs to conditional generative models can take many forms, for example
categorical variables like genre or the identity of a specific artist[1], initial themes for
continuation [6][7][8], pitch contours [9][10][11], chord symbols [12][13][14], accented
rhythms[15], or features summarizing the characteristics of individual notes [16][17].

Once a model has been trained, these variables can be exposed in different ways
within user interfaces to provide different affordances. Before reaching this stage,
however, the choice of conditioning variables (along with the choice of training data)
outlines an initial set of limitations that define how a model might be used.

If our intended use for a generative model is to provide inspiration, to help us break
out of existing patterns or habits, or to challenge ourselves by including a “musical
other” into our composition practice[3], then many different ways of conditioning a
model may serve us well; indeed, other approaches that do not involve ML may also
work just as well. As soon as we begin to make our goals more specific, however,
designing and implementing conditional models becomes harder[4] and requires
solving interconnected technical and interaction challenges at the same time.

In this work, taking inspiration from the ways in which musicians communicate with
one another - in particular, by demonstrating an idea with multiple views drawn from
different modalities - we contribute and experiment with a framework for designing
and training conditional generative models with multiple complementary user inputs.

To anchor this notion of communication through multiple demonstrations with a
specific recorded example, consider the diverse array of communication styles
displayed by music producer Oak Felder in the process of collaborating with a
drummer [18]. Within the span of no more than a few minutes, Felder: (1) offers high-
level stylistic suggestions (“I'm wondering if it should be a little more complex.”), (2)
provides specific instructions about one instrumental part (“No hi-hat.”), (3)



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

demonstrates a drum pattern through sound with a vocal imitation, (4) indicates a
drum fill by briefly playing air drums, and (5) nods his head to the side in time with
the music to show where accented beats should go. Some of this guidance is given
through examples (e.g. vocal and motion-based gestures), and other instructions,
though expressed verbally by Felder, could presumably also be demonstrated to a
machine by example (e.g. a blank hi-hat track indicates “No hi-hat.”) Over the course
of this interaction, Felder conveys some of the more concrete details only once (e.g.
“No hi-hat”), while reinforcing more abstract concepts by demonstrating them in more
than one way (e.g. gesturing a drum pattern in the air while vocalizing a version of it
at the same time). In the end, based on all these different cues, the drummer picks up
on the intentions of the producer, and they successfully record the part together.

We do not bring up this example in order to argue that we should interact with
computer models just like we do with humans, using natural language interfaces and
so on; rather, we find it instructive to highlight the range of examples that a producer
instinctively draws on here in order to convey their intention to the drummer. By
breaking down an idea, which at firsts only exists in Felder’s imagination, into
complementary (even if sometimes overlapping) components, some of which can be
expressed well in one way and some better in another, the producer can convey
information to the drummer more effectively.

Drawing inspiration from this kind of multifaceted communication between producer
and musician, which happens not instantaneously but over the course of the time it
takes to design or perform the relevant demonstrations, we experiment in this paper
with building generative models that accept two or more user-provided conditioning
inputs given by example, with each input designed so as to be possible for a user to
create. ML models offer promise as useful tools particularly when a user has an idea
in mind that is difficult to create from scratch (for example because the user is not
sitting in front of a drum kit or doesn’t know how to play drums[15]), but which can be

still be specified by example in some simpler form.

To ground our experiments in a context that we hope can be of practical use to music
creators, we focus on models for generating two-measure drum loops. This particular
task of creating drum and percussion parts is of broad interest to creators in many
styles of music, and models for generating drums have already been implemented in
publicly available toolkits for music producers [5][19][20], making it easier to

implement the methods we explore within interfaces similar to those in the toolkits
above. Using drum recordings from the Groove Midi Dataset [15], we explore




. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

Variational AutoEncoder (VAE) models[21] for generating drum beats based on two or
more user inputs, with every input defined in MIDI format and able to be specified by
example either through gestures recorded by a MIDI keyboard or microphone, or
through grid interfaces like those found in drum machines. In working on creating
drum loops, we pay particular attention not just to the pattern of which drums are to
be played, but also to how they are played, modeling precise microtiming and
dynamics information, which is known to be difficult for users to create by hand
without performing any gestures to demonstrate [15].

This work’s primary contributions are as follows:

+ We design and implement a factorized Variational AutoEncoder model for
generating drum performances conditioned on multiple inputs that cover aspects of
both a musical score and how that score should be played. We experiment with a
model that accepts two inputs and another that takes up to eleven, more fine-
grained, inputs. We demonstrate that these models allow us to generate drum loops
with more diverse and more precisely specified outputs than existing methods.

» We show that by factorizing score and performance characteristics into separate
latent variables, we can overcome difficulties with sampling encountered in previous
work in order to maintain diverse outputs while still leveraging efficient data
representations that use continuous rather than discrete values to model
microtiming and dynamics in music.

» We tie together recent research in conditional generative models for music with the
interaction framework of mapping by demonstration and offer a technical approach
based on models that can accept multiple demonstrations from users, which we hope
will take steps toward enabling future user-centered research on human-AI co-
creation with music generation models.

Code and pre-trained models developed for this paper can be found at:
https://github.com/jrgillick/groove

Related Work

This paper builds on our previous research on drum loop generation [15], which serves

as a starting point for the applications and the machine learning methods that we
explore. Previously, we proposed two models for conditional generation of drum loops
using a Recurrent Variational AutoEncoder (a GrooVAE). One model explores the task
of Humanization - automatically generating dynamics and timing variations giving a
quantized Midi input, and the other proposes an application called Drumify, in which a


https://github.com/jrgillick/groove

. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

model generates drum loops based on an input rhythm with expressive timing (which
could be tapped out on a surface or implied by the onsets of another instrument), but
with no specified instrumentation or score. In each case, these models are able to
synthesize realistic drums that listeners have difficulty distinguishing from real loops
in the data set.

Both of these interactions, however, are limited in that they only afford the user one
input at a time in order to specify what they want. This means that in practice, if a user
has a specific beat in mind, the Humanize model does not offer control over how the
model will add expressive dynamics and timing to that beat; as a result, for any given
input score, the output is almost always the same. Similarly, the Drumify model does
not provide any control over which drums are played; for example, it is left up the
model to choose whether to use the ride cymbal or the hi-hat. In our experiments here,
we attempt to address these limitations with regard to both diversity and control.

We also draw more broadly from a number of other studies on conditional models for
music generation. Recent work on music generation based on some kind of user input
includes models that provide counterpoint to an improvised melody[22], map eight

buttons on a game controller to the 88 keys on a piano[23], or synthesize the audio for

one instrument based on fine-grained pitch contours and dynamics from another

signal[11]; we build on these by exploring multiple complementary gestural inputs at
the same time. On the modeling side, we also build on work using factorized
representation learning to control generation of monophonic[24] or polyphonic [9][13]
music scores. We explore a different kind of factorization here, however, by separating
out scores from performance characteristics, as well as a different model architecture.

Finally, we draw inspiration from gesture mapping [25][26][27] in designing the
conditioning inputs used in generative models around the concept of a gesture (which
has been defined in a number of different ways but can be broadly categorized as some
kind of sensed input performed or specified by a user). Much research within the
NIME and Computer Music communities focuses on interaction paradigms centered
around mapping various kinds of user inputs (which often take the form of performable
gestures) onto output parameters for controlling sound [26][28]. By providing
demonstrations of gestures, users can train their own mapping models by example
using machine learning[27]. Most approaches to gesture mapping attempt to modify a
relatively small number of output parameters (e.g. a handful of knobs on a synthesizer)
[29], as opposed to the many thousands or millions of parameters in large neural



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

network models; as a result, gesture mapping often provides more precise control than
has typically been possible with large music generation models.

One barrier that has inhibited music generation models from being put to use in the
same way as gesture mapping, however, is the size of datasets and expense of
computational resources needed to train them, which prevents users from choosing
and manipulating their own training data. A number of recent studies have explored
ways to either make models smaller and faster to train[20] or to enable customization
of pre-trained models to meet user needs [30]. We see this line of work as
complementary to the model conditioning work that we explore here; depending on the
context, interactions may be better facilitated by more precise conditioning controls,
easier management of training data, or a combination of both.

Proposed Models and Implementation

Modeling Two Inputs: Score and Groove

Starting from the hypothesis that multiple different forms of user input can lead to
more controllable and diverse generated music, we operationalize the idea of model
inputs as gestures by implementing a factorized neural network model architecture
called an Auxiliary Guided Variational AutoEncoder [31]. We first implement a model
that accepts two inputs - one for quantized drum scores (specifying what to play) and
one for tapped rhythmic inputs (specifying how to play it), with each of these inputs
implemented exactly as in the previously published Humanize and Drumify models
[15]. An important point to make here is that these inputs are not directly provided in
the data set; at training time, as with other AutoEncoder models, we are restricted to
using inputs that can be computed with some function F' applied to an input data point
X. Through the design of a function F(X), we specify a mapping from drum loops
(high dimensional realistic data points) to simplified descriptors of those loops (which
are easier for users to create with a gesture); we then train models to learn the inverse
mapping from gestures to data. For this model, we define two functions during
training that take the place of user inputs at inference time: F (X) is a quantization
function that removes all microtiming and velocity information from a drum loop
(keeping only drum score), and F,(X) is a “squashing” function that has the opposite
effect, keeping performance characteristics in the form of microtiming and velocity,
but discarding the drum score. Figure 1 visualizes the architecture of this neural
network model.



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

Auxiliary Guided VAE Model (2 Inputs)

ENCODER 1 DECODER 1 F1(X):
— Reconstructed
Drum Score

Drum Score:

—
F1(X) = Quantize(X) \

H —_—

DECODER
Tapped Groove:
Input Data X: i / X (Reconstructed)
P F2(X) = Squash(X)

1-Measure
Drum Loop F(X):
ENCODERz DECODERZ Pacsrsiniciad
Groove

Figure 1: Auxiliary Guided Variational AutoEncoder model trained to take two user
inputs (a quantized drum score and a tapped rhythm expressing the groove of the
loop). Features of the drum sequence, which are designed to be similar to inputs
that could be demonstrated by a user through an example, are extracted via
functions F; (X) (here, a quantization function that removes microtiming and
velocity) and F5(X) (here a “squashing” function that preserves microtiming and
velocity but discards the score).

This architecture differs from a standard VAE in two ways. First, while a typical VAE,
which we treat as a baseline, has a single latent variable Z, the Score and Groove
inputs to this model are each encoded (in this case with bidirectional LSTM encoders)
into separate latent variables Z; and Z,, which are both independently trained to
match standard normal distributions; following Roberts et al.[32], we train using the
free bits method (hyper-parameters to balance the two loss terms in a VAE) with a
tolerance of 48 bits. Z; and Z, are subsequently concatenated and passed to a
decoder (also an LSTM), whose goal is to reconstruct the original drum sequence from
the training data. This separation between Z; and Z> (sometimes called factorizing or
disentangling) aims to explicitly capture some of the variation among each of these two
aspects of the data (Score and Groove) with specific variables. One of our goals of
factorizing in this way is to attempt to overcome problems with diversity reported in
previous work, in which when generating performance characteristics for an input
score, a given loop was always Humanized in the same way [15]; with this model, by



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

sampling different values for Z; or inputting different Grooves, we can try to
synthesize different performances for the same score. This factorization also affords a
user two complementary ways of specifying a desired drum loop (by independently
providing a Score and a Groove).

The second distinguishing feature of this architecture is the inclusion of Auxiliary
Decoders, similar in form to those proposed by Lucas and Verbeek for image
generation[31]. As shown in Figure 1, in addition to the decoder trained to
reconstruct the original drum loop, separate decoders (Decoder; and Decoders) are
trained at the same time to reconstruct the input Score and the input Groove. This
variant of an AutoEncoder, which appears not to have been employed before for
modeling music, offers promise for two reasons: first, it explicitly reinforces the
incentive for the latent variables Z; and Z, to capture the relevant information, and
second, it offers a mechanism for users to inspect the model’s interpretation of each
input gesture: along with a generated drum loop, a user can also listen to or visualize
the model’s reconstructions of the Score and the Groove corresponding to that loop.
Examining these auxiliary reconstructions allows the user (or model developer) one
option for investigating the strengths and weaknesses in the model, which may be
helpful in learning how to work with it. For example, if the auxiliary reconstruction of
a user-provided Groove is inaccurate, this suggests that the model is unable to
recognize the given gesture; this feedback can direct the user to try again by
performing the gesture slightly differently in order to better work within the model’s

limitations.

Breaking it Down Further: Modeling More Inputs

In addition to the VAE with two inputs, in the spirit of our motivating example where a
producer explains a drum beat to a drummer in several different ways, we further
experiment with factorizing our model into more components, with the hope of
capturing more options for diverse outputs and controllable interaction. Here, we
divide the latent variable Z into 11 components Z; ... Z;;. This time, we separate the 9
different drum instruments from the score into 9 different latent variables (visualized
at the top of Figure 2), such that a user can specify as few or as many of these as they
choose to, with the option to sample the others. For example, a user can specify a
pattern for the kick and snare drums, provide an empty pattern on the crash cymbal
channel indicating not to play any crash cymbals, and through sampling the other
latent variables, leave the choice of whether to add hi-hats or ride cymbal for the
model to decide. At the same time, in addition to the Groove input defined in the first



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

model, we add a second performance-style input that captures musical Accents,
indications of where notes are emphasized by being played louder. Here, we define
accents as binary vectors with one input corresponding to each 16th note timestep (we
use a 16th note resolution in time for these models, although other resolutions offer
different advantages and disadvantages[20]); we consider a metrical position in the

dataset to be accented if it contains a note (on any drum) whose Midi velocity is more
than one standard deviation above the mean velocity for that drum, calculated over the
entire sequence.

In describing our models, we adopt the terminology of gesture to refer to each of the
inputs, though some inputs could be either performed by a user in the typical sense of
a gesture, or created in another way, for example by composing them in a Midi editor.
In this second model, because each gesture is expected to be packed with less
information, we simplify the encoder and decoder architectures in the interest of
reducing model size and training time, using small feed-forward MLP neural networks
instead of LSTM. We experimented with simplifying the main decoder as well, but we
found that in order to generate realistic outputs comparable to those in previous work,
it was important to use a more powerful architecture than an MLP, so we use an LSTM
here as well.

10



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

Auxiliary Guided VAE Model (11 Inputs)

Gesture 1: F1(X) e —_— Gesture 1 (Reconstructed)

Gesture 2: F2(X) — e Gesture 2 (Reconstructed)

Zy

L

Zin

Z'I'I
Input: X — X (Reconstructed)

Gesture 10: Fyg(X) | w1 —_— Gesture 10 (Reconstructed)

Gesture 11: Fi1(X) | —_— —_— Gesture 11 (Reconstructed)

Figure 2: Auxiliary Guided VAE Model with 11 Inputs. This version breaks drum
loops further into 11 different latent variables: 9 based on the score (1 for each
instrument in the kit) and 2 based on performance features (one specifying
microtiming through a tapped rhythm and one specifying accented beats).

Experiments

To evaluate our model designs, we examine metrics computed on the test partition of
the Groove Midi Dataset, measuring two main aspects of our proposed methods. First,
we look at the diversity of generated drum loops using our models, comparing against
the aforementioned GrooVAE model[15] in the context of the task of Humanizing
quantized drum scores (by generating MIDI velocities and microtimings), and second,
we examine the potential for controllability afforded by these models. While
controllability will ultimately depend on the context of how, and with which users, a
model is situated in an interactive setting, as a starting point, we use the idea of fidelity
as proxy: given a particular input gesture, we examine the degree to which the model
outputs exhibit the characteristics demonstrated by that input.

We have not yet deployed these models in an interactive interface to study their
usability in practice, but this choice of metrics is informed by our findings from
previous work in which we deployed the Humanization and Drumify models (treated
here as baselines) as plugins in Ableton Live [15][5] and tested them with users. We

1



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

believe that improving on these quantitative metrics is an important next step in our

ongoing iterative process of designing tools for musical human-Al co-creation.

Measuring Diversity in Generated Performance Characteristics

To measure diversity, we explore the task of Humanization. In this task, a model’s job
is to take a quantized drum loop as input (a Score), and then synthesize performance
characteristics (microtiming and velocity) for that input. One of the motivating factors
for this work was the shortcoming of our baseline model [15], which, although able to

create realistic outputs, always generated the same stylistic outcomes. For this metric,
we look at the standard deviations of timing offsets generated by each model.
Following the baseline implementation, we calculate timing offsets as continuous
numbers between -1 and 1, which represent how far each drum onset falls between the
current timestep and an adjacent one. Drum hits played late, or behind the beat, are
represented by positive numbers here, and drum hits played early, or ahead of the
beat, are given negative numbers.

Using two-measure windows extracted from every drum performance in the test set (a
total of 2192 sequences), we humanize each drum sequence five times with each
model, and then among each set of five generated loops, we compute the mean
element-wise standard deviations of the timing offsets, such that notes in the same
position (e.g. a snare on beat 3) are compared with each other. This yields a single
measurement for each test sequence, which we finally average across the entire test
set. A higher standard deviation here indicates more diverse outputs.

In this experiment, we compare three conditions: (1) the baseline Variational
AutoEncoder model that includes neither factorized latent variables nor Auxiliary
Decoders, (2) our factorized model without Auxiliary Decoders, and (3), the full model
shown in Figure 1. In the baseline model, only the Score input is provided; for our new
models, we implement the Humanization task by taking a single score as input, while,
across each of the five runs, we sample a random vector for Z, to pass to the decoder.

Measuring Fidelity to a Gesture

In a second experiment, as a proxy for measuring the controllability of interactions
with our models, we look at how well the generated outputs match the characteristics
of a given gesture in the new model. Here, we fix an input Groove with a pre-specified
pattern of timing offset values (e.g. 0.5 for every off-beat 16th note and 0 for every on-
beat 16th note to indicate a 16th note swing), before applying the same Groove to
every Score in the test set using the 2-input Auxiliary Guided VAE model shown in



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

Figure 1. After applying the same 3 Grooves as conditioning inputs paired with the
Score extracted from every sequence in the test, we plot the resulting distributions for
each groove and measure the means and standard deviations of the generated timing
offsets on the off-beats. For the three different input grooves, we use a different fixed
offset value (-0.05, -0.2, and -0.4, respectively) for every alternate 16th note position.
This corresponds roughly to choosing a particular Swing value (as is common in drum
machines) as a conditioning input. Unlike drum machines, however, in which timing
offsets are applied uniformly through a templated approach, we might not expect the
synthesized outputs from our machine learning models to conform exactly to this
value; the goal here is again to guide the model towards a particular groove rather
than to control it exactly.

Results and Discussion

Through our quantitative evaluations, we find that, in general, the methods explored
in this work appear promising for both diversity and controllability in generated drum
loops. As Table 1 shows, our measurement of diversity confirms the finding reported
previously that the baseline model usually performs Humanization in the same way
each time. The Standard Deviation metric of 0.061 (measured as a proportion of the
distance between successive metrical positions as 16th note resolution) for the
baseline in Table 1 is quite small; for context, even changing the timing of a drum
pattern by two standard deviations here would not be enough, for example, to change
a beat from a straight feel to a heavy swing feel. The factorized VAE models, however,
show a different trend, with much higher Standard Deviations among the timing
offsets; the version using Auxiliary Decoders shows the most diversity here with a
Standard Deviation of 0.22. Furthermore, alternative methods for adding diversity
during sampling do not help the baseline here: increasing the value of the temperature
parameter in the decoder does not change the metrics in Table 1, and adding noise to
the latent vector Z before decoding has the undesirable side effect of causing the
model not to follow the given input Score.

Table 1: Measuring Diversity in Generated Timing Offsets

Model Standard Deviation of Timing Offsets
Baseline VAE[15] 0.061 += 0.001

Factorized VAE 0.200 += 0.002



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

Factorized VAE + Auxiliary Decoders 0.222 += 0.002

Our subjective experience in listening to these Humanizations accords with the metric
here as well; we find that unlike with the baseline, these models generate perceptually
different results. Depending on the Groove conditioning, sometimes the same beat is
played with a swung or triplet feel, and other times it is played straight. In addition,
drums and metrical positions are accented different across different runs.

In our second experiment, a case study in examining the fidelity of our Auxiliary
Guided VAE model to a gesture (the gesture in question is a Groove representing a
particular amount of swing), we find that when applied broadly to a large number of
input Scores, the average swing values (as measured by timing offsets on off-beats)
come quite close to the target values. Different swing values lead to slightly different
trends here: guiding the model toward more heavily swung beats tends to give slightly
larger variation in the generated outputs than when specifying beats with less swing,
and in general, offset values tend to regress slightly to the mean of the entire dataset.
Table 2 summarizes these results, and Figure 3 visualizes the distributions from this
experiment.

Table 2: Measuring Fidelity to a Gesture (Swing Amount)

Target Swing Generated Swing Generated Swing Difference in Means
Amount (Mean) (Std. Dev)

-0.05 -0.091 0.161 0.042

-0.2 -0.214 0.163 0.014

-0.4 -0.366 0.175 0.034



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

Measuring Fidelity: Timing Offet Distributions

Distribution of generated offsets (Target=-0.05) Distribution of generated offsets (Target=-0.2) Distribution of generated offsets (Target=-0.4)
000 | ]

Boo
W00
00

000

. ey ol . — ]
-100 075 -050 -03% 000 02% 6% 47 16 -100 075 050 0% 000 03 0% 075 100 100 -075 =050 -025 000 0I5 050 07F 1w

Figure 3: Distribution of timing offsets for 3 different target Grooves. From left to
right, the target values specified by the three conditioning inputs are -0.05, -0.2,
and -0.4.

In addition to the metrics reported above, which focus on the 2-input model factorizing
Score and Groove, we also explored the larger 11-input model more informally by
listening to a number of outputs with different conditioning setups. For example, in
one experiment, we fixed all of the gestural inputs except for the features specifying
the intended patterns for hi-hats and ride cymbals. We then applied several different
hi-hat or ride input patterns given the same fixed set of other conditioning inputs. We
found that the results were usually quite realistic, though in some cases slightly less so
than with the baseline or the simpler 2-way model. The possibilities for diversity and
control, however, appear richer: the model did follow the input specification, reliably
switching between hi-hat and ride cymbal, while still following the same groove in
each alternate condition. The model also seemed to make reasonable choices in this
case when forced to choose between mismatched conditioning inputs (e.g. specifying
an Accent or emphasizing a Groove in a metrical position where the corresponding
score is blank). As we might expect, however, not all combinations of input gestures
are able to lead to realistic results; in particular, when we specified less common
patterns through the input gestures, model outputs were either less realistic or less
faithful to the specified gesture.

Conclusions

Designing and developing technology to guide complicated generative music models
towards user-specified musical goals is a challenging problem that has recently seen
increased interest among ML and MIR research communities. As researchers from
these communities have increasingly turned away from working solely on the technical
aspects of machine learning and toward studying how to making generative models
easier for users to control, research questions have begun to overlap with existing
work on mapping from the NIME community: increased control, broader interaction
possibilities, and new methods for human-Al co-creation motivate much recent work on

15



What to Play and How to Play it: Guiding Generative Music Models with

International Conference on New Interfaces for Musical Expression ) .
Multiple Demonstrations

conditional models for music generation [10][15][23]. This convergence (which has
also been raised by others [3]) motivates our current work, in which we aim to
continue to move music generation research toward directions where it may be able to
meet the creative needs of music creators.

In this paper, we build on this strand of technical research, exploring a new
combination of conditioning inputs and implementing them in a model for generating
drum loops. At the same time, drawing inspiration from work in on gesture mapping,
we reinterpret the technical formulation of conditional generative models into a simple
interaction paradigm based on guiding ML models with demonstrations, and show
through experiments as well as informal subjective evaluations that our approach can
enable diverse and controllable interactions with music generation models. We hope
that this approach will provide useful grounding for future technical and user-centered
research on musical interactions between people and Al.

Citations

1. Dhariwal, P, Jun, H., Payne, C., Kim, J. W,, Radford, A., & Sutskever, 1. (2020).
Jukebox: A generative model for music. ArXiv Preprint ArXiv:2005.00341. <

2. Zukowski, Z., & Carr, C. (2018). Generating black metal and math rock: Beyond
bach, beethoven, and beatles. ArXiv Preprint ArXiv:1811.06639. ~

3. Sturm, B. L., Ben-Tal, O., Monaghan, U., Collins, N., Herremans, D., Chew, E., ...
Pachet, F. (2018). Machine learning research that matters for music creation: A case
study. Journal of New Music Research, 48(1), 36-55. <

4. Huang, C.-Z. A., Koops, H. V,, Newton-Rex, E., Dinculescu, M., & Cai, C. (2020). AI
song contest: Human-Al co-creation in songwriting. In Proceedings of the 21st
International Society for Music Information Retrieval Conference (pp. 708-716).
Montreal, Canada: ISMIR. <

5. Roberts, A., Engel, J., Mann, Y., Gillick, J., Kayacik, C., Narly, S., ... Eck, D. (2019).
Magenta Studio: Augmenting Creativity with Deep Learning in Ableton Live. In
Proceedings of the 6th International Workshop on Musical Metacreation (p. 7).
Charlotte, United States: MUME. <

6. Pachet, F. (2003). The continuator: Musical interaction with style. Journal of New
Music Research, 32(3), 333-341. <

16



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression . .
Multiple Demonstrations

7. Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I., Hawthorne, C., Shazeer, N.,
... Eck, D. (2019). Music Transformer. In International Conference on Learning
Representations. <

8. Sturm, B., Santos, J. F., Ben-Tal, O., & Korshunova, I. I. (2016). Music
Transcription Modelling and Composition Using Deep Learning. In Proceedings of
the 1st Conference on Computer Simulation of Musical Creativity (p. 6).
Huddersfield, UK: CSMC. <

9. Yang, R., Wang, D., Wang, Z., Chen, T., Jiang, J., & Xia, G. (2019). Deep Music
Analogy Via Latent Representation Disentanglement. In Proceedings of the 20th
International Society for Music Information Retrieval Conference (pp. 596-603).
Delft, The Netherlands: ISMIR. <

10. Yang, R., Chen, T.,, Zhang, Y., & gus xia. (2019). Inspecting and Interacting with
Meaningful Music Representations using VAE. In Proceedings of the International
Conference on New Interfaces for Musical Expression (pp. 307-312). «

11. Engel, J., Hantrakul, L. (Hanoi), Gu, C., & Roberts, A. (2020). DDSP:
Differentiable Digital Signal Processing. In International Conference on Learning
Representations. <

12. Simon, I., Roberts, A., Raffel, C., Engel, J., Hawthorne, C., & Eck, D. (2018).
Learning a latent space of multitrack measures. ArXiv Preprint ArXiv:1806.00195. <
13. Wang, Z., Wang, D., Zhang, Y., & Xia, G. (2020). Learning interpretable
representation for controllable polyphonic music generation. In Proceedings of the
21st International Society for Music Information Retrieval Conference (pp. 662-669).
Montreal, Canada: ISMIR. <

14. Wang, Z., Zhang, Y., Zhang, Y., Jiang, J., Yang, R., Xia, G., & Zhao, ]. (2020).
PianoTree VAE: Structured representation learning for polyphonic music. In
Proceedings of the 21st International Society for Music Information Retrieval
Conference (pp. 368-375). Montreal, Canada: ISMIR. <

15. Gillick, J., Roberts, A., Engel, J., Eck, D., & Bamman, D. (2019). Learning to
Groove with Inverse Sequence Transformations. In International Conference on
Machine Learning (pp. 2269-2279). <

16. Jeong, D., Kwon, T,, Kim, Y., Lee, K., & Nam, J. (2019). VirtuosoNet: A
Hierarchical RNN-based System for Modeling Expressive Piano Performance. In



. . . What to Play and How to Play it: Guiding Generative Music Models with
International Conference on New Interfaces for Musical Expression . .
Multiple Demonstrations

Proceedings of the 20th International Society for Music Information Retrieval
Conference (pp. 908-915). Delft, The Netherlands: ISMIR.~

17. Jeong, D., Kwon, T., Kim, Y., & Nam, J. (2019). Score and performance features
for rendering expressive music performances. In Proceedings of the Music Encoding
Conference. <

18. In the studio with Grammy-nominated music producer Oak Felder. (2020, April
29). [Video]. YouTube. https://www.youtube.com/watch?v=0mUC8n0O8-HA <

19. Tokui, N. (2020). Towards democratizing music production with AI-Design of

Variational Autoencoder-based Rhythm Generator as a DAW plugin. ArXiv Preprint
ArXiv:2004.01525. <

20. Vigliensoni, G., McCallum, L., & Fiebrink, R. (2020). Creating Latent Spaces for
Modern Music Genre Rhythms Using Minimal Training Data. In Proceedings of the
11th International Conference on Computational Creativity. <

21. Kingma, D. P, & Welling, M. (2013). Auto-encoding variational bayes. ArXiv
Preprint ArXiv:1312.6114. <

22. Benetatos, C., VanderStel, ]J., & Duan, Z. (2020). BachDuet: A deep learning
system for human-machine counterpoint improvisation. In Proceedings of the
International Conference on New Interfaces for Musical Expression. <

23. Donahue, C., Simon, I., & Dieleman, S. (2019). Piano genie. In Proceedings of the
24th International Conference on Intelligent User Interfaces (pp. 160-164). <

24. Chen, K., Wang, C., Berg-Kirkpatrick, T., & Dubnov, S. (2020). Music SketchNet:
Controllable music generation via factorized representations of pitch and rhythm. In
Proceedings of the 21st International Society for Music Information Retrieval
Conference (pp. 77-84). Montreal, Canada: ISMIR. <

25. Levitin, D. J. (2002). Control parameters for musical instruments: a foundation
for new mappings of gesture to sound. Organised Sound, 7(2), 171-189. <

26. Fiebrink, R., Trueman, D., & Cook, P. R. (2009). A Meta-Instrument for
Interactive, On-the-Fly Machine Learning. In Proceedings of the International
Conference on New Interfaces for Musical Expression (pp. 280-285). «


https://www.youtube.com/watch?v=0mUC8nO8-HA

What to Play and How to Play it: Guiding Generative Music Models with

International Conference on New Interfaces for Musical Expression . .
Multiple Demonstrations

27. Francoise, J. (2013). Gesture-sound mapping by demonstration in interactive
music systems. In Proceedings of the 21st ACM international conference on
Multimedia (pp. 1051-1054). <

28. Fried, O., & Fiebrink, R. (2013). Cross-modal Sound Mapping Using Deep
Learning. In Proceedings of the International Conference on New Interfaces for
Musical Expression (pp. 531-534). <

29. Huang, C. A., Duvenaud, D., Arnold, K. C., Partridge, B., Oberholtzer, J. W,, &
Gajos, K. Z. (2014). Active learning of intuitive control knobs for synthesizers using
gaussian processes. In Proceedings of the 19th international conference on
Intelligent User Interfaces (pp. 115-124). <

30. Dinculescu, M., Engel, J., & Roberts, A. (Eds.). (2019). MidiMe: Personalizing a
MusicVAE model with user data. Workshop on Machine Learning for Creativity and
Design, NeurlPS. <

31. Lucas, T., & Verbeek, J. (2018). Auxiliary guided autoregressive variational
autoencoders. In joint European Conference on Machine Learning and Knowledge
Discovery in Databases (pp. 443-458). <

32. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018). A hierarchical
latent vector model for learning long-term structure in music. ArXiv Preprint
ArXiv:1803.05428. -

19



